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Abstract— In this paper we propose a general class of models
for spreading processes we call the SI

∗

V
∗ model. Unlike many

works that consider a fixed number of compartmental states, we
allow an arbitrary number of states on arbitrary graphs with
heterogeneous parameters for all nodes and edges. As a result,
this generalizes an extremely large number of models studied
in the literature including the MSEIV, MSEIR, MSEIS, SEIV,
SEIR, SEIS, SIV, SIRS, SIR, and SIS models. Furthermore, we
show how the SI

∗

V
∗ model allows us to model non-Poisson

spreading processes letting us capture much more complicated
dynamics than existing works such as information spreading
through social networks or the delayed incubation period of
a disease like Ebola. This is in contrast to the overwhelming
majority of works in the literature that only consider dynamics
that can be captured by Markov processes. After developing
the stochastic model, we analyze its deterministic mean-field
approximation and provide conditions for when the disease-
free equilibrium is stable. Simulations illustrate our results.

I. INTRODUCTION

The study of spreading processes on complex networks has

recently gained a massive surge of interest. With the wide

range of applications including the spreading of a computer

virus, how a product is adopted by a marketplace, or how an

idea or belief is propagated through a social network, it is no

surprise that a plethora of different models and studies have

been devoted to this. However, an overwhelming majority

of the stochastic models considered assume that transitions

from one state to another (e.g., a healthy individual re-

covering from a disease) is a Poisson process that follows

an exponential distribution. Unfortunately, this assumption

restricts the applicability of such models to exclude a number

of processes like how information is disseminated through

Twitter or how the Ebola virus is spreading in West Africa.

In this paper we propose a very general class of epidemic

models and show how it can be used to study spreading

processes that don’t necessarily evolve according to an

exponential distribution. In addition to being able to account

for non-Poisson spreading processes, our model generalizes

almost every model studied in the literature including the

MSEIV, MSEIR, MSEIS, SEIV, SEIR, SEIS, SIV, SIRS,

SIR, and SIS models. The development and analysis of

such a general model also allows rapid prototyping of future

spreading processes that might not even exist today.

Literature review

One of the oldest and most commonly studied spread-

ing models is the Susceptible-Infected-Susceptible (SIS)

model [1]. Early works such as the one above often consider

simplistic assumptions such as all individuals in a population
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being equally likely to interact with everyone else in the pop-

ulation [2]. One of the first works to consider a continuous-

time SIS model over arbitrary graphs using mean field theory

is [3], which provides conditions on when the disease-free

state of the system is globally asymptotically stable.

In addition to the simple SIS model, a myriad of different

models have also been proposed and studied in the literature.

In [4], [5], the authors add various states to model how

humans might adapt their behavior when given knowledge

about the possibility of an emerging epidemic. The work [6]

considers the possible effect of human behavior changes for

the three state Susceptible-Alert-Infected-Susceptible (SAIS)

model. In [7], a four-state generalized Susceptible-Exposed-

Infected-Vigilant (G-SEIV) model is proposed and studied.

This model is appealing because it was shown to generalize

a large number of other models already studied in the

literature [8], [9]. These models have been used to study the

propagation of computer viruses [10], [11] or products and

information [12], and the spreading of diseases [13]. How-

ever, a large drawback is that all of the works above consider

an underlying Markov process that drives the system.

While this may be well suited for a number of spreading

processes, they have also been applied in areas for which

this is not a very good approximation. A notable example

is the spreading of the Ebola virus. The work [14] looks at

the spreading of Ebola in Congo and Uganda in 2004 and

estimates the spreading properties of the virus fitted to a four-

state SEIR model. Similarly, the work [15] looks at the more

recent outbreak of Ebola in West Africa and again estimates

the parameters of the virus fitted to a six-state model. The

larger number of states allows the model to better capture

things like human behavioral changes and also the incuba-

tion period of the Ebola virus. However, just like all the

works mentioned above, all transitions are assumed to evolve

according to an exponential distribution. More specifically,

once an individual is exposed to the virus at some time

t0, the probability that the individual has started showing

symptoms by time t is given by P (t) = 1 − e−ε(t−t0) for

some ε > 0. However, this is far from a good approximation

when looking at the empirical data collected over the years.

The work [16] studies a certain strain (Zaire) of the Ebola

virus and concludes that the incubation period of the disease

is much better modelled as a log-normal distribution with

a mean of 12.7 days and standard deviation of 4.31 days,

which cannot be well captured by the exponential distribution

above. Another prominent example today is the spreading of

information through social networks on the internet, such

as Twitter or Digg. It has been observed multiple times

that the spreading of information in these networks is again

better modelled as a log-normal distribution rather than an

exponential one [17], [18], [19].
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We are only aware of very few works that have considered

spreading processes without exponential distributions. The

work [20] studies the drastic effects that non-exponential

distributions can have both on the speed of the spreading

and on the threshold conditions for when the disease will

die out or persist. A simple SI model is studied in [21]

without the complexity of an arbitrary graph structure. The

SIS model with general infection and recovery times is

considered in [22]. In this work we generalize this idea to a

much wider class of epidemic models.

Statement of contributions

The contributions of this paper are threefold. First, we

propose the SI∗V ∗ model that generalizes a very large

number of models studied in the literature today. Our model

allows an arbitrary number of ‘infected’ and ‘vigilant’ states

unlike many models that have a fixed number of states.

Multiple infected states allows us to capture various stages of

a disease or spreading process which may have very different

properties in terms of contagiousness, chance of recovery,

etc. Multiple vigilant states allows us to capture different rea-

sons that an individual might not be susceptible to a disease

including behavioral changes, vaccinations, or even death.

Second, we develop and analyze the deterministic mean-

field approximation for the model and provide conditions

for which the disease-free states of our model are globally

asymptotically stable. Finally, we show how allowing our

Markov model to have an arbitrary number of states can be

used to approximate non-Poisson spreading processes with

arbitrary accuracy. This allows us to much more accurately

describe real-life phenomena, such as the propagation of

information through social networks or spreading of the

Ebola virus, which have recently been shown to evolve

according to log-normal distributions rather than exponential

ones. Due to space restrictions, all proofs have been omitted.

II. PRELIMINARIES

We denote by R and R≥0 the sets of real and nonnegative

real numbers, respectively. We define the indicator function

1Z to be 1 if Z is true, and 0 otherwise.

Graph theory: Given a directed graph G with N nodes,

we denote by A ∈ R
N×N the associated adjacency matrix.

The components of A are given by aji = 1 if and only if

there exists a directed edge from i to j on the graph G.

We denote the in-neighbors and out-neighbors of node i

as N in
i = {j ∈ {1, . . . , N} | aij = 1} and N out

i = {j ∈
{1, . . . , N} | aji = 1}, respectively.

Given a vector q ∈ R
n, we let diag (q1, . . . , qn) denote

the n × n diagonal matrix with q1, . . . , qn on the diagonal.

Given an arbitrary matrix Q ∈ R
m×n, we define deg(Q) =

diag
(

∑n

j=1 q1j , . . . ,
∑n

j=1 qmj

)

the diagonal m×m matrix

with row sums of Q on the diagonal. For a square matrix Q,

we define the Laplacian L(Q) = deg(Q) − Q. A square

matrix Q is Metzler if its components qij ≥ 0 for all i 6= j.

III. MODEL DESCRIPTION

We begin by formulating the SI∗V ∗ that we study in

the remainder of the paper. We follow the idea of the N-

intertwined SIS model developed in [23] and its extensions to

δkℓi Recovery rate from Ik to V ℓ

εkk
′

i Infection internal transition rate from Ik to Ik
′

µℓℓ′

i Vigilant internal transition rate from V ℓ to V ℓ′

γℓ
i Rate of becoming susceptible from V ℓ to S

θℓi Rate of becoming vigilant from S to V ℓ

βk
ij Infection rate due to infected (Ik) neighbor j from S to I1

TABLE I

PARAMETER DEFINITIONS

the SAIS and generalized SEIV models developed in [6], [7].

Although the latter models have been shown to generalize

many different models studied in the literature, they assume

a fixed number of compartments for a given disease. Instead,

we build on a compartmental model studied in [24] in which

the number of states relating to the disease are arbitrary.

Unlike the population model (i.e., no graph structure) studied

in [24], we are interested in proposing and analyzing this

model applied to arbitrary networks. In Section IV we show

how this model can be used to approximate a wide class

of spreading processes on networks for any type of state

transitions with arbitrary accuracy, rather than only Poisson

processes (exponential distributions).

We consider a virus spreading model with three classes

of states called the SI∗V ∗ model. The first class has only

one state which is the susceptible state S. The susceptible

state S corresponds to a healthy individual who is capable

of being exposed to the disease. The second class has m > 0
states known as infectious states I . In the infectious class, an

individual can be in any of the m states given by Ik for k ∈
{1, . . . ,m}. This allows the possibility to model a number of

variations to the infectious state including human behavior,

severity of the disease, etc. The last class has n > 0 states

known as vigilant states V . In the vigilant class, an individual

can be in any of the n states given by V ℓ for ℓ ∈ {1, . . . , n}.

The vigilant class captures individuals who are not infected,

but also not immediately susceptible to contract the disease.

The various states in the class can be used to model different

reasons that the individual is not susceptible such as being

vaccinated, having just recovered, or even deceased.

Consider a network with with N nodes. For each node

i ∈ {1, . . . , N} we define the random variable Xi(t) ∈
{S, I1, . . . , Im, V 1, . . . , V n} as the state of node i at a given

time t. We consider a general directed contact graph G over

which the disease can spread. A susceptible node is only able

to become exposed if it has at least one neighbor that is in

any of the infectious states. A node i can only be infected

by nodes in N in
i and can only infect nodes in N out

i .

The compartmental Markov process is defined by the

following parameters. Let δkℓi be the recovery rate of node

i going from infectious state Ik to vigilant state V ℓ. This

allows the possibility to model different recovery rates de-

pending on which state of an infection the individual is in

and which vigilant state the individual will end up in. We

let Di = [δkℓi ]kℓ ∈ R
m×n be the matrix that describes these

transitions. Let εkk
′

i be the rate at which an individual in

infectious state Ik moves to infectious state Ik
′

. This can

model the various different stages or severity of a disease

and how individuals move from one stage to another. We let
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∑m

k′=1

∑

j∈N in
i
βk′

ij Y
k
j

δkℓi

γℓ
iθℓi

Fig. 1. (1+m+n)-state SI∗V ∗ compartmental model for node i. Internal
transition rates among the infected and vigilant classes are not shown.

Ei = [εkk
′

i ]kk′ ∈ R
m×m be the matrix that describes these

transitions. We denote by µℓℓ′

i the internal transition rate from

vigilant state V ℓ to V ℓ′ . This can model different levels and

types of vigilance in individuals, such as behavioral changes,

changing medications/vaccines, etc. We let Mi = [µℓℓ′

i ]ℓℓ′ ∈
R

n×n be the matrix that describes these transitions. We

denote by γℓ
i and θℓi the rates of moving from V ℓ to S and

S to V ℓ, respectively. Finally, let βk
ij be the effect that a

neighbor j ∈ N in
i of node i in state Ik has on i. The rate

that an individual i moves from S to I1 is then given by
∑m

k′=1

∑

j∈N in
i
βk′

ij Y
k′

j , where Y k
j (t) = 1Xj(t)=Ik . Note that

when a susceptible individual i becomes infected, it always

moves into the first infectious state I1. It is then free to move

to the other infectious stages according to Ei. All the disease

parameters are nonnegative. Table I presents the definitions

of these parameters for convenience.

The dynamics of the epidemic spread is then modeled

using the definition of the infinitesimal generator from [25].

For brevity, we only write a subset of the possible transitions,

P (Xi(t
′)= I1|Xi(t)= S,X(t))=

m
∑

k′=1

∑

j∈N in
i

βk′

ij Y
k′

j + o,

P (Xi(t
′)= I2|Xi(t)= I1, X(t))= ε12i + o,

P (Xi(t
′)= I1|Xi(t)= I2, X(t))= ε21i + o,

P (Xi(t
′)= V ℓ|Xi(t)= I1, X(t))= δ1ℓi + o,

where t′ = t+∆t and o = o(∆t).

Figure 1 shows the (1 + m + n)-state SI∗V ∗ compart-

mental Markov model for a single node i. Note that the only

graph-based transition is from the susceptible state S to the

first infected state I1. The state of the entire network X(t)
then lives in a (1 +m + n)N dimensional space making it

very hard to analyze directly. Instead, we utilize a mean-field

approximation to reduce the complexity of the entire system.

We do this by replacing Y k
j by its expected value E[Yj ]

k.

We denote by
[

Si(t), I
1
i (t), . . . , I

m
i (t), V 1

i (t), . . . , V
n
i (t)

]T

the probability vector associated with node i being in each

of these states, i.e.,

Si(t) +

m
∑

k′=1

Ik
′

i (t) +

n
∑

ℓ′=1

V ℓ′

i (t) = 1, (1)

Si(t), I
k
i (t), V

ℓ
i (t) ≥ 0,

for all i ∈ {1, . . . , N}, k ∈ {1, . . . ,m}, and ℓ ∈ {1, . . . , n}.

The SI∗V ∗ model we consider is then given by

İ1i (t) = (1−
m
∑

k′=1

Ik
′

i −
n
∑

ℓ′=1

V ℓ′

i )

m
∑

k′=1

∑

j∈N in
i

βk′

ij I
k′

j

− I1i

n
∑

ℓ′=1

δ1ℓ
′

i +

m
∑

k′=1

Ik
′

i εk
′1

i − I1i ε
1k′

i ,

İki (t) = −Iki

n
∑

ℓ=1

δkℓi +

m
∑

k′=1

Ik
′

i εk
′k

i − Iki ε
kk′

i , (2)

V̇ ℓ
i (t) =

m
∑

k′=1

δk
′ℓ

i Ik
′

i + θℓi (1−
m
∑

k′=1

Ik
′

i −
n
∑

ℓ′=1

V ℓ′

i )

− γℓ
iV

ℓ
i +

n
∑

ℓ′=1

V ℓ′

i µℓ′ℓ
i − V ℓ

i µ
ℓℓ′

i ,

for k ∈ {2, . . . ,m} and ℓ ∈ {1, . . . , n}. For brevity, we

only present the main stability result for this set of N(m+
n) ODEs. The interested reader is referred to [26] for the

technical details.

Theorem III.1 The disease-free states of (2) are asymptot-

ically stable if and only if Qxx ∈ R
mN×mN is Hurwitz,

where

Qii
xx = −L(Ei)− deg(Di),

Qij
xx =

(

1− 1T
n×1y

∗
i

)

[

β1
ij , . . . , β

m
ij

0(m−1)×m

]

,

with y∗
i

given by













L(Mi) +













θ1i . . . θ1i

θ2i . . . θ2i
...

...

θni . . . θni













+ diag (γi)













−1 











θ1i

θ2i
...

θni













.

IV. NON-EXPONENTIAL DISTRIBUTIONS

In this section we show how dynamics with non-

Markovian state transitions can be modeled by appropriately

constructing an instance of our SI∗V ∗ model. To simplify

the exposition, we demonstrate this idea for a single example

(the spreading of the Ebola virus) but note that the same idea

applies to a very large number of different models.

The underlying model we consider is the four-state G-

SEIV model proposed in [7] and shown in Figure 2. The

‘Susceptible’ state S captures individuals who are able to

be exposed to the disease, the ‘Exposed’ state E refers to

those have been exposed to the disease but not yet developed
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∑

j∈N in
i
βI
ijY

I
j

δi

γiθi

Fig. 2. Four-state G-SEIV compartmental model for node i.

symptoms, the ‘Infected’ state I captures individuals who are

displaying symptoms and contagious, and the ‘Vigilant’ state

V captures individuals who are not immediately susceptible

to the disease (e.g., just recovered, quarantining themselves).

We assume that all transitions are Poisson processes except

the transition from exposed to infected. For this transition

we use a log-normal distribution with mean 12.7 days and

standard deviation 4.31 days as proposed in [16] based on

empirical data. In the construction of the approximation,

an important role is played by the class of probability

distributions called phase-type distributions [27].

Consider a time-homogeneous Markov process with p+1
(p ≥ 1) states such that the states 1, . . . , p are transient and

the state p + 1 is absorbing. The infinitesimal generator of

the process is then necessarily of the form

[

S −S1p×1

01×p 0

]

, (3)

where S ∈ R
p×p is an invertible Metzler matrix with non-

positive row-sums. Also let

[

φ

0

]

∈ R
p+1, φ ∈ R

p
≥0 (4)

be the initial distribution of the Markov process. Then, the

time to absorption into the state p+1 of the Markov process,

denoted by (φ,S), is called a phase-type distribution. It is

known that the set of phase-type distributions is dense in the

set of positive valued distributions [28]. Moreover, there are

efficient fitting algorithms to approximate a given arbitrary

distribution by a phase-type distribution [27].

We now show how this can be used to expand the G-

SEIV model to an instance of our SI∗V ∗ model such that

the time it takes to reach the infected state from the exposed

state follows a phase-type distribution.

Proposition IV.1 Consider the SI∗V ∗ model with m = p+
1 infectious states, where Im corresponds to the infected

0 5 10 15 20 25 30 35

 

0

0.02

0.04

0.06

0.08

0.1

0.12
log-normal
phase-type p=2
phase-type p=4
phase-type p=6
phase-type p=8
phase-type p=10
phase-type p=12

Fig. 3. Approximation of log-normal distribution (mean 12.7 days and
standard deviation 4.31 days) with phase-type distributions for Ebola’s
incubation period [16].

state and Ik for k ∈ {1, . . . , p} correspond to the exposed

state. Let SI ∈ R
p×p be given by

[SI ]kk′ =

{

εkk
′

k 6= k′,

−
∑m

k′=1 ε
kk′

otherwise.
(5)

Then the length of time that it takes a node i to go from

state I1 to Im follows the distribution (e1, SI), where e1 =
[1,01×p−1]

T
.

Proposition IV.1 shows that it is possible to model the

transition from the exposed state to the infected state of the

SEIV model as a phase-type distribution. This is done by

essentially expanding the exposed state in the original SEIV

model from a single state to p states. As noted earlier, this

is only one specific example that can be extended to model

many different state transitions as phase-type distributions

rather than exponential ones. Next, we show how an arbitrary

distribution can be approximated as a phase-type distribution

and how to choose the parameters for our SI∗V ∗ model to

realize the desired distribution.

Continuing with our Ebola example, we show how phase-

type distributions can well approximate the log-normal dis-

tribution of Ebola’s incubation time with mean of 12.7 days

and a standard-deviation of 4.31 days. To do this, we utilize

the expectation-maximization algorithm proposed in [27]

Figure 3 shows the results for different amounts of internal

states p. We can see here that the more internal states p we

use, the closer our phase-type distribution becomes to the

desired log-normal distribution. An instance of the phase-

type distribution for p = 10 is shown in Figure 4.

Remark IV.2 In fact one can show that the set of the phase-

type distributions of the form (e1,S) is dense in the set of

all the phase-type distributions as follows. Let (φ,S) be a

given phase-type distribution. For a positive real number r
define the block-matrix

Tr =

[

−r rφ⊤

0 S

]

. (6)

Then we can prove that the sequence of the phase type

distributions {(e1, Tr)}∞n=1 with p + 2 states converges to

the phase type distribution (φ,S) with p + 1 states. Here

we provide only an outline of the proof. Let X be the
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time-homogeneous Markov process having the infinitesimal

generator (6) and the initial distribution e1. Define t1 =
sup{τ : X(τ) = 1}, i.e., the time at which the Markov

process leaves the first state, and let t2 be the time the process

X is absorbed into the state p + 2. By the definition of the

first row of the generator Tr, we see that X(t1) follows the

distribution
[

0, φT , 0
]T

∈ R
p+2
≥0 .

Therefore t2−t1 follows (φ,S). Moreover, as r increases,

the probability density function of t1 converges to the Dirac

delta on the point 0. Therefore the random variable t2 =
t1+(t2−t1), which follows (e1, Tr) by definition, converges

to (φ,S). The details are omitted due to space restrictions.•

The implications of Remark IV.2 are that although our

SI∗V ∗ model only allows a susceptible node to enter the

infected class through I1, we are still able to model any

phase-type distribution (φ,S) rather than just (e1,S).

V. SIMULATIONS

Here we demonstrate how the results of Section IV can

be used to model a spreading process with a non-exponential

state transition and validate our stability results by simulating

the spreading of Ebola. The underlying model we use is

a four-state G-SEIV model proposed in [7] and shown in

Figure 2. The ‘Susceptible’ state S captures individuals who

are able to be exposed to the disease, the ‘Exposed’ state E

captures individuals who have been exposed to the disease

but have not yet developed symptoms, the ‘Infected’ state

I captures individuals who are displaying symptoms and

contagious, and the ‘Vigilant’ state V captures individuals

who are not immediately susceptible to the disease (e.g., just

recovered, quarantining themselves).

We assume that all transitions are Poisson processes except

the transition from E to I . For this transition we use a

log-normal distribution with mean 12.7 days and standard

deviation 4.31 days as proposed in [16] based on empirical

data. Using the EM algorithm proposed in [27] with p = 10
phases, we expand the exposed state from a single state to

10 states. This means we can describe our four state non-

Poisson SEIV model by a 13-state Poisson SI∗V ∗ model

with one susceptible state, one vigilant state, and m = 11
infectious states where I11 is the only contagious state. The

other infectious states Ik for k ∈ {1, . . . , 10} correspond to

the exposed (but not symptomatic) state of the original SEIV

model. The obtained internal compartmental model between

the exposed state and infected state is shown in Figure 4.

For our simulations we consider a strongly connected

Erdos-Renyi graph A with N = 20 nodes and connection

probability 0.15. Initially, the vaccination rates θi are ran-

domly chosen from a uniform distribution θi ∈ [0.3, 0.8] and

the rates of becoming susceptible γi ∈ [0.2, 0.7]. Since it is

known that Ebola can only be transmitted by people who are

showing symptoms, we set βk
ij = 0 for all k ∈ {1, . . . , 10}.

For links that exist in the graph A we randomly set the

infection rate β11
ij ∈ [0.1, 0.4]. Similarly, we assume that

only infected individuals can recover, thus we set δki = 0
for all k ∈ {1, . . . , 10} and randomly set the recovery rate

δi ∈ [0.1, 0.4]. Since we only have one vigilant state, there

are no internal transition parameters µ.

To demonstrate the effectiveness of the expansion of our

model to capture the log-normal incubation times of Ebola,

we randomly set the initial conditions of being exposed to

I1i (0) ∈ [0.25, 0.75] and the susceptible state to Si(0) =
1−I1i (0). Thus, we assume that there are initially no nodes in

the vigilant V or infected states Ik for k ∈ {2, . . . , 11}. For

the parameters used, we obtain λmax(Qxx) = −0.1264 as the

largest real part of the eigenvalues of Qxx. Figure 5(a) shows

the evolution of the maximum, minimum, and average prob-

abilities of being in any of the 11 infected states over time

Pi(t) =
∑11

k=1 I
k
i (t). Figure 5(b) shows the probabilities

of being in only the truly infected (and symptomatic) state

I11i (t) for all nodes i. Here we can see the effectiveness of

our expanded model in capturing the log-normal incubation

times of Ebola, seeing the peak of infections at 12.7 days.

Given enough time, we see that all infections eventually die

out as the stability condition of Theorem III.1 is satisfied.
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Fig. 5. Plots of (a) the minimum, maximum, and average trajectories of the
probability of each node being in any infected state and (b) the trajectories
of the probability of each node being in the infectious state I11.

In Figure 6 we vary the recovery rates δi and infection

rates β11
ij and look at the steady-state probabilities P (∞)

of each node being in any infectious state where we ap-

proximate P (∞) ≈ P (T ) for large T . We can see here the

sharp threshold property that occurs as λmax(Qxx) moves

from negative to positive, validating our stability results.

VI. CONCLUSIONS

In this work we have proposed a general class of stochastic

epidemic models called SI∗V ∗ on arbitrary graphs, with

heterogeneous node and edge parameters, and an arbitrary

number of states. We have then provided conditions for when
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Fig. 4. Approximation of Ebola incubation time distribution with phase-type (p = 10) distribution.
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Fig. 6. Plot of the minimum, maximum, and average steady-state
probabilities of each node being in any infected state.

the disease-free equilibrium of its mean-field approximation

is stable. Furthermore, we have shown how this general class

of models can be used to handle state transitions that don’t

follow an exponential distribution, unlike the overwhelming

majority of works in the literature. We demonstrate this

modeling capability by simulating the spreading of the Ebola

virus, which is known to have a non-exponentially distributed

incubation time (i.e., time it takes to show symptoms once

an individual is exposed). For future work we are interested

in studying how to control this model which can be used in

a much wider range of applications than before due to its

capabilities in modeling non-Poisson spreading processes.
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