
A Sublinear Algorithm for Barrier-Certificate-Based Data-Driven Model Validation
of Dynamical Systems

Shuo Han, Ufuk Topcu, George J. Pappas

Abstract— The paper considers the problem of scaling the
method of barrier certificates for data-driven validation of
dynamical system models using a large number of collected
trajectories. Construction of a barrier certificate requires solv-
ing a convex feasibility problem that consists of a set of affine
constraints whose number grows with the size of the dataset.
The time complexity of traditional methods such as the interior-
point method depends at least linearly on the size of the
dataset and can be expensive to use for large datasets. We
show that sublinear time complexity can be achieved using the
multiplicative weights method, which was originally proposed to
compute an approximate feasible solution for affine constraints.
After modifications, the multiplicative weights method is able
to yield an exact solution to the convex feasibility problem and
hence a valid barrier certificate. We also present numerical
studies and show that the multiplicative weights method is
favorable to traditional methods for large datasets.

I. INTRODUCTION

The use of “big data” has become increasingly important
in cyber-physical systems due to the advances in sensing and
data collection technology [12]. On one hand, more data
allow us to gain more insight into the system and hence
make better decisions in system operation for improved per-
formance. On the other hand, the presence of large datasets
also brings computational challenges; this is often manifested
in the size of the data-driven optimization problem, which
grows with the size of the dataset [2].

In this paper, we consider the problem of model valida-
tion for dynamical systems [10]. Suppose we are given a
model in the form of a parameterized class of dynamical
systems and some information on the trajectories of the
actual system. The goal is to check whether knowledge
about the trajectories is consistent with the model, i.e.,
there exists a system within the parameterized class that can
explain the behaviors of the trajectories. In previous work on
model validation, knowledge about the trajectories is often
expressed in the form of set constraints, such as sets that
contain the initial/terminal states of the trajectory. In contrast,
we focus on a data-driven variant of the problem, where
we assume that we have access to a dataset of trajectories
collected from the actual physical system.

Past work, in particular the pioneering work by Pra-
jna [10], has shown that the system model validation problem
can be solved using the technique of barrier certificates.

The authors are with the Department of Electrical and Sys-
tems Engineering, University of Pennsylvania, Philadelphia, PA 19104.
{hanshuo,utopcu,pappasg}@seas.upenn.edu. This work was sup-
ported in part by the NSF (CNS-1239224) and TerraSwarm, one of six
centers of STARnet, a Semiconductor Research Corporation program spon-
sored by MARCO and DARPA.

Strictly speaking, the technique of barrier certificates is used
to invalidate the system model; if a barrier certificate can be
constructed, then the class of system models is invalidated
by knowledge about the trajectories, i.e., there is no model
within the class that is able to explain the behaviors of
the trajectories. When the technique of barrier certificates is
applied to solve the data-driven variant of model validation,
it can be shown that one needs to solve a feasibility problem
that involves a single convex constraint (usually linear matrix
inequality) and a set of affine constraints whose number
depends on the number of trajectories in the dataset.

When the dataset is relatively small, the convex feasibility
problem of finding a barrier certificate is typically solved
using the interior-point method for fast convergence and good
numerical precision. However, the time complexity of the
interior-point method grows at least linearly with the number
of constraints [7], hence also linearly with the size of the
dataset. For large datasets, the interior-point method can be
expensive to use in practice, which motivates the need for
a numerical solution method that achieves sublinear time
complexity.

A number of sublinear algorithms have been developed
in the area of constrained convex optimization (which gen-
eralizes convex feasibility problems). The idea of sketch-
ing has been applied to regression problems, where the
algorithm works by projecting the problem data into a
lower dimensional space [14]. There has also been work
that uses sampling-based techniques to avoid handling all
the data, such as the work of de Farias and Van Roy [4]
with application in approximate dynamic programming and
the work of Calafiore and Campi [3] on solving uncertain
convex programs. In this paper, we explore the application
of the multiplicative weights algorithm [1], one of whose
applications is solving affine feasibility problems with a large
number of constraints.

Contributions: We show that the data-driven model
validation problem can be solved by searching for a feasible
solution to a convex constraint and a number of affine
constraints generated by the trajectory data. This feasibil-
ity problem can be solved by the multiplicative weights
method, whose (worst-case) time complexity grows only
logarithmically with the size of the dataset. Although the
multiplicative weights algorithm was originally proposed to
obtain an approximate solution to affine feasibility problems,
we show that, by implementing the algorithm properly, an
exact solution and hence a valid barrier certificate can be
obtained. In addition, through simulations, we show that the
actual running time of the multiplicative weights algorithm is

2015 IEEE 54th Annual Conference on Decision and Control (CDC)
December 15-18, 2015. Osaka, Japan

978-1-4799-7885-4/15/$31.00 ©2015 IEEE 2049

very insensitive to size of the dataset. In the regime of large
datasets, the multiplicative weights algorithm is significantly
faster than the interior-point method.

Paper organization: We introduce the problem of data-
driven model validation in Section II. This has a similar
description as the one used by Prajna [10]; the difference
is that our formulation explicitly incorporates available tra-
jectory data. We then briefly review the technique of barrier
certificates in Section III. We show that finding a barrier
certificate requires solving a convex feasibility problem with
a number of affine constraints generated by trajectory data.
Section IV presents the main result of the paper, where we
show that the multiplicative weights algorithm can be used
to solve the feasibility problem in sublinear time (in terms
of the size of dataset). In the end, we present in Section V
a numerical example that shows the multiplicative weights
method is favorable to conventional direct solution methods
in the regime of large datasets.

II. PROBLEM STATEMENT

A. Notation

Denote the `2-norm of any x ∈ Rn by ‖x‖. The vector
consisting of all ones is written as 1. The symbol � is used
to represent element-wise inequality: for any x, y ∈ Rn, we
have x � y if and only if xi ≥ yi for all 1 ≤ i ≤ n. All the
sets are represented by uppercase calligraphic letters.

B. Problem statement: System model validation

The problem setting we consider in this paper is similar
to the model validation problem presented in the work of
Prajna [10]. The model under consideration is a class of
continuous-time nonlinear dynamical systems described by

ẋ(t) = f(x(t), p, t), (1)

where x(t) is the system state, t is the time, and p is
some fixed parameter that appears in the dynamics. Suppose
that we do not know the exact value of p. Instead, we are
presented with a dataset consisting of m trajectories collected
from the actual system for t ∈ [0, T], where each trajectory
starts with initial state x(0) = x

(i)
0 and ends at terminal state

x(T) = x
(i)
T (i = 1, 2, . . . ,m). In this paper, we assume

for simplicity that we are only able to record the initial
and terminal states, but not any intermediate points along
the trajectory x(t). The case where intermediate points are
also recorded can be handled in a similar way using the
notion of extended vector fields [10]. For simplicity, we do
not consider imperfections such as measurement noise in the
trajectory data.

In addition to the initial and terminal states, we assume
that we have prior knowledge about the system trajectories:
there exists a set X such that

x(t) ∈ X , ∀t ∈ [0, T]. (2)

The set X represents our prior knowledge about the system
and does not rely on the dataset of trajectories. In the absence
of prior knowledge, for example, the set X becomes the
entire state space of the system. Given all the trajectory

data {(x(i)
0 , x

(i)
T)}mi=1 and the prior knowledge X , we would

like to check whether the system dynamics is consistent
with the trajectory data, i.e., whether any system within the
parameterized family (1) is able to generate the trajectory
data without violating the prior knowledge X .

Problem 1 (Data-driven model validataion). Given a set of
initial and terminal states {(x(i)

0 , x
(i)
T)}mi=1, prior knowledge

X as described by (2), and a set P of possible parameters.
Verify whether there exists p ∈ P such that

x
(i)
T = φ(x

(i)
0 , p, T) and φ(x

(i)
0 , p, t) ∈ X

for all t ∈ [0, T] and i ∈ {1, 2, . . . ,m}, where φ(·, p, T) is
the flow of the parameterized dynamics (1) at time T .

In Problem 1, if such p ∈ P exists, we say that the
model is validated by the trajectory data {(x(i)

0 , x
(i)
T)}mi=1.

Otherwise, we say that the model is invalidated. Later, we
shall see that it is often computationally more tractable to
solve the invalidation problem.

The formulation presented in Problem 1 is slightly dif-
ferent than the ones used in existing model validation liter-
ature [10], [11], [8], which often assumes that knowledge
about the initial and terminal states is given as sets that
contain the system states. Our formulation incorporates the
available data into model validation problem explicitly with-
out any additional processing of the trajectory data (such as
computing the set that contains the states). As a consequence,
the complexity of the model validation problem depends on
the size of the dataset and motivates the use of algorithms
that are scalable with the problem size.

III. MODEL VALIDATION USING BARRIER CERTIFICATES

In this section, we review the method of barrier certificates
proposed by Prajna [10] for system model validation. A
barrier certificate, in this context, is a function that witnesses
that the available data cannot be explained by any system
model within the parameterized family. For computational
reasons, we focus on the case where the dynamics can be
expressed in polynomials. In this case, construction of a
barrier certificate requires solving a feasibility problem in
which the constraints can be divided into two parts. The
first part is a polynomial positivity constraint that can be
relaxed into a convex constraint; the second part consists of
a collection of affine constraints whose number is the same
as the number of trajectories in the dataset.

A. Model validation using barrier certificates

There are certain cases where the model validation prob-
lem adopts simple solutions and does not require using the
method of barrier certificates. One such case is when the
set P of parameters is a singleton set, i.e., P = {p0},
for which the system validation problem can be solved by
simulations. Specifically, one can run m simulations of the
system for t ∈ [0, T] using the dynamics (1) with p = p0,
where each simulation starts with the initial state x(i)

0 given
in the dataset. If any of the terminal states at t = T does
not coincide with the corresponding x

(i)
T in the dataset,

2050

then the model is invalidated. However, the simulation-based
validation method does not apply for a general set P; in
this case, one needs to run simulations for all p ∈ P ,
which becomes intractable since the number of simulations
is infinite.

To circumvent this difficulty, Prajna [10] proposed to use
barrier certificates as a way for system model validation
without performing simulations or computing the flow of
the system. The existence of a barrier certificate provides a
direct proof that the system model is invalidated by the data.

Proposition 2 (Barrier certificate [10]). Suppose that
the dataset of initial and terminal states is given as
{(x(i)

0 , x
(i)
T)}mi=1, and the prior knowledge about the system

trajectories as described by (2) is given by X . If there exists
a function B(·, p, ·) that is differentiable for all p ∈ P and
satisfies

B(x
(i)
T , p, T)−B(x

(i)
0 , p, 0) > 0,

∀p ∈ P, i = 1, 2, . . . ,m, (3)
∂B

∂x
(x, p, t)f(x, p, t) +

∂B

∂t
(x, p, t) ≤ 0,

∀x ∈ X , p ∈ P, t ∈ [0, T], (4)

then the system model (1) is invalidated by {(x(i)
0 , x

(i)
T)}mi=1

and X .

Any function B that satisfies conditions (3) and (4) is
called a barrier certificate (for model validation) for the sys-
tem model (1), trajectory dataset {(x(i)

0 , x
(i)
T)}mi=1, and prior

knowledge X about the system trajectories. The existence of
a barrier certificate is a sufficient condition for the model to
be invalidated by the given trajectory data.

B. Construction of barrier certificates

It is generally difficult to apply Proposition 2 directly in
order to find a barrier certificate, since it is intractable to
search over all possible differentiable functions for a barrier
certificate. However, in certain cases, there are numerical
methods for constructing a valid barrier certificate. In the
next, we will focus on system dynamics f(x, p, t) that are
polynomial in (x, p, t). In this case, instead of searching for
a barrier certificate over the space of all functions, we can
construct the barrier certificate B using polynomials with
bounded degree [10]. Moreover, we will only search over
barrier certificates that do not depend on p, so that we can
write B as

B(x, t) =

K∑
k=1

ckBk(x, t), (5)

where {Bk}Kk=1 are monomials in (x, t) and c =
(c1, c2, . . . , cK) are the coefficients. Substituting (5) into (3)
and (4), we obtain

K∑
k=1

ck

[
Bk(x

(i)
T , T)−Bk(x

(i)
0 , 0)

]
> 0,

i = 1, 2, . . . ,m (6)

K∑
k=1

ck

[
∂Bk
∂x

(x, t)f(x, p, t) +
∂Bk
∂t

(x, t)

]
≤ 0,

∀x ∈ X , p ∈ P, t ∈ [0, T]. (7)

Under the representation (5), the search of a barrier cer-
tificate B becomes equivalent to finding a feasible c that
satisfies constraints (6) and (7). When the monomial basis
functions Bk are chosen, condition (6) consists of m linear
constraints in c. On the other hand, condition (7) is a negative
polynomial constraint, i.e., the coefficients c must maintain
negativity of the polynomial over a given set. In general,
finding a feasible solution to constraint (7) is difficult.
However, one can relax (7) into linear matrix inequality
constraints in c using sums-of-squares techniques. Relaxation
of (7) into linear matrix inequality constraints is beyond the
scope of this paper, and readers can refer to [10] and the
work of Parrilo [9] for more details.

To summarize, for systems whose dynamics are char-
acterized by polynomials, the search of barrier certificates
amounts to finding feasible solutions for m affine con-
straints (6) and a single negative polynomial constraint (7)
that can be relaxed into a linear matrix inequality constraint.
When the number of trajectories (i.e., m) is small, the
computational complexity of finding feasible solutions for (6)
and (7) is dominated by (7). However, as m increases,
the complexity of solving (7) remains the same, while that
of solving (6) grows linearly with m using conventional
algorithms such as the interior-point method. When m is
large, algorithms with linear time complexity may become
computationally expensive to use. In the next, we will present
an algorithm whose time complexity grows only sublinearly
with m and is more favorable for solving model validation
problems in the regime of large datasets.

IV. A SUBLINEAR ALGORITHM FOR MODEL VALIDATION

In this section, we show how the multiplicative weights
method can be applied to solve the data-driven model
validation problem. The multiplicative weights method was
originally proposed to obtain an approximate feasible solu-
tion to a set of affine constraints. Compared to conventional
methods such as the interior-point method, the benefit of
the multiplicative weights method is that its time complexity
grows only sublinearly with the number of constraints, which
is the same as the size of the dataset when applied to
the problem of model validation. Moreover, with proper
modifications, the multiplicative weights method will yield
an exact feasible solution and hence a valid barrier certificate
for the model validation problem.

A. The multiplicative weights method

The multiplicative weights method is a meta-algorithm
that was originally proposed to solve the problem of expert
selection with no regret, and it has a broad range of applica-
tions in machine learning, optimization, and game theory. In
this paper, we consider the application of the multiplicative
weights method proposed by Arora et al. [1] in finding a

2051

feasible solution for affine constraints. Specifically, we would
like to find z ∈ Rn such that

z ∈ Z and Az � b (8)

for some given bounded convex set Z ⊂ Rn and A ∈ Rm×n,
b ∈ Rm. We consider the scenario where m is much larger
than n, and it is relatively easy to check the feasibility z ∈
Z , so that the time complexity is dominated by the affine
constraints Az � b.

For numerical analysis, it is often useful to consider so-
lutions that are approximately feasible for the constraint (8).
We say that z is a δ-approximate feasible solution to (8) if
z satisfies

z ∈ Z and Az � b− δ1. (9)

As δ → 0, one can obtain a δ-approximate solution that is
arbitrarily close to an exact feasible solution. In addition, we
assume that there is an oracle that is able to compute z ∈ Rn
such that

z ∈ Z and cT z ≥ d, (10)

for any given c ∈ Rn and d ∈ R or report infeasible if no
such z exists.

In Algorithm 1, we present the multiplicative weights
method for obtaining a δ-approximate feasible solution for
the affine constraints (8). The constant ` ∈ R that appears in
Algorithm 1 is called the width of the affine constraints Az �
b, and ` is defined such that

−`1 � Az − b � `1, ∀z ∈ Z.

One way to compute the width ` is to use the fact that Z
is bounded. Denote by aTi the i-th row of A. Then we have
for all i ∈ {1, 2, . . . ,m},

` ≤ max
z∈Z
|aTi z− bi| ≤ max

z∈Z
|aTi z|+ bi ≤ ‖ai‖ ·max

z∈Z
‖z‖+ bi.

Since the set Z is bounded, we know that maxz∈Z ‖z‖ is
also bounded, and hence ` is bounded.

The procedure in Algorithm 1 has an intuitive explanation.
The weight vector wt keeps track of how the constraints are
violated. At the end of each iteration (step 3), the weights
for the constraints that are violated are increased, whereas
the weights for those that are satisfied are decreased. Hence,
during the next iteration, it is more likely to find zt+1 in
step 1 to satisfy the constraints that are previously violated.

Arora et al. [1] have shown that the maximum number
of iterations required by Algorithm 1 for computing a δ-
approximate solution is sublinear in the number of affine
constraints m.

Proposition 3 (Arora et al. [1]). Consider the affine feasi-
bility problem as described by (8). Suppose the width of the
affine constraints Az � b is `. Then Algorithm 1 will either
find a δ-approximate solution to the constraints (8) or report
that (8) is infeasible within T ≤

⌈
8`2 logm

δ2

⌉
steps.

Note that the time complexity of Algorithm 1 is expressed
in terms of the number of oracle calls (step 1). We ignore
the time complexity of steps 2 and 3 since they are often

Algorithm 1 Multiplicative weights method for approximate
affine feasibility.
Input: Z ⊂ Rn, A ∈ Rm×n, b ∈ Rm, `, and δ > 0.
Output: z satisfying constraint (9) or that constraint (9) is
infeasible.
Choose ε = δ/4` and w1 ∈ Rm such that w1,i = 1 for all
i ∈ {1, 2, . . . ,m}.
For t = 1, 2, . . . , T :

1) (Oracle) Find zt such that zt ∈ Z and wTt Azt ≥ wTt b.
If no such zt exists, terminate and report that the
constraint (9) is infeasible.

2) Compute mt := (Azt − b)/`.
3) Update wt+1 ∈ Rm as follows:

wt+1,i =

{
wt,i(1− ε)mt,i if mt,i ≥ 0

wt,i(1 + ε)−mt,i if mt,i < 0.

Compute z = 1
T

∑T
t=1 zt.

relatively cheap to compute compared to the oracle. In order
for the multiplicative weights method to be useful in practice,
it is necessary that the computation required by the oracle
is relatively cheap. This often applies in the case when m
is much larger than the problem dimension n, so that the
computational complexity of solving the feasibility of (8) is
dominated by the affine constraints Az � b.

B. Data-driven model validation in sublinear time

Recall that we can invalidate a model of dynamical
systems from data using barrier certificates. In the case
of polynomial dynamics, the search of barrier certificates
becomes finding a feasible c such that constraints (6) and (7)
are satisfied. We can compactly rewrite (7) as c ∈ C
for some convex set C after relaxing of (7) into a linear
matrix inequality using sums-of-squares techniques. Define
the matrix A ∈ Rm×K such that

aik = Bk(x
(i)
T , T)−Bk(x

(i)
0 , 0). (11)

Under the definitions of C and A, the problem of finding a
barrier certificate becomes finding c that satisfies

c ∈ C and Ac � 0. (12)

There are two remaining issues before Algorithm (1) can
be applied for solving the model validation problem. Firstly,
the width of the affine constraints Ac � 0 is unbounded,
since C is unbounded. Indeed, if c∗ is a feasible solution
to (7), then αc∗ is also a feasible solution for any α > 0.
When the set C is unbounded, the width ` of the constraints
Ac � 0 also becomes unbounded, which leads to unbounded
number of iterations in Algorithm 1. In order to apply
Algorithm 1, we can choose some constant c̄ > 0 and include
an additional norm constraint c ∈ Bc̄ := {c : ‖c‖ ≤ c̄}.
Secondly, the affine constraints Ac � 0 are strict inequality
constraints and are not amenable for numerical computation.

2052

Algorithm 2 Multiplicative weights method for computing
a barrier certificate.
Input: {(x(i)

0 , x
(i)
T)}mi=1, C, {Bk}, and c̄.

Output: c satisfying constraint (14) or that constraint (14)
is infeasible.
Choose

` = c̄ · max
i∈{1,2,...,m}

∥∥∥Bk(x
(i)
T , T)−Bk(x

(i)
0 , 0)

∥∥∥ , (15)

ε = 1/4`, and w1 ∈ Rm such that w1,i = 1 for all i ∈
{1, 2, . . . ,m}.
For t = 1, 2, . . . , T :

1) (Oracle) Find ct such that ct ∈ C ∩ Bc̄ and wTt Act ≥
wTt 1, where A is defined in (11). If no such ct
exists, terminate and report that the constraint (14) is
infeasible.

2) Compute mt := (Act − 1)/`.
3) Update wt+1 ∈ Rm as follows:

wt+1,i =

{
wt,i(1− ε)mt,i if mt,i ≥ 0

wt,i(1 + ε)−mt,i if mt,i < 0.

Compute c = 1
T

∑T
t=1 ct.

For numerical purposes, we rewrite (6) as
K∑
k=1

ck

[
Bk(x

(i)
T , T)−Bk(x

(i)
0 , 0)

]
≥ γ,

i = 1, 2, . . . ,m (13)

for some γ > 0 to avoid handling strict inequality constraints.
Under the new transformations, the problem becomes finding
c such that

c ∈ C ∩ Bc̄ and Ac � γ1. (14)

It should be noted that the choices of c̄ and γ are not
independent. If γ is too large or c̄ is too small, then the
constraint (14) may become infeasible even if the original
constraint (12) is feasible. For practical implementation,
we can fix γ and keep increasing c̄ until (14) becomes
feasible. The limitation of this implementation, however, is
that we have to terminate once c̄ becomes large enough, after
which the feasibility of the original constraint (12) becomes
undecidable using Algorithm 2.

Even though the multiplicative weights method only gives
an approximate feasible solution to constraints in (14), by
properly choosing the parameters in the method, we can still
obtain an exact barrier certificate, as shown in the following
theorem. The modified algorithm is presented in Algorithm 2.

Theorem 4. Consider the problem of searching for a barrier
certificate as described by (6) and (7) for ‖c‖ ≤ c̄. Then
Algorithm 2 will either find a barrier certificate or report
that no barrier certificate exists within T ≤

⌈
8`2 logm

⌉
steps, where ` is given by (15).

Proof: Recall that the problem of searching for a barrier
certificate can be rewritten in a compact way as (14). Choose

γ = 1. For any δ < 1, consider a δ-approximate solution c
that satisfies the constraints (14), i.e.,

c ∈ C ∩ Bc̄ and Ac � (1− δ)1.

It can be verified that such an approximate solution satisfies
the original constraints (12) and hence yields a valid barrier
certificate. Choose δ → 1 and substitute into Proposition 3
to complete the proof.

Remark 5. Although the choice of γ = 1 may seem arbitrary,
it does not affect the result on computational complexity.
Note that the computational complexity is also affected by
the width `, which depends on c̄. Denote by c̄∗ the minimum
c̄ such that (14) is feasible for γ = 1. Then it can be verified
that γc̄∗ is the minimum c̄ such that (14) is feasible for any
γ > 0, so that the quantity

⌈
8`2 logm/δ2

⌉
remains the same

as δ → γ.
Note that the quantity

⌈
8`2 logm

⌉
given by Theorem 4 is

the number of iterations required to find a feasible solution
in the worst case. In practice, we can terminate if the running
average c̄t := 1

t

∑t
τ=1 cτ is a feasible solution to Ac̄t � 0.

As will be seen in the next section, the actual number of
iterations can be much less than the worst-case prediction
given by Theorem 4.

V. NUMERICAL EXPERIMENTS

We use an example adopted from the one used by Pra-
jna [10]. The parameterized system dynamics are given by

ẋ = −px3, (16)

where p ∈ P = [0.5, 2] ⊂ R. The prior knowledge X
about the system trajectory is given by X = R. The set
of initial states x(i)

0 and terminal states x(i)
T are generated

by uniform sampling from the intervals [0.85, 0.95] and
[0.55, 0.65], respectively, whereas the period of simulation
T = 4.0. We note that the solution to (16) can be obtained
in closed form so that it is not necessary to find a barrier
certificate in order to validate the model. Nevertheless, we
choose to use the dynamics (16) primarily for investigating
how the multiplicative weights method scales with the size
of the dataset.

We consider barrier certificates in the form

B(x, t) = B1(x) + tB2(x),

where both B1 and B2 are polynomials in x up to degree
4, so that the number of basis functions K = 10. All
simulations are performed in MATLAB (R2014a) on a Linux
workstation equipped with a quad-core 3.4 GHz Intel Core
i7 processor and 8 GB of RAM. The oracle (step 1 of
Algorithm 2) is computed using the sums-of-squares mod-
ule [6] provided in YALMIP (Release 20150204) [5]. We
have compared several optimization solvers and found that
SeDuMi (version 1.34) [13] gives the best result. When
running Algorithm 2, at the end of each iteration, we also
compute c̄t = 1

t

∑t
τ=1 cτ and terminate if Ac̄t � 0.

2053

200 400 600 800 1000 1200
−2.5

−2

−1.5

−1

−0.5

0

0.5

Iteration

m
in

(a
iT
 *

 c
)

Fig. 1. The feasibility gap mini∈{1,2,...,m}{aTi c̄t} obtained as a function
of the iteration t when running Algorithm 2 for m = 100, 000. The
algorithm terminates when t = 1, 244 and c̄t satisfies Ac̄t � 0.

Fig. 1 shows the convergence of Algorithm 2 for m =
100, 000. As the number of iterations t increases, the feasi-
bility gap

min
i∈{1,2,...,m}

{aTi c̄t}

approaches zero. At t = 1, 244, we have the feasibility gap

min
i∈{1,2,...,m}

{aTi c̄t} > 0,

i.e., Ac̄t � 0. This implies that c̄t is a feasible solution to the
constraints (12) and that we have successfully found a barrier
certificate to invalidate the model based on available data,
i.e., there is no p ∈ P such that the data can be explained
by the dynamics ẋ = −px3. As a comparison, the number
of iterations as predicted by Theorem 4 is

⌈
8`2 logm

⌉
≈

2.4 × 105, which is much larger than the actual number of
iterations for reaching convergence.

Table I compares the actual running time of the multiplica-
tive weights method with the direct method that solves the
problem using SeDuMi for different number of data points
m. The entries with an asterisk (∗) correspond to cases in
which the program terminates early due to numerical issues.
For the multiplicative weights method, the computational
time for the oracle (step 1 in Algorithm 2) has no dependence
on m. The time required for each iteration in Algorithm 2
only slightly increases with m because of steps 2 and 3, so
that the running time of the multiplicative weights method
mainly depends on the number of iterations. Although the
worst-case number of iterations should grow logarithmically
with m according to Theorem 4, the actual number of
iterations and hence the running time was found to be
insensitive to changes in m. On the other hand, the running
time of the direct method is expected to grow at least linearly
with m. As can be seen from Table I, the running time of the
multiplicative weights method outperforms that of the direct
method when the size m of the dataset is large.

VI. CONCLUSIONS

In this paper, we explore the application of the multi-
plicative weights method in barrier-certificate-based data-
driven model validation of dynamical systems in order to

m Multiplicative
Weights (sec)

Direct Method
(SeDuMi) (sec)

1,000 107.7 0.23
10,000 125.6 0.88
100,000 124.4 13.70∗

1,000,000 124.8 569.21∗

TABLE I
RUNNING TIME COMPARISON

handle large datasets of trajectories. In order to invalidate a
given model from available data, we need to find a barrier
certificate by solving a convex feasibility problem with a
large number of affine constraints (the same as the number
of trajectories). Although the multiplicative weights method
was originally proposed to compute an approximate feasible
solution for affine constraints, we show that a modified
multiplicative weights method is able to yield an exact
solution and hence a valid barrier certificate. In theory,
the method is able to achieve sublinear time complexity
(measured by the number of iterations) in terms of the
size of the given dataset. Through numerical simulations,
we have found that the running time of the multiplicative
weights method is very insensitive to the size of the dataset.
Compared to conventional direct solution methods such as
the interior-point method, the multiplicative weights method
is particularly favorable in the regime of large datasets.

REFERENCES

[1] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory of Computing,
8(1):121–164, 2012.

[2] D. Bertsimas, V. Gupta, and N. Kallus. Data-driven robust optimiza-
tion. arXiv preprint arXiv:1401.0212, 2013.

[3] G. Calafiore and M. C. Campi. Uncertain convex programs: ran-
domized solutions and confidence levels. Mathematical Programming,
102(1):25–46, 2005.

[4] D. P. De Farias and B. Van Roy. On constraint sampling in the
linear programming approach to approximate dynamic programming.
Mathematics of Operations Research, 29(3):462–478, 2004.

[5] J. Löfberg. YALMIP: A toolbox for modeling and optimization in
MATLAB. In Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[6] J. Löfberg. Pre- and post-processing sum-of-squares programs in
practice. IEEE Transactions on Automatic Control, 54(5):1007–1011,
2009.

[7] Y. Nesterov, A. Nemirovskii, and Y. Ye. Interior-point polynomial
algorithms in convex programming, volume 13. SIAM, 1994.

[8] N. Ozay, M. Sznaier, and C. Lagoa. Model (in)validation of switched
ARX systems with unknown switches and its application to activity
monitoring. In IEEE Conference on Decision and Control (CDC),
pages 7624–7630. IEEE, 2010.

[9] P. A. Parrilo. Structured semidefinite programs and semialgebraic ge-
ometry methods in robustness and optimization. PhD thesis, California
Institute of Technology, 2000.

[10] S. Prajna. Barrier certificates for nonlinear model validation. Auto-
matica, 42(1):117–126, 2006.

[11] S. Prajna, A. Jadbabaie, and G. J. Pappas. A framework for worst-
case and stochastic safety verification using barrier certificates. IEEE
Transactions on Automatic Control, 52(8):1415–1428, 2007.

[12] A. B. Sharma, F. Ivančić, A. Niculescu-Mizil, H. Chen, and G. Jiang.
Modeling and analytics for cyber-physical systems in the age of big
data. ACM SIGMETRICS Performance Evaluation Review, 41(4):74–
77, 2014.

[13] J. F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization
over symmetric cones. Optimization Methods and Software, 11(1-
4):625–653, 1999.

[14] D. P. Woodruff. Sketching as a tool for numerical linear algebra.
Theoretical Computer Science, 10(1-2):1–157, 2014.

2054

