
Attack-Resilient State Estimation in the Presence of Noise

Miroslav Pajic Paulo Tabuada Insup Lee George J. Pappas

Abstract— We consider the problem of attack-resilient state
estimation in the presence of noise. We focus on the most general
model for sensor attacks where any signal can be injected via
the compromised sensors. An l0-based state estimator that can
be formulated as a mixed-integer linear program and its convex
relaxation based on the l1 norm are presented. For both l0 and
l1-based state estimators, we derive rigorous analytic bounds
on the state-estimation errors. We show that the worst-case
error is linear with the size of the noise, meaning that the
attacker cannot exploit noise and modeling errors to introduce
unbounded state-estimation errors. Finally, we show how the
presented attack-resilient state estimators can be used for sound
attack detection and identification, and provide conditions on
the size of attack vectors that will ensure correct identification
of compromised sensors.

I. INTRODUCTION

In recent years, several incidents have raised attention to
security challenges in existing control systems and illustrated
their susceptibility to attacks. Examples of these incidents
include the Maroochy Water breach [1], the StuxNet virus
attack on an industrial SCADA system [2], and attacks on
modern automotive systems [3]. Some of the documented
control system vulnerabilities were exposed by non-invasive
attacks on system sensors, where an adversarial signal is
injected into the measured data by modifying a sensor’s
physical environment. For instance, several attacks on GPS
based navigation systems (e.g., [4]) and Anti-lock Braking
Systems [5] have been reported, illustrating that the use of
standard authentication based network security techniques
does not guarantee security of control systems.

Consequently, significant efforts have been invested into
development of control techniques that exploit some knowl-
edge of system dynamics for attack detection and attack-
resilient control (e.g., [6], [7], [8], [9], [10], [11]). One line
of work has focused on attack-detection [12], [13]. Further-
more, state estimation in presence of sensor and actuator
attacks has attracted significant attention due to the fact that
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systems capable of correctly estimating the plant’s state from
corrupted measurements would be able to continue operating
even under attack. For noiseless linear time-invariant (LTI)
systems for which the exact plant model is known, the attack-
resilient state estimation problem has been formulated as an
l0 optimization problem [8], [9]. In addition, in [14], the
authors present an SMT-based state estimation technique.

However, for systems with noise, it is unclear what kind of
guarantees can be given regarding the performance of attack-
resilient state estimators. To the best of our knowledge,
the first work on this topic was [15] where we introduced
an l0-based attack-resilient state estimator for systems with
bounded noise, which can be formulated as a Mixed-Integer
Linear Program (MILP). We also showed its robustness to
noise and modeling errors, and provided a complex design-
time procedure to bound the worst-case state estimation error
in the presence of sensor attacks.

In this paper, we focus on the problem of attack-resilient
state estimation for linear dynamical systems with noise. We
consider the most general model for sensor attacks where any
signals can be injected via the compromised sensors [7]. We
start from the l0-based state estimation procedure introduced
in [9] and show how it can be adapted for systems with
noise. The main limitation of the l0-based state estimators
is that solving the corresponding optimization problem is
NP-hard in general. Thus, by exploiting properties of the
l1 norm we provide a computationally efficient, convex
optimization based state estimation procedure for systems
with noise. We also derive rigorous analytic bounds on
the state-estimation errors for both l0 and l1-based state
estimation procedures. We show that the worst-case error
is linear with the size of the noise, and when the number
of attacked sensors is not higher than a predefined number,
which depends on the properties of the system’s observability
matrix, the attacker cannot exploit noise and modeling errors
to introduce unbounded state-estimation errors. Finally, we
present how these attack-resilient state estimators can be
exploited for sound attack detection and identification.

Note that our work exploits some of the ideas initially
introduced in the domain of compressed sensing [16]. In
particular, the problem of extraction of block-sparse signals
have been recently addressed in the community (e.g., [17]),
while [18] provides guarantees for extraction of (non-block)
sparse signals in presence of structured interference.

A. Notation and Terminology

For a set S, |S| denotes the cardinality (i.e., size) of the
set. In addition, for a set K ⊂ S, with K{ we denote the
complement set of K with respect to S – i.e., K{ = S \ K.
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We use AT to indicate the transpose of matrix A, while
ith element of a vector xk is denoted by xk,i. For vector x
and matrix A, we denote by |x| and |A| the vector and matrix
whose elements are absolute values of the initial vector and
matrix, respectively. For matrices P and Q, by P ≤ Q we
specify that the matrix P is element-wise smaller than the
matrix Q. In addition, for a symmetric matrix Q, Q � 0
denotes that the matrix is positive semidefinite.

We use R to denote the set of reals. Also, Ip denotes the
identity matrix of size p, while I(·) denotes the indicator
function. Finally, for a vector e ∈ Rp, the support of the
vector is the set supp(e) = {i | ei 6= 0} ⊆ {1, 2, ..., p},
while l0 norm of vector e is the cardinality of supp(e) –
i.e., ‖e‖l0 = |supp(e)|.

II. PROBLEM DESCRIPTION

We consider LTI systems of the form

xk+1 = Axk

yk = Cxk + wk + ek.
(1)

The plant’s output vector y ∈ Rp contains measurements of
the plant’s state x ∈ Rn provided by p sensors from the
set S = {s1, s2, ..., sp}. We assume the measurement noise
vector w ∈ Rp to be bounded; specifically, we assume that
|wk| ≤ δwk

, for all k ≥ 0. Finally, the sparse vector e ∈ Rp

with support in set K ⊆ S denotes the attack vector injected
by a malicious attacker using sensors from K.1

The attack-resilient state estimation problem focuses on
reconstruction of the initial system state x0 from a set of
N output observations2 y0,y1, . . . ,yN−1 corrupted by an
attacker with access to the sensors from the set K – i.e.,

yk = CAkx0 + ek + wk.

Since set K is not known before the estimation, additional
goal is to identify compromised sensors (i.e., identify set K).

1) Model Motivation: The aforementioned attack-resilient
state estimation problem can be also used for the general
form of LTI systems

xk+1 = Axk + Buk + vp
k

yk = Cxk + vm
k + ek,

(2)

with A ∈ Rn×n,B ∈ Rn×m, and C ∈ Rp×n, while process
and measurement noise, vp ∈ Rn and vm ∈ Rp respectively,
are bounded in size. Here, to obtain the plant’s state at any
time-step t (i.e., xt), the goal is to utilize the previous N
sensor measurement vectors (yt−N+1, ...,yt) and actuator
inputs (ut−N+1, ...,ut−1) to evaluate the state xt−N+1.

For noiseless systems, the state can be obtained as the
minimization argument of the following optimization prob-
lem [9], [15]

min
Et,N∈Rp×N , x∈Rn

‖Et,N‖l0

s. t. Et,N = Yt,N − ΦN (x)
(3)

1In this work, we sometimes abuse notation with K denoting both the set
of compromised sensors and the set of indices of the compromised sensors.

2Note that the measurement history size N is an input parameter to the
state-estimation procedure.

Here, the matrix Et,N = [et−N+1|et−N+2| . . . |et] cap-
tures the last N attacks vectors. In addition, Yt,N =
[ỹt−N+1|ỹt−N+2| . . . |ỹt] maintains the last N sensor mea-
surements compensated for the impact of the inputs applied
during that interval – i.e.,

ỹk = yk, k = t−N + 1

ỹk = yk −
k−t+N−2∑

i=0

CAiBuk−1−i, k = t−N + 2, ..., N.

Finally, the linear mapping ΦN : Rn → Rp×N defined as
ΦN (x) =

[
Cx|CAx| . . . |CAN−1x

]
specifies the observed

system evolution, due to its dynamics, from initial state x.
Therefore, for the general form of LTI systems (2), the

state-estimation problem can be mapped into the state estima-
tion for systems from (1), where control inputs are discarded.
In addition, as shown in [15], the bounds on the size of
measurement noise in (2) can be related to the bounds on the
size of process and measurement noise vectors, vp and vm.

III. ATTACK-RESILIENT STATE ESTIMATORS

We start by introducing the following notation. We use
PK to denote the projection from the set S to set K by
keeping only rows of C with indices that correspond to
sensors from K. Formally, PK = [ ik1

... ik|K| ]
T , where

K = {sk1
, ..., sk|K|} ⊆ S and k1 < ... < k|K|, and iTj

denotes the row vector (of appropriate size) with a 1 in its
jth position being the only non-zero element of the vector.
Also, for any sensor si we define the matrices Osi and OK

Osi =


P{si}C
P{si}CA

...
P{si}CAN−1

 OK =


Osi1
Osi2

...
Osi|K|

 , (4)

We will also slightly abuse the notation by using Oi to denote
Osi for each sensor si.

In addition, we use ẽi = [ e0,i e1,i ... eN−1,i ]
T ∈ RN , for

all i ∈ {1, ..., p}, to denote the values injected via sensor si
(i.e., attack signals on sensor si) at time-steps 0, ..., N − 1.3

From the definition, if si /∈ K then ẽi = 0 ∈ RN . Similarly,
for all i ∈ {1, ..., p}, we use ỹi = [ y0,i ... yN−1,i ]

T and w̃i =
[ w0,i ... wN−1,i ]

T to denote all measurements obtained by the
sensor si and measurement noise at the sensor respectively, at
time-steps 0, ..., N−1. Hence, we have that for all 1 ≤ i ≤ p

ỹi = Oix0 + ẽi + w̃i (5)

Finally, we define block vectors ỹ, ẽ, w̃ ∈ RpN as ỹ =[
ỹT

1 ... ỹT
p

]T
, ẽ =

[
ẽT1 ... ẽTp

]T
, and w̃ =

[
w̃T

1 ... w̃T
p

]T
,

and matrix O =
[
OT

1 ... OT
p

]T
.4 Since each element of

the measurement noise vectors w0, ...,wN−1 is bounded
(i.e., |wk,i| ≤ δwk,i

, 0 ≤ k ≤ N − 1, 1 ≤ i ≤ p), we
denote by Ω ⊂ RpN the feasible set of noise vectors w̃.

3Note that vector ẽi corresponds to the ith row of the matrix E from (3).
4Since matrix O is obtained by reordering rows of the standard observ-

ability matrix OS for the system (A,C), rank(O) = rank(OS).
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In addition, for any set R ⊂ S, we define w̃R to be
the block vector obtained by concatenating w̃si for all
si ∈ R starting from the smallest i to the largest, while
the corresponding ΩR ⊂ R|R|N denotes the feasible set
of vectors w̃R. We similarly define the matrix OR to be
obtained by concatenating matrices Oi for all si ∈ R.

Now, from (5), it follows that

ỹ = Ox0 + ẽ + w̃. (6)

For block vectors obtained by concatenating p vectors,
such as ẽ and ỹ, we also use the notation from [17]

‖ẽ‖l2,l0 =

p∑
i=1

I(‖ẽi‖l2 > 0)

‖ẽ‖l2,l1 =

p∑
i=1

‖ẽi‖l2

(7)

This allows us to define block q-sparse vector ẽ as a vector
that satisfies ‖ẽ‖l2,l0 = q, meaning that it has q nonzero sub-
vectors. Hence, if the set of compromised sensors K has q
elements (i.e., |K| = q) then vector ẽ is q-block sparse.

Using the above notation, the optimization problem (3)
can be represented as:

P0 : min
ẽ,x
‖ẽ‖l2,l0

s. t. ỹ −Ox0 − ẽ = 0
(8)

Now, consider the measurement vector ỹ for a noiseless
system’s (i.e., when Ω = 0 ∈ RpN ) evolution due to the
initial state x0 and attack vector ẽ∗. If the number of attacked
sensors q = |K| is not higher than a certain number qmax,5

the minimization arguments of the problem P0 are exactly
the initial state x0 and the attack vector ẽ∗ [9]. Thus, in
this case the estimator P0 also correctly identifies the set of
attacked sensors K. Furthermore, for noiseless systems P0 is
optimal in the sense that if another estimator can recover the
initial state (which would also result in identification of the
attacked sensors), the attack-resilient state estimator based
on P0 can as well [9].

On the other hand, P0 cannot be used when noisy sensor
measurements are available (i.e., when Ω 6= 0 ∈ RpN ).
For instance, in this case the point (x0, ẽ

∗) might not even
be feasible. Thus, as we showed in [15], attack-resilient
state estimation can be performed by solving the following
problem that allows for the noise allowance

P0,ω : min
ẽ,x
‖ẽ‖l2,l0

s. t. ỹ −Ox0 − ẽ = w̃

w̃ ∈ Ω

(9)

The problem P0,ω involves combinatorial optimization and
as we presented in [15] it can be solved using MILP solvers.
However, solving P0,ω is NP-hard in the general case, which
limits its use on smaller size systems. A common approach
used in compressed sensing is to replace l0 norm by l1

5The number qmax depends on the properties of the observability matrix
of the system. We will cover this in more detail in Section IV.

norm, which effectively convexifies the problem and reduces
its computational requirements. Consequently, to perform
the attack-resilient state estimation we also consider the
following optimization problem

P1,ω : min
ẽ,x
‖ẽ‖l2,l1

s. t. ỹ −Ox0 − ẽ = w̃

w̃ ∈ Ω

(10)

However, it is unclear what guarantees can be provided
regarding the performance of the attack-resilient state es-
timators P0,ω and P1,ω . Specifically, we are interested in
obtaining worst-case bounds on the state estimation errors
caused by noise and attacks on sensors, and answering
the question whether the attacker can exploit the noise to
introduce an unbounded state estimation error. Furthermore,
we will investigate conditions that ensure that the presented
state estimators can be used to correctly identify the set of
attacked sensors.

IV. PERFORMANCE GUARANTEES FOR P0,ω ESTIMATOR

In this section, we focus on the performance degradation
of the P0,ω state estimator due to the existence of noise.
Specifically, we are interested in providing bounds on ∆xl0

that is defined as

(xl0,ω, ẽ
l0) = argminP0,ω, q0,ω = ‖ẽl0‖l2,l0 (11)

∆xl0 = xl0,ω − x0, ∆ẽl0 = ẽl0 − ẽ∗ (12)

We will also denote ith blocks of ∆xl0 ,∆ẽl0 , and ẽl0 as
∆xl0

i ,∆ẽl0i , and ẽl0i , respectively.
We consider systems where the number of compromised

sensors q = |K| is not higher than qmax – the maximal
number of attacked sensors for which the system’s state can
be recovered in the noiseless case. Thus, before we proceed
with our analysis, we first characterize conditions under
which it is possible to perform the state estimation even for
noiseless systems. We start with the following definition.

Definition 1 ([19]): An LTI system from (1) is said to be
s-sparse observable if for every set K ⊂ S of size s (i.e.,
|K| = s), the pair (A, PK{C) is observable.

From the analysis in [9] the following holds.
Lemma 1: qmax is equal to the maximal s for which the

system is 2s-sparse observable.
For considered systems, the following theorem provides a

bound on the maximal state estimation error caused by the
existence of noise.

Theorem 1: If q sensors have been attacked, where q ≤
qmax, then the error ∆xl0 of the state estimate obtained from
optimization problem P0,ω satisfies

‖∆xl0‖l2 ≤ 2 · max
R⊂S,

|R|=p−2qmax

(
‖O†R‖l2 · max

w̃R∈ΩR
‖w̃R‖l2

)
(13)

where O†R denotes the pseudoinverse of OR (i.e., O†R =
(OT
ROR)−1OT

R).
Proof: From (12) and the definition of P0,ω it follows

that ‖∆ẽl0 + ẽ∗‖l2,l0 ≤ ‖ẽ∗‖l2,l0 . Since for all vectors a,b,
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I(‖a + b‖l2 > 0) ≥ I(‖a‖l2 > 0)− I(‖b‖l2 > 0),6 we have
that ‖∆ẽl0 + ẽ∗‖l2,l0 ≥ ‖∆ẽl0‖l2,l0 − ‖ẽ∗‖l2,l0 . Therefore,

‖∆ẽl0‖l2,l0 ≤ 2‖ẽ∗‖l2,l0
r1
≤ 2qmax, (14)

where r1 holds because ‖ẽ∗‖l2,l0 = q and the number of
attacked sensors q is bounded by qmax.

From (6), we have that ẽ∗ = ỹ −Ox0 − w̃∗. Similarly,
from the constraint (9) it follows that ẽl0 = ỹ−Oxl0,ω−w̃l0 ,
which implies

∆ẽl0 = −O∆xl0 −∆w̃. (15)

Here, ∆w̃ = w̃l0 − w̃∗, with w̃l0 , w̃∗ ∈ Ω.
Therefore, from (14) and (15), there exists an at most

2qmax-sparse block vector z̃ ∈ RpN – defined as z̃ = −∆ẽl0 ,
with at most 2qmax nonzero N -size blocks – such that

O∆xl0 = −∆w̃ + z̃.

This implies that at least f = p−2qmax blocks of z̃ are zero
subvectors. Let’s denote their indexes as i1, ...if , such that
i1 < ... < if and the set of sensors corresponding to these
indexes as R (i.e., R =

{
si1 , ..., sif

}
). Hence, we have that

OR∆xl0 = −∆w̃R (16)

where ∆w̃R = w̃l0
R − w̃∗R, with w̃l0

R, w̃
∗
R ∈ ΩR.

Set R has f = p− 2qmax elements, and since the system
is 2qmax-sparse observable (from Lemma 1), it follows that
the pair (A, PRC) is observable (and f ≥ 1). Thus, the
matrix OR is full (column) rank and we can define the
pseudoinverse matrix O†R = (OT

ROR)−1OT
R, from which

it follows that

∆xl0 =−O†R∆w̃R ⇒ ‖∆xl0‖l2 ≤ ‖O
†
R‖l2 · ‖∆w̃R‖l2 ⇒

‖∆xl0‖l2 ≤ max
R⊂S,|R|=p−2qmax

w̃
l0
R ,w̃∗R∈ΩR

(
‖O†R‖l2 · ‖w̃

∗
R − w̃l0

R‖l2
)

≤ max
R⊂S,

|R|=p−2qmax

(
‖O†R‖l2 · max

w̃
l0
R ,w̃∗R∈ΩR

‖w̃∗R − w̃l0
R‖l2

)

Since

max
w̃

l0
R ,w̃∗R∈ΩR

‖w̃∗R − w̃l0
R‖l2 ≤ 2 max

w̃R∈ΩR
‖w̃R‖l2 ,

we have that (13) is satisfied, which concludes the proof.
It is important to highlight that the bound on the right

hand side of (13) is linear in the size of noise. In addition,
Theorem 1 states that if at most qmax sensors have been
compromised, the attacker cannot exploit the noise to intro-
duce an unbounded state estimation error. Another thing to
consider is the complexity of computing the term in (13).
To determine the state estimation bound we need to check(

p
p−2qmax

)
different subsets R of the set S, and for each R

compute

‖O†R‖l2 · max
w̃∈ΩR

‖w̃‖l2 = λ
O†R
max · max

w̃R∈ΩR
‖w̃R‖l2 ,

6Note that although l0 is not convex, it satisfies the triangular inequality.

where λO
†
R

max denotes the largest singular value of O†R, and

max
w̃R∈ΩR

‖w̃R‖l2 =

√√√√∑
si∈R

N−1∑
k=0

(δwk,i
)2

for ΩR defined as in Section III.7 This is significantly
lower than the required computational cost for the robustness
analysis from [15].

Finally, for almost all systems (i.e., for almost all pairs of
matrices A,C) we have that qmax = dp/2− 1e [9], meaning
that 1 ≤ p − 2qmax ≤ 2. Thus, for almost all systems, to
obtain the bound we would need to evaluate the above term
for either p or p(p− 1)/2 sets R only.

V. ROBUSTNESS OF P1,ω ESTIMATOR TO NOISE

In this section, we provide a bound on the error of the
P1,ω estimator due to noise. We start by introducing notation
similar to the one used in the previous section:

(xl1,ω, ẽ
l1) = argminP1,ω (17)

∆xl1 = xl1,ω − x0, ∆ẽl1 = ẽl1 − ẽ∗ (18)

Specifically, we are interested in obtaining a bound on ∆xl1 .
Theorem 2: When sensors from set K ⊂ S are attacked,

state estimation error ∆xl1 satisfies the following constraint∑
si∈K{

‖Oi∆xl1‖l2 ≤
∑
si∈K

‖Oi∆xl1‖l2 + 2σΩ, (19)

where σΩ = maxw̃∈Ω ‖w̃‖l2,l1 .
Proof: The proof, which has been omitted due to space

limitations, can be found in [20].
Remark 1: Proposition 6 from [9] states that P1,ω can

correctly estimate the state for noiseless systems (Ω = 0)
if and only if for all K such that |K| = q, it holds that:∑

si∈K{

‖Oix‖l2 >
∑
si∈K

‖Oix‖l2 , ∀x ∈ Rn \ {0}. (20)

This implies that (19) is tight for noiseless systems, since
for Ω = 0, (19) takes the form

∑
si∈K{ ‖Oi∆xl1‖l2 ≤∑

si∈K ‖Oi∆xl1‖l2 ; this constraint when combined
with (20) implies that for noiseless systems ∆xl1 = 0
meaning that the state is correctly reconstructed.

Finally, if we consider systems that can deal with up to q
attacks when there is no noise, from (19) and (20) it follows
that the feasible set for the state estimation vector ∆xl1 can
be described as the set where ∆xl1 = 0 or it satisfies∑
si∈K

‖Oi∆xl1‖l2 <
∑

si∈K{

‖Oi∆xl1‖l2 ≤
∑
si∈K

‖Oi∆xl1‖l2

+ 2σΩ

for all K ⊂ S, such that |K| = q.
From the relationship between l2 and l1 norms where

‖α‖l1 ≥ ‖α‖l2 ≥
1√
n
‖α‖l1 ,∀α ∈ Rn, (21)

7On the other hand, if the noise bounds in Ω are defined as bounds on
the l2 norm of noise for each sensor at each time-step, this term would be
equal to the sum of the squared norms.
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it follows that ‖Oi∆xl1‖l1 ≥ ‖Oi∆xl1‖l2 ≥
1√
N
‖Oi∆xl1‖l1 . Therefore,∑

si∈K{

‖Oi∆xl1‖l2 ≥
1√
N

∑
si∈K{

‖Oi∆xl1‖l1 =
‖OK{∆xl1‖l1√

N∑
si∈K

‖Oi∆xl1‖l2 ≤
∑
si∈K

‖Oi∆xl1‖l1 = ‖OK∆xl1‖l1 .

The above inequalities along with Theorem 2 prove the
following corollary.

Corollary 1: When sensors from set K ⊂ S are attacked,
the state estimation error ∆xl1 satisfies

‖OK{∆xl1‖l1 ≤
√
N‖OK∆xl1‖l1 + 2

√
NσΩ. (22)

where σΩ = maxw̃∈Ω ‖w̃‖l2,l1 .
Both conditions from Theorem 2 and Corollary 1 define

sets that contain all feasible ∆xl1 when less than or equal
to q sensors are attacked.8 However, maximization problems
over these sets may be hard to solve in the general case.
Thus, we introduce the following theorem that for a special
class of systems provides an analytic formula for ‖∆xl1‖l2 .

Theorem 3: Suppose that for all K ⊂ S with |K| = q it
holds

OT
K{OK{ − qN2OT

KOK � λIn (23)

for some λ > 0. Then if at most q nodes are compromised
the following condition holds

‖∆xl1‖l2 ≤
2
√
NσΩ

λ
· max
K⊂S,|K|=q

(‖OK{‖l2 +
√
qN‖OK‖l2)

Proof: The proof, which has been omitted due to space
limitations, can be found in [20].

Although Theorem 3 provides an analytic bound for the
worst-case state estimation error obtained by P1,ω for a
certain class of systems, it could heavily overapproximate the
error due to the gains caused by the conversions between the
norms (i.e., factor

√
qN ). Still, along with Theorem 2 and

Corollary 1, it provides the first analytic relation showing
that the worst-case error is linear with the size of the noise,
as in the case for the P0,ω estimator.

VI. ATTACK IDENTIFICATION IN PRESENCE OF NOISE

In addition to computing a state estimate, the presented
attack-resilient state estimation procedures also estimate at-
tack vectors injected at time steps k = 0, 1, ..., N − 1
(i.e., vectors ẽlt , t = 0, 19). Therefore, in this section we
consider conditions for which the attack vectors estimates
can be used for sound identification of compromised sensors
– i.e., that no valid sensor will be identified as under attack.

An obvious candidate for identification procedure would
be to use the policy that classifies sensor si as attacked if and
only if I(ẽlti 6= 0). Note that, unless we can guarantee that

8Note that the case where q1 < q sensors are attacked is also covered
by the scenario where |K| sensors are compromised, but q− q1 sensors are
inserting zero signals. Thus, it is enough to check the sets for |K| = q only.

9In this section, we will use lt notation (instead of l0 or l1) whenever
we describe results that hold for both P0,ω and P1,ω obtained estimates.

the set of identified attacked sensors is a subset of the actual
set of attacked sensors K, we cannot guarantee soundness of
this identification procedure.10 On the other hand, we can use
the state estimation guarantees presented in the previous two
sections to provide a sound attack identification procedure.
Consider the vector ∆ẽlt , denoting the errors of the obtained
attack vector estimations for all sensors. If ẽ∗i = 0 (i.e. sensor
si is not attacked), then ∆ẽlti = ẽlti . Hence, if there is a
bound on the values for ∆ẽl

t

i , we can guarantee that all
attack vector estimates ẽlti that violate the bound effectively
correspond to scenarios where sensor si is attacked.

To determine this bound, referred to as Dẽlt

i , we use that
from (15) it follows that ∆ẽlti = −Oi∆xlt −∆w̃i. Thus,

‖∆ẽlti ‖l2 ≤ ‖Oi‖l2‖∆xlt‖l2 + ‖∆w̃i‖l2
≤ ‖Oi‖l2‖∆xlt‖l2 + 2 max

w̃i∈Ω{si}
‖w̃i‖l2 .

(24)

Thus, the bounds for ‖∆xlt‖l2 , which we will refer to as
Dxlt , can be used to compute a bound for ‖∆ẽlti ‖l2 as

Dẽlt

i = ‖Oi‖l2Dxlt
+ 2 max

w̃i∈Ω{si}
‖w̃i‖l2 .

For example, when P0,ω is used, the bound Dẽl0

i on ‖∆ẽlti ‖l2
is derived using Dxl0 from Theorem 1 (i.e., Eq. (13)).

Now we can define a Pt,ω-based (t = 0, 1) attack identi-
fication scheme as:

Attackedlt(si) = I(‖ẽlti ‖l2 > Dẽlt

i ), i = 1, ..., p. (25)

The following theorem shows soundness of the proposed
attack identification scheme.

Theorem 4: If Attackedlt(si) = 1 then sensor si ∈ K.
Furthermore, for all attack vectors ẽ∗ for which ‖ẽ∗i ‖l2 >
2Dẽlt

i , the attack on sensor si will be correctly detected
(i.e., Attackedlt(si) = 1).

Proof: Suppose Attackedlt(si) = 1, implying that
‖ẽlti ‖l2 > Dẽlt

i . Then,

Dẽlt

i < ‖∆ẽlti +ẽ∗i ‖l2 ≤ ‖∆ẽlti ‖l2 +‖ẽ∗i ‖l2 ≤ Dẽlt

i +‖ẽ∗i ‖l2 .

Thus ‖ẽ∗i ‖l2 > 0, meaning that the actual attack vector on
si is non-zero and sensor s1 ∈ K.

On the other hand, let’s assume that ‖ẽ∗i ‖l2 > 2Dẽlt

i . This
implies the following:

2Dẽlt

i < ‖ẽlti −∆ẽlti ‖l2 ≤ ‖ẽ
lt
i ‖l2+‖∆ẽlti ‖l2 ≤ ‖ẽ

lt
i ‖l2+Dẽlt

i .

Hence, ‖ẽlti ‖l2 > Dẽlt

i , and Attackedlt(si) = 1.

VII. EVALUATION

Due to space limit, in this section we only discuss conser-
vativeness of the derived l0-based state estimation bound by
considering 100 randomly generated dynamical systems with
n = 10 states and p = 5 sensors, as it was done in [15]. More
thorough evaluation of the attack-resilient state estimation

10To the best of our knowledge, even for a simpler problem of estimation
of sparse signals α0 from noisy measurements z obtained using an over-
complete dictionary Φ (i.e., z = Φα0 +v), the l0-based solution [16], [21]
does not guarantee correct support recovery for α0.
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Fig. 1. Histogram of the maximal relative state-estimation error obtained
from 1000 runs of 100 randomly selected systems with n = 10 states and
p = 5 sensors.

bounds can be found in [20]. For each of the 100 systems, we
evaluated the state-estimation error ∆xl0 in 1000 simulations
for various attack and noise realizations, where the number
of attacked sensors was less than or equal to 2. Finally,
we considered the case where the window size N = n.
Our main focus during the evaluation was the ratio between
the worst-case observed state estimation error for all 1000
simulations of each system S – i.e., maxi=1:1000 ‖∆xl0

S‖2,
and the system’s error bounds Dxl0

S from Theorem 1.
A histogram of the relative errors for these systems is

shown in Fig. 1, and as can be seen, the maximal observed
state estimation error reaches 16% of the computed bound.
Conservativeness of the presented results is partially caused
by the fact that we only simulated random initial points and
random attack vectors, which does not result in the worst-
case estimation errors. However, for small systems (e.g., n =
1, 2 states) we were able to generate initial states and attack
vectors for which the obtained bounds were tight.

VIII. CONCLUSION

In this paper, we have considered the problem of state
estimation when some of system sensors are compromised
by a malicious attacker. Unlike existing work on this topic,
we have investigated the case when there is noise in the
system’s dynamics. We have shown how to use two esti-
mators that incorporate noise allowance in its constraints
(i.e., P0,ω and P1,ω) and proved that the worst-case state
estimation error is linear with the size of the noise present
in the system. The provided bounds illustrate that l0-based
state estimation results in significantly more accurate state
estimation. However, the penalty is paid in the complexity
of the procedure; P0,ω can be solved as a mixed integer linear
program, which are NP hard in general, while P1,ω can be
efficiently solved using standard convex optimization solvers
and is more suited for embedded control applications.

Finally, we have derived attack identification procedures,
based on these estimators. We have shown that the pro-
posed attack identification schemes are sound, and derived
conditions on signals injected via an attacked sensor that
would guarantee identification of the compromised sensor.
An avenue for future work would be to determine conditions

when the support of estimated attack vectors is a subset of
the set of attacked vectors.
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