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Abstract— This paper studies a continuous-time pursuit-evasion
problem involving a single pursuer and a single evader on a
plane. In contrast to other works that study this problem, we are
interested in developing a pursuit strategy that doesn’t require
continuous, or even periodic, information about the position
of the evader. To this end, we propose a self-triggered control
strategy such that the pursuer can autonomously decide, based
on out-dated information, when new samples of the evader’s
position is required in order to satisfy desired performance
metrics. Our proposed algorithm guarantees capture of the
evader in finite time with a finite number of sporadic updates
without sacrificing any performance in terms of guaranteed
time to capture as compared to classic algorithms that assume
continuous information is available at all times. Simulations
illustrate our results.

I. INTRODUCTION

Pursuit and evasion strategies are widely observed in na-
ture and play an important part in shaping predator-prey
behaviors [1]. In engineering, such problems have been the
subject of much attention in combat games [2] and more
recently in the study of robotic systems for search and rescue
missions and motion planning involving adversarial elements
(see [3] for an overview of recent results). This paper studies
a continuous-time pursuit-evasion problem involving a single
pursuer and a single evader, where the goal of the pursuer
is to capture the evader. In the past, treatment of pursuit-
evasion problems usually involved continuous or periodic
sensing/control updates for the agents. Instead, we want to
relax this requirement by taking actions (e.g., control updates
and sensing) only when necessary. Our objective is to design
a self-triggered update policy for the pursuer that allows it
to decide autonomously when fresh, up-to-date information
about the evader’s location is required in order to guarantee
its capture.

Literature review: In the literature, pursuit-evasion problems
have been studied extensively in the context of differential
games [4], [5]. The treatment of differential games as op-
timal control problems involves optimal pursuit strategies
by finding instantaneous control actions for the pursuer that
continuously track the evader in order to capture it time-
efficiently [6], [7]. In [8], sufficient conditions are derived
for a single pursuer to capture an evader where the agents
satisfy certain initial conditions, have equal maximum speeds
and are constrained to move within the nonnegative quadrant
of R

2. In [9], upper and lower bounds on the time-to-
capture have been discussed where the agents are constrained
in a circular environment. These pursuit strategies have
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been generalized and extended by the authors of [10] to
guarantee capture using multiple pursuers in an unbounded
environment R

n, as long as the evader is initially located
inside the convex hull of the pursuers. In the context of
robotic systems, visibility-based pursuit-evasion has garnered
a lot of interest [11], [12], [13], [14]. In these problems, the
pursuer is visually searching for an unpredictable evader that
can move arbitrarily fast in a simply connected polygonal
environment. Similar problems have been studied in [15],
[16], [17], where visibility limitations are introduced for
the pursuers and the evader. A related problem has been
discussed in [18], where the agents can move in R

2 but each
agent has limited range of spatial sensing.

A common theme of the analysis in the mentioned works
is the assumption of continuous tracking of the evader
providing location information at all times. Unfortunately,
the availability of continuous information and control updates
is unrealistic, especially in the context of robotics or cyber-
physical systems. In contrast to previous methods, we are
interested in guaranteeing capture while relaxing this require-
ment. To this end, our aim is to opportunistically compensate
for the reduced sensing effort while still achieving the desired
objective. Recently, studies related to triggered control laws
have received great interest in the control of networked
dynamical systems. These methods are aimed at analyzing
the cost to make up for less computation or communication
effort on part of the agents, while achieving a desired task
with a guaranteed level of performance of the system. An
overview of the recent results can be found in [19]. Of
particular relevance to this paper are works that study self-
triggered [20], [21], [22], [23] or event-triggered [24], [25],
[26], [27] implementations of decentralized strategies. In
contrast to conventional time-driven approaches, strategies
based on triggered control schemes study how information
could be sampled for control purposes where the agents act in
an opportunistic fashion to meet their desired objective [28].

Contribution: In this work, we apply the framework of
triggered control to design a self-triggered pursuit policy
which guarantees capture of the evader. Based on the latest
observation of the evader, the pursuer computes the (sleep)
duration for which it can follow its current trajectory without
having to sense the location of the evader. Our analysis
naturally accounts for the worst-case evader strategies, so
the pursuer does not need to access the evader’s dynamics in
order to capture it. We then study the trade-off between more
greedy strategies that can generally result in faster capture
of the evader at the cost of more frequent samples of its
position.
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Organization: The problem formulation and its mathematical
model are presented in Section II. In Section III, we present
the design of self-triggered update duration for the pursuer.
This is followed by trade-off analysis between the number of
updates and time-to-capture in Section IV and the results of
simulations in Section V. The readers are encouraged to go
over the detailed analysis of our problem in the Appendix.

Notation: R
n denotes n−dimensional Euclidean space and

‖ · ‖ is the Euclidean distance. We let R>0, R≥0 and Z≥0 to
be the sets of positive real, nonnegative real and nonnegative
integer numbers, respectively.

II. PROBLEM STATEMENT

We consider a system with a single pursuer P and a single
evader E. At any given time t, the position of the evader is
given by re(t) ∈ R

2 and its velocity is given by ue(t) ∈ R
2

with ‖ue(t)‖ ≤ ve, where ve > 0 is the maximum speed of
the evader. Similarly, the position and velocity of the pursuer
are given by rp(t) and up(t) with ‖up(t)‖ ≤ vp, where vp >

ve is the maximum speed of the pursuer. The system evolves
as

ṙp = up,

ṙe = ue.

In our problem, the goal of the pursuer is to capture the
evader. We define capture of the evader as the instance
when the pursuer is within some pre-defined positive capture
radius ε of the evader. Assuming that the pursuer has exact
information about the evader’s state at all times, it is well
known that the time-optimal strategy for the pursuer is to
move with maximum speed in the direction of the evader [4].
Such a strategy, known as classical pursuit, is given by the
control law

up(t) =
vp

‖re(t)− rp(t)‖
(re(t)− rp(t)) . (1)

The issue with the control law (1) is that it requires continu-
ous access to the evader’s state at all times and instantaneous
updates of the control input. Instead, we want to guarantee
capture of the evader without tracking it at all times and only
updating the controller sporadically. We do this by having the
pursuer decide in an opportunistic fashion when to sample
evader’s position, and update its control input. Under this
framework, the pursuer only knows the position of the evader
at the time of its last observation. Let {tk}k∈Z≥0

⊂ R≥0 be a
sequence of times at which the pursuer receives information
about the evader’s position. In between updates, the pursuer
implements a zero-order hold of the control signal computed
at the last time of observation using (1) which is given by

up(t) =
vp

‖re(tk)− rp(tk)‖
(re(tk)− rp(tk)) , (2)

for t ∈ [tk, tk+1).

In this paper, our purpose is to identify a function for the self-
triggered update duration φ for the pursuer that determines
the next time at which the updated information is required.
In other words, each time the pursuer receives updated

information about the evader at some time tk, we want to
find the duration φ (Dk, ve, vp) until the next update such
that

tk+1 = tk + φ (Dk, ve, vp) , (3)

where Dk , ‖re(tk) − rp(tk)‖ is the separation between
the agents at time tk. Our goal is to design the triggering
function φ such that the pursuer is guaranteed to capture the
evader while also being aware of the number of samples of
the evader required.

III. DESIGN OF SELF-TRIGGERED UPDATE LAW

We study the pursuit and evasion problem consisting of a
single pursuer and a single evader on a plane (R2), where
both agents are modelled as single integrators with constant
speeds1. Let rp = (xp, yp) and re = (xe, ye). Additionally,
the pursuer is moving along θp and the relative angle between
the agents’ headings is denoted by θe (see Fig. 1). Without
loss of generality, we normalize the speed of the pursuer to
vp = 1 and the evader moves with a constant positive speed
of ve = ν < 1. The dynamics of the pursuer and the evader
are given by

ẋp = cos θp, ẋe = ν cos(θe + θp),

ẏp = sin θp, ẏe = ν sin(θe + θp).
(4)
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Fig. 1. Figure shows the pursuer P at rp = (xp, yp) and the evader E
at re = (xe, ye) in R

2. The pursuer is moving along θp and the relative
angle between agents’ headings is denoted by θe. The arrows indicate the
velocity vectors.

A. Self-triggered Update Policy for Pursuer

Suppose at time tk the pursuer observes the evader a distance
Dk away and starts moving towards it. The pursuer does not
have access to the evader’s evasion strategy. We are interested
in the duration for which the pursuer can maintain its course
of trajectory without observing the evader. More specifically,
we are interested in the first instance at which the separation
between the agents can possibly increase, thus prompting
the pursuer to sample the evader’s position and update its
trajectory. Let r(t) denote the separation between the pursuer
and the evader at time t. We denote the one half times the
square of the separation by R, which is given by

R =
1

2
r2 =

(xe − xp)
2 + (ye − yp)

2

2
.

1It is not necessary to assume that evader is moving with constant speed
at all times. We can bound the evader speed by vmax

e such that vmax
e < vp

and the analysis will remain unchanged.
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Fig. 2. Figure shows a plot of normalized update time
φk
ν

Dk
against evader

speed ν ∈ [0, 1), where φk
ν is given by (6).

Note that the time at which Ṙ becomes nonnegative is same
as the time at which ṙ becomes nonnegative. Using (4), the
derivative of R (see Appendix for details) is given by

Ṙ (τ, xe, ye, θe) = ν(xe − τ) cos θe + νye sin θe + τ − xe,

(5)

where τ ∈ [0, tk+1 − tk). We are interested in the first
instance at which the separation between the agents can
possibly increase. As the pursuer does not have access to
evader’s dynamics, we need to maximize Ṙ in (5) over the
evader parameters (xe, ye, θe) subject to reachable set of the
evader.

For fixed τ , we denote Ṙ in (5) by Ṙτ (xe, ye, θe). Let
g(τ) = sup

xe,ye,θe

Ṙτ (xe, ye, θe), subject to the reachable set

of the evader at τ . For the dynamics in (4), where vp = 1
and ve = ν, we denote update duration in (3) by φk

ν ,

φ(Dk, vp, ve) and it is defined as

φk
ν = inf {τ ∈ R>0|g(τ) = 0} .

Note that, for fixed evader speed ν, φk
ν is a function of Dk

(as we have normalized vp to 1). For notational brevity, we
will drop the argument of φk

ν whenever it is clear from the
context. For the agents modelled by (4), our self-triggered
update duration is obtained by solving g(τ) = 0 (see
Appendix for derivation) and is given by

φk
ν =

{
Dkν

√
1−ν2−Dk(1−ν2)

2ν2−1 , if ν 6= 1√
2

Dk

2 , if ν = 1√
2

. (6)

The graph of normalized update time φk
ν

Dk
against evader

speed ν is shown in Fig. 2. From the plot, we observe
that increasing the evader speed decreases the self-triggered
update duration for the pursuer. So, if the evader moves
faster, our law prescribes more frequent updates of it to
guarantee capture.

Recall that the primary objective of the pursuer is to capture
the evader. The underlying principle in the design of the self-
triggered policy is that at each instance of fresh observation
the separation between the agents must have decreased. The
following proposition characterizes this result.
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Fig. 3. Figure shows the graph of h(ν) against evader speed ν ∈ [0, 1), as
given by the expression (7). It shows h(ν) is monotonically increasing with
ν which intuitively means that greater evader speeds result in potentially
smaller decrease in separation between updates.

Proposition III.1 (Decreasing separation between updates)
Let the pursuer and evader dynamics be given by (4), where
the agents are separated by Dk at time tk. If the pursuer
updates its trajectory using the self-triggered update policy
φk
ν in (6), then the distance between the agents at time tk+1

has strictly decreased, i.e. Dk+1 < Dk for tk+1 = tk + φk
ν .

Proof: Given the separation Dk at time tk, the new
separation between the agents, after a duration of φk

ν , is
Dk+1. To see that the separation is strictly decreasing, note
that

Dk+1 ≤ Dk
max = Dk − (1− ν)φk

ν , Dkh(ν),

where Dk
max is the maximum possible separation between

the agents after the duration φk
ν (see Appendix for details)

and h(ν) is given by

h(ν) = 1− ν(1− ν)
√
1− ν2 − (1− ν)(1− ν2)

2ν2 − 1
. (7)

Note that h(ν) ∈ [0, 1) for ν ∈ [0, 1) (see Fig. 3). Thus, for
any evader speed ν ∈ [0, 1), we have Dk+1 < Dk and the
proof is complete.

B. Capture Time & Number of Samples

Using the self-triggered update policy in (6) and some pre-
defined positive capture radius ε < D0, the pursuer is
guaranteed capture in finite time with finite updates. More
specifically, we can find the maximum number of samples
in terms of capture radius ε and evader speed ν and use it to
guarantee finite time-to-capture. This is summarized in the
following theorem.

Theorem III.2 (Guaranteed capture with finite updates)
Let the pursuer and evader dynamics be given by (4), where
the agents are initially separated by D0. Given some
pre-defined positive capture radius ε < D0, the self-
triggered update policy φk

ν in (6) ensures capture with finite
observations in finite time.

Proof: According to Proposition III.1, the separation
between the agents is strictly decreasing between successive
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updates. In fact, the new separation between the agents
satisfies the condition Dk+1 ≤ Dkh(ν), where h(ν) ∈ [0, 1)
for ν ∈ [0, 1) as described by the expression (7). This
implies that after n observations of the evader, the separation
between the agents satisfies the inequality

Dn ≤ D0h
n(ν), (8)

where D0 is the initial separation between the agents. Using
the inequality in (8), the maximum number of samples can
be calculated by setting D0h

n(ν) ≤ ε. Thus,

nmax =




log
(

ε
D0

)

log (h(ν))



. (9)

The expression in (9) shows that for any pre-defined positive
capture radius ε < D0, the pursuer is guaranteed to capture
the evader with finite number of samples. This completes the
first part of the proof.

For self-triggered pursuit policy φk
ν in (6), the sequence

of times at which the pursuer samples the evader position,
denoted by {tk}k∈Z≥0

, follows the criteria tk+1 = tk + φk
ν .

This means that after N updates, the total duration of pursuit
(denoted by TN ) is given by

TN = t0 +

N∑

k=0

φk
ν . (10)

Without loss of generality, we can assume t0 = 0. Since the
pursuer is guaranteed to capture the evader with finite number
of maximum samples nmax, the time-to-capture (denoted by
Tcap) is bounded by

Tcap ≤
nmax∑

k=0

φk
ν = f(ν)

nmax∑

k=0

Dk,

where f(ν) is given by

f(ν) ,
φk
ν

Dk

=
ν
√
1− ν2 − (1− ν2)

2ν2 − 1
(11)

and satisfies the relationship f(ν) = 1−h(ν)
1−ν

. Thus, we have

Tcap ≤ f(ν)

nmax∑

k=0

Dk ≤ D0f(ν)

nmax∑

k=0

hk(ν)

< D0f(ν)
∞∑

k=0

hk(ν)

=
D0f(ν)

1− h(ν)
=

D0

1− ν
.

It shows that, for any evader speed ν ∈ [0, 1), Tcap is strictly
less than D0

1−ν
which is finite. This completes the proof.

Remark III.3 Note that in proving finite time-to-capture in
Theorem III.2, we showed that time-to-capture is strictly less
than D0

1−ν
. However, given a pre-defined capture radius ε <

D0, it can be shown that the time-to-capture satisfies the
inequality

Tcap ≤ D0 − ε

1− ν
, (12)
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Fig. 4. Figure shows the variation of the maximum number of samples
(nmax) against evader speed as given by the expression in (9) where ε is
chosen as D0

103
.

if the evader is actively moving away from the pursuer at all
times. This is the same upper bound for time-to-capture in
classical pursuit strategy. Recall that in classical pursuit, the
pursuer is sensing the evader at all times and heading towards
it with maximum possible speed vp. The worst-case scenario
is that the evader is moving directly away from the pursuer
with its maximum possible speed ve, at all times (classical
evasion). Given that the agents are initially separated by D0

along with a pre-defined capture radius ε < D0, the time-to-
capture is bounded by

Tcap ≤ D0 − ε

vp − ve
, (13)

where vp > ve. Note that D0−ε
vp−ve

is an upper bound on total
capture time, since any deviation from the classical evasion
strategy on the part of the evader will allow capture in shorter
time [4]. Therefore, by using self-triggered pursuit policy,
we guarantee capture with finite number of updates without
incurring any increase in the maximum time-to-capture. •

The expression in (9) guarantees capture with finite sam-
ples of evader’s state. Fig. 4 shows a graph between the
maximum number of samples that guarantee capture and the
evader speed for pre-defined capture radius ε = D0

103 . The
number of samples increase quite sharply as ν approaches
1. This makes intuitive sense as the maximum number of
evader observations should increase as evader approaches the
maximum speed of the pursuer.

IV. TRADE-OFF ANALYSIS

In Section III, the underlying principle in the design of self-
triggered pursuit policy was to avoid increase in separation
between the agents. The self-triggered update duration in (6)
was defined as the first instance when the derivative of
the separation becomes nonnegative. Instead, we want to
model ‘greedy’ pursuit strategies that ensure decrease in
separation by some amount between successive updates.
In this section, we are interested in studying the trade-off
between number of samples and the time-to-capture as a
function of parameterized rate of decrease in separation. For
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each update step, we introduce a nonnegative parameter δk
in order to parameterize the rate of decrease in separation
between the agents and modify the design of self-triggered
policy to obtain

φk
δk,ν

, φk
ν(Dk, δk) = inf {τ ∈ R>0|g(τ) = −δk} , (14)

where g(τ) = sup
xe,ye,θe

Ṙτ (xe, ye, θe). Solving g(τ) = −δk

results in

φk
δk,ν

=
Dk

(
δk
Dk

− (1− ν2)±
√
ν2(1− ν2) + ( δk

Dk
)2 − 2ν2δk

Dk

)

2ν2 − 1
.

(15)

Note that φk
δk,ν

in (15) depends on the term δk
Dk

. We
slightly modify our parameter by setting δk := αDk, where
α ∈ R≥0. Note that setting δk to αDk is one possible
design choice of the parameter which helps us find a closed-
form expression for update duration and study the trade-off
between number of samples and the time-to-capture as a
function of the parameter α. This yields

φk
α,ν =

Dk

(
α− (1− ν2)±

√
ν2(1− ν2) + α2 − 2αν2

)

2ν2 − 1
,

where, with a slight abuse of notation, we have used φk
α,ν

instead of φk
ν(Dk, α) = inf{τ ∈ R>0|g(τ) = −αDk}. To

find the permissible domain of α, we invoke the criteria
φk
α,ν ∈ R>0 for ν ∈ [0, 1). This yields α ∈ [0, 1−ν2

2 ).

As a result, the parameterized self-triggered update duration
is given by

φk
α,ν =





Dk

(

α+
√

ν2(1−ν2)+α2−2αν2−(1−ν2)
)

2ν2−1 , if ν 6= 1√
2

Dk(1−4α)
2(1−2α) , if ν = 1√

2

,

(16)

for α ∈ [0, 1−ν2

2 ) and ν ∈ [0, 1). Note that by choosing a
fixed α, the rate at which the separation between the agents
decreases is not constant as δk is proportional to the last
observed separation Dk. This means that as the separation
between the agents decreases, δk also decreases. However,
we are guaranteed some amount of decrease in separation
between successive updates.

Using similar analysis, as in Section III, it is straightforward
to verify that by using parameterized self-triggered update
duration φk

α,ν , the separation between agents is strictly de-
creasing. We denote the new separation between the agents,
after a duration of φk

α,ν , by Dk+1 which satisfies the inequal-
ity

Dk+1 ≤ Dk − (1− ν)φk
α,ν , Dkhα(ν).

Here hα(ν)
2 ∈ [0, 1) for ν ∈ [0, 1) and α ∈ [0, 1−ν2

2 ). This
shows that Dk+1 < Dk for ν ∈ [0, 1). Similarly, given an
initial separation of D0 between agents and a pre-defined
positive capture radius ε < D0, the maximum number of

2hα(ν) = 1−
(1−ν)

(

α+
√

ν2(1−ν2)+α2
−2αν2

−(1−ν2)
)

2ν2
−1

.
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Fig. 5. Figure shows the variation of the maximum number of samples
(nα

max), as given by the expression (17), against α where α ∈ [0, 1−ν2

2
) for

different values of evader speed ν. Capture radius is chosen as ε = D0

103
.

evader updates can be calculated by setting D0 (hα(ν))
n ≤

ε, which results in

nα
max =




log
(

ε
D0

)

log (hα(ν))



. (17)

For fixed evader speed ν, the number of samples for guar-
anteed capture increases as the parameter α is increased
(see Fig. 5). This shows that, for any ν ∈ [0, 1), we
need to sample the evader’s state more frequently in order
to ensure decrease in separation between the agents at a
relatively higher rate. Thus, for fixed evader speed ν, α = 0
corresponds to the minimum class of maximum number of
updates that guarantee capture. In general, for fixed evader
speed ν, α parameterizes a class of more greedy pursuit
strategies that force more samples in order to capture the
evader.

Remark IV.1 In Section III, we showed that the upper
bound for time-to-capture is same as that of classical pursuit
strategy. Since the worst-case behavior of the evader remains
unchanged in our framework, the upper bound on time-
to-capture is independent of the parameter α and remains
the same. Note that although the upper bound on capture
time remains unchanged, the actual time-to-capture depends
on the evader trajectory. If the evader deviates from the
classical evasive strategy, then it is possible to to decrease the
actual capture time by increasing α. Thus, by introducing the
parameter α, we can study the trade-off between the number
of evader observations and the actual time-to-capture. •

V. SIMULATIONS

In this section, we provide simulations for our parameterized
self-triggered pursuit policy as outlined in Section IV. We
study the trade-off between the number of observations to
catch the evader and the time-to-capture as we change the
self-triggered update parameter α. For fixed evader speed ν,
we showed in Section IV that we require α ∈ [0, 1−ν2

2 ). We
model our agents according to the dynamics in (4), where the
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speed of the evader is less than that of pursuer. The evader
is restricted to move in any of 4 directions: right, left, up
and down and chooses the best direction to actively move
away from the pursuer at all times. We initialize the agents
with a separation D0 = 10 units and set the capture radius
as ε = 10−2 units. Fig. 6 shows the variation of number
of samples and Fig. 7 shows the time-to-capture Tcap for
different evader speeds. From these results we can see that
increasing the value α decreases the capture time at the cost
of increased number of samples for any ν ∈ [0, 1), which
agrees with our findings in Section IV.
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Fig. 6. Figure shows the variation of number of samples to capture
the evader against α ∈ [0, 1−ν2

2
) for different values of evader speed

ν ∈ {0.2, 0.4, 0.6, 0.8}. For any ν, the number of samples increase with
increasing α.
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Fig. 7. Figure shows the variation of capture time Tcap against α ∈
[0, 1−ν2

2
) for different values of evader speed ν ∈ {0.2, 0.4, 0.6, 0.8}.

For any ν, Tcap decreases with increasing α.

VI. CONCLUSIONS

The framework presented in this paper offers a novel per-
spective on various pursuit-evasion problems in the existing
literature. We have proposed a self-triggered pursuit policy
which allows the pursuer to autonomously decide when fresh
information about the evader’s location is required. This is
in contrast to a majority of works that assume continuous, or
at least periodic, information about the evader is available at

all times. Our analysis guarantees that our worst-case time-
to-capture is the same as that of classical pursuit strategies
that assume continuous sensing of the evader, while only
requiring sporadic updates about the evader’s position. In
addition to minimum updates to guarantee capture, we have
developed a class of more greedy strategies that force more
samples in order to capture the evader in less time. Our
simulations have illustrated the theoretical results of the
trade-off between number of samples and time-to-capture.
In the future, we are interested in extending our methods in
designing robust schemes for noisy observations, cooperative
strategies involving multiple agents, and bounded sensing
ranges.
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APPENDIX

The agents are modelled by the dynamics in (4). Suppose,
at time tk, the pursuer observes the evader at a distance Dk.
Let rkp , rp(tk) and rke , re(tk). Without loss of generality,
we make the relative vector between pursuer and the evader
parallel to the x−axis such that yp(tk) = 0 and ye(tk) = 0.
Additionally, as a matter of convenience, we assume that
0 = xp(tk) < xe(tk) = Dk. This is elaborated in Fig. 8.

Dk

θerkerkp = (0, 0)

P E

ν(t− tk)

Be

(
rke , ν(t− tk)

)

x

y

Fig. 8. Figure shows the pursuer and the evader, at rkp = (0, 0) and
rke = (Dk, 0) respectively, separated by Dk at time tk . Be

(

rke , ν(t− tk)
)

is the ball centered at rke with radius ν(t− tk) and indicates the reachable
set of the evader for t ∈ [tk, tk+1).

Thus, our pursuit trajectory is parallel to the x−axis as
θp(tk) = 0. The pursuer does not observe the evader for the
duration tk+1− tk, therefore it does not change its trajectory
for t ∈ [tk, tk+1) and θp(t) = θp(tk) = 0. The modified
dynamics are given by

ẋp = 1, ẋe = ν cos θe,

ẏp = 0, ẏe = ν sin θe.
(18)

Using (18), the position of the pursuer is given by rp(t) =
(t − tk, 0) for t ∈ [tk, tk+1). Recall that r denotes the
separation and R denotes one half of square of separation
between the agents. Thus, Ṙ = (xe − xp)(ẋe − ẋp) + (ye −

yp)(ẏe − ẏp). As a result, between successive updates, Ṙ is
given by

Ṙ = ν(xe − t+ tk) cos θe + νye sin θe + t− tk − xe.

We introduce a change of variable by denoting τ , t − tk.
In terms of τ , the derivative of R is given by

Ṙ (τ, xe, ye, θe) = ν(xe − τ) cos θe + νye sin θe + τ − xe.

(19)

The update time is given by the instance at which the
separation begins to increase or the derivative of Ṙ becomes
nonnegative. The reason for choosing square of separation is
that it makes the analysis convenient. Note that the pursuer
does not have access to evader dynamics. All the pursuer
knows is that the reachable set of the evader is given by a
ball of radius ντ , centered at rke , for any τ ∈ [0, tk+1 − tk).
Thus, re ∈ Be(r

k
e , ντ). In (19), Ṙ is a function of evader pa-

rameters. For fixed τ , we denote Ṙ in (19) by Ṙτ (xe, ye, θe).
We want to maximize Ṙ, subject to the constraint re ∈
Be(r

k
e , ντ). Let g(τ) = sup

xe,ye,θe

Ṙτ (xe, ye, θe), subject to the

reachable set of the evader. Denoting the update duration
in (3) by φk

ν = tk+1 − tk, our self-triggered update duration
is defined as

φk
ν = inf {τ ∈ R>0|g(τ) = 0} .

In order to maximize Ṙ over evader parameters, we are
interested in solving the following optimization problem

sup
xe,ye,θe

Ṙτ (xe, ye, θe), (20)

subject to (xe, ye) ∈ Be(r
k
e , ντ).

Note that, in R
2, Be(r

k
e , ντ) is given by (xe −Dk)

2 + y2e ≤
(ντ)2. Thus the constraint of the problem (20) is independent
of θe. In order to maximize the objective function in (20)
with respect to θe, we perform unconstrained optimization
by fixing xe and ye and solving ∂Ṙτ

∂θe
= 0.

∂Ṙτ

∂θe
= −ν(xe − τ) sin θe + νye cos θe. (21)

Setting (21) to zero, we get

θ∗e = arctan

(
ye

xe − τ

)
. (22)

Note that for τ ∈ [0, φk
ν), xe − τ ≥ 0. To see this, suppose

xe − τ < 0. Setting θe = 0 in the expression for Ṙ in (19),
we get

Ṙτ = −(1− ν)(xe − τ) > 0,

for ν ∈ [0, 1). Thus, for xe − τ < 0, we can find a
set of evader parameters (xe, ye, θe) for which Ṙτ > 0.
This contradicts the definition of our self-triggered update
duration as Ṙτ ≤ 0 for any τ ∈ [0, φk

ν).

Due to symmetry of the problem, we can assume ye ≥ 0.
Thus, from (22) and xe − τ ≥ 0, we have θ∗e ∈ [0, π

2 ].
Substituting (22) in (19), we get

Ṙτ (xe, ye, θ
∗
e) = ν

√
y2e + (xe − τ)2 + τ − xe. (23)
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Using the result in (23), the problem in (20) simplifies to

sup
xe,ye

Ṙτ (xe, ye) = ν
√

y2e + (xe − τ)2 + τ − xe

(24)

subject to (xe, ye) ∈ Be(r
k
e , ντ).

From the constraint (xe, ye) ∈ Be(r
k
e , ντ) we get

y2e ≤ (ντ)2 − (xe −Dk)
2. (25)

In order to maximize the objective function in (24) with
respect to ye, we need ye to be as large as possible. From the
constraint (25), the objective function of (24) is maximized
when ye lies at the boundary of the ball Be(r

k
e , ντ). Thus,

for fixed xe, y∗e is given by

y∗e =
√
(ντ)2 − (xe −Dk)2. (26)

Substituting (26) in (23), we get

Ṙτ (xe) = ν
√
(xe − τ)2 + (ντ)2 − (xe −Dk)2 + τ − xe.

(27)

This reduces the problem in (24) to

sup
xe

Ṙτ (xe) (28)

subject to xe ∈ [Dk − ντ,Dk + ντ ].

Note that we can relax the problem in (28) by omitting the
constraint xe ∈ [Dk − ντ,Dk + ντ ]. The relaxation of (28)
results in an unconstrained optimization problem. Ignoring
the constraints of problem (28), let g̃(τ) , sup

xe

Ṙτ (xe) and

φ̃k
ν = inf{τ ∈ R>0|g̃(τ) = 0}. As a result of the relaxation

of the problem (28), we have φ̃k
ν ≤ φk

ν (this is because of
omitting the constraint xe ∈ [Dk − ντ,Dk + ντ ]). Let x̃∗

e :=
argmax Ṙτ (xe) for the unconstrained problem. To perform
unconstrained maximization of Ṙτ (xe), we solve ∂Ṙτ

∂xe
= 0,

where ∂Ṙτ

∂xe
is given by

∂Ṙτ

∂xe

=
ν(Dk − τ)√

(xe − τ)2 + (ντ)2 − (xe −Dk)2
− 1. (29)

Setting (29) to zero, we get

x̃∗
e =

D2
kν

2 +D2
k − 2τDkν

2 − τ2

2(Dk − τ)
. (30)

Substituting (30) in (27), we can evaluate g̃(τ) which is given
by

g̃(τ) = τ − D2
kν

2 +D2
k − 2τDkν

2 − τ2

2(Dk − τ)
+ ν2(Dk − τ).

(31)

Solving for g̃(τ) = 0, yields

φ̃k
ν =

{
Dkν

√
1−ν2−Dk(1−ν2)

2ν2−1 , if ν 6= 1√
2

Dk

2 , if ν = 1√
2

. (32)

Recall that φ̃k
ν ≤ φk

ν , where φ̃k
ν was obtained from re-

laxing the constraint in problem (28) and φk
ν = inf{τ ∈

R>0|g(τ) = 0}. Our claim is that at the instance of update,
the maximizer x̃∗

e of the relaxed problem is a feasible
solution of the problem (28), i.e. x̃∗

e(τ) ∈ [Dk−ντ,Dk+ντ ]
for τ = φ̃k

ν . To see this, at τ = φ̃k
ν , the maximizer x̃∗

e in (30),
Dk + νφ̃k

ν and Dk − νφ̃k
ν are given by

Dk − νφ̃k
ν = Dkϕ1(ν),

x̃∗
e(φ̃

k
ν) = Dkϕ2(ν),

Dk + νφ̃k
ν = Dkϕ3(ν),

where

ϕ1(ν) = 1− ν2
√
1− ν2 − ν(1− ν2)

2ν2 − 1
,

ϕ2(ν) =
3ν3 +

√
1− ν2 − 2ν − 2ν4

√
1− ν2

(ν −
√
1− ν2)(2ν2 − 1)

,

ϕ3(ν) = 1 +
ν2

√
1− ν2 − ν(1− ν2)

2ν2 − 1
.

For ν ∈ [0, 1), ϕ1(ν) ≤ ϕ2(ν) ≤ ϕ3(ν). This shows
that x̃∗

e(φ̃
k
ν) satisfies the constraints in the problem (28)

at τ = φ̃k
ν . This means, at the instance of update, that

the maximizer x̃∗
e of the relaxed problem is a feasible

solution of the problem (28) and hence it is optimal so-
lution x∗

e for (28). Thus g̃(τ) = g(τ) and as a result
φ̃k
ν = φk

ν . Note that φk
ν is continuous in the parameter ν

as limν→ 1√
2

Dkν
√
1−ν2−Dk(1−ν2)

2ν2−1 = Dk

2 .

If the pursuer updates its trajectory using the self-triggered
update policy described in (32), then the maximum distance
between the agents, between successive updates, is given by

Dk
max = Dk − (1− ν)φk

ν .

To see this, after the duration φk
ν , the pursuer moves a

distance of φk
ν units (as it is moving with unitary speed). The

evader can be anywhere inside a ball of radius νφk
ν centered

at rke (as it is moving with speed ν < 1). This is shown in
Fig. 9. The maximum separation between the pursuer and the
evader is denoted by Dk

max and is given by Dk − (1− ν)φk
ν .

Dk
P E

νφk
ν

Be

(
rke , νφ

k
ν

)

φk
ν

r
k+1
p

r
k+1
eDk+1

Dk
max

rkerkp

Fig. 9. At time tk , the pursuer P is initially at rkp and the evader E is
initially at rke . After the duration φk

ν , the agents have moved to rk+1
p and

rk+1
e respectively. Dk+1 indicates the new separation between the agents.
Be(rke , νφ

k
ν) outlines the boundary of the reachable set of the evader after

φk
ν . Dk

max denotes the maximum possible separation between the pursuer
and the evader at t = tk + φk

ν .
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