
Self-Triggered Time-Varying Convex Optimization

Mahyar Fazlyab, Cameron Nowzari, George J. Pappas, Alejandro Ribeiro, Victor M. Preciado

Abstract— In this paper, we propose a self-triggered algo-
rithm to solve a class of convex optimization problems with
time-varying objective functions. It is known that the trajectory
of the optimal solution can be asymptotically tracked by a
continuous-time state update law. Unfortunately, implementing
this requires continuous evaluation of the gradient and the in-
verse Hessian of the objective function which is not amenable to
digital implementation. Alternatively, we draw inspiration from
self-triggered control to propose a strategy that autonomously
adapts the times at which it makes computations about the
objective function, yielding a piece-wise affine state update law.
The algorithm does so by predicting the temporal evolution
of the gradient using known upper bounds on higher order
derivatives of the objective function. Our proposed method
guarantees convergence to arbitrarily small neighborhood of
the optimal trajectory in finite time and without incurring
Zeno behavior. We illustrate our framework with numerical
simulations.

Index Terms— Time-varying optimization, self-triggered con-
trol, adaptive step size

I. INTRODUCTION

In this paper, we address a class of time-varying opti-
mization problems where the goal is to asymptotically track
a unique, time-varying optimal trajectory given by

x?(t) := argmin
x∈Rn

f0(x, t), t ∈ R+. (1)

Problems of this form are generally referred to as time-
varying optimization or parametric programming in the lit-
erature, and often arise in dynamical systems that involve
an objective function or a set of constraints that have a
dependence on time or a dynamic parameter, in general.
Particular examples include real time convex optimization
in signal processing [2], distributed optimization of time-
varying functions [3], time-varying pose estimation [4],
traffic engineering in computer networks [5], neural network
learning [6], [7], and dynamic density coverage for mobile
robots [8].

From an optimization perspective, a general framework
for solving problem (1) is to sample the objective function
at particular times of interest, and solve the corresponding
sequence of stationary optimization problems by standard
iterative algorithms such as gradient or Newton’s methods.
However, these algorithms clearly ignore the dynamic aspect
of the problem which means they yield solutions with a final
steady-state error whose magnitude is related to the time-
varying aspects of the problem [9].

From a dynamical systems perspective, one could perform
time sensitivity analysis of the optimality conditions to

The authors are with the Department of Electrical and Systems Engi-
neering, University of Pennsylvania, Philadelphia, PA 19104, USA. Email:
{mahyarfa, cnowzari, pappasg, aribeiro, preciado}@seas.upenn.edu.

propose a continuous-time dynamical system whose state
is asymptotically driven to the optimal solution [7], [10].
The resulting dynamics is a combination of standard descent
methods and a prediction term which tracks the drift in the
optimal solution. For error-free tracking, however, we need
to solve the dynamics continuously, implying that we need
continuous access to the objective function and all of its
derivatives that appear in the continuous-time dynamics. A
natural solution to this is to implement the continuous-time
dynamics periodically. In a recent work [11], the authors
proposed a periodic sampling strategy in which the objective
function is periodically sampled with a constant period
h > 0, and a single step of prediction along with multiple
iterations of standard gradient or Newton’s algorithm are
combined to achieve an asymptotic error bound that depends
on h and the number of descent steps taken between the
sampling times.

Instead, we are interested in utilizing self-triggered control
strategies [12]–[15] to adaptively determine when samples
of the objective function are needed without sacrificing
the convergence; see [16] for a survey. From a dynamical
systems perspective, this strategy plays a similar role as
step size selection in stationary optimization, where a proper
continuous-time dynamics (ẋ(t) = −∇xf(x(t)) for in-
stance) is discretized aperiodically using a backtracking line
search method [17]. In time-varying optimization, however,
the line search method is no longer applicable as time
and space become entangled. In this context, we can view
our self-triggered sampling strategy as a way of adaptively
choosing a proper step size in both time and space to-
gether. There are similar works that propose event-triggered
broadcasting strategies to solve static distributed optimization
problem [18]–[21], but to the knowledge of the authors, no
work has been reported on an aperiodic discretization of
continuous time-varying optimization problems.

Statement of contributions: In this work we are interested
in developing a real-time algorithm that can asymptotically
track the time-varying solution x?(t) to a time-varying
optimization problem. Our starting point is the availability
of a continuous-time dynamics ẋ(t) = h(x(t), t) such that
the solutions to this satisfy ‖x(t)− x?(t)‖ → 0 as t → ∞.
Then, we are interested in a real-time implementation such
that ẋ(t) is to be updated at discrete instants of time and
is held constant between updates. In contrast to standard
methods that consider periodic samples, our contribution
is the development of a self-triggered control strategy that
autonomously determines how often ẋ(t) should be updated.
Intuitively, the self-triggered strategy determines how long

2016 IEEE 55th Conference on Decision and Control (CDC)
ARIA Resort & Casino
December 12-14, 2016, Las Vegas, USA

978-1-5090-1836-9/16/$31.00 ©2016 IEEE 3090

the current control input can be applied without negatively
affecting the convergence. Our algorithm guarantees that
the state x(t) can asymptotically track an arbitrarily small
neighborhood around x?(t) while ensuring Zeno behavior is
avoided. Simulations illustrate our results.

Notation Let R, R+, and R++ be the set of real, nonnega-
tive, and strictly positive real numbers. Z+ and Z++ denote
nonnegative and positive integers, respectively. Rn is the
space of n-dimensional vectors and Sn is the space of n by n
symmetric matrices. The one-norm and two-norm of x ∈ Rn
is denoted by ‖x‖1 and ‖x‖2, respectively. The gradient of
the function f(x, t) : Rn×R+ → R with respect to x ∈ Rn
is denoted by ∇xf(x, t) : Rn × R+ → Rn. The partial
derivatives of ∇xf(x, t) with respect to x and t are denoted
by∇xxf(x, t) : Rn×R+ → Sn and∇xtf(x, t) : Rn×R+ →
Rn, respectively. Higher order derivatives are also defined
similarly.

II. PRELIMINARIES AND PROBLEM STATEMENT

Let x ∈ Rn be a decision variable, t ∈ R+ a time index,
and f : Rn × R+ → R a real-valued convex function taking
values f(x, t). We interpret f as a time-varying objective
and consider the corresponding time-varying optimization
problem in which we want to find the argument x∗(t) that
minimizes the objective f(x, t) at time t,

x?(t) := argmin
x∈Rn

f(x, t), (2)

We impose the following assumption on f(x, t).

Assumption 1 The objective function f(x, t) is uniformly
strongly convex in x, i.e., f(x, t) satisfies ∇xxf(x, t) � mIn
for some m > 0, and for all t ∈ R+.

By virtue of Assumption 1, x?(t) is unique for each t ∈
R+ [17]. The optimal trajectory x?(t) is then implicitly
characterized by the optimality condition ∇xf(x?(t), t) = 0
for all t ∈ R+. Using the chain rule to differentiate this
identity with respect to time and rearranging the terms yields

ẋ?(t) = −∇−1xxf(x?(t), t)∇xtf(x?(t), t). (3)

Notice that the last result requires twice differentiability and
strong convexity of f(x) (Assumption 1). To achieve error
free tracking, the optimizer needs to follow the minimizer
with the same dynamics, in addition to taking a descent
direction in order to decrease the suboptimality. Choosing
continuous time Newton’s method as a descent direction
yields the following dynamical system,

ẋ(t) = h(x(t), t), (4)

where the vector field h : Rn × R+ → Rn is given by

h(x, t) = −∇−1xxf(x, t)[α∇xf(x, t) +∇xtf(x, t)], (5)

Here α > 0 is arbitrary. Define the following Lyapunov
function for (4)

V (x, t) :=
1

2
‖∇xf(x, t)‖22, (6)

which is nonnegative, and is zero along the optimal path,
i.e., V (x?(t), t) = 0, t ≥ 0. It can be verified that under
the continuous-time dynamics (4), the Lyapunov function
evaluated at (x(t), t) satisfies the ODE

V̇ (x(t), t) = −2αV (x(t), t). (7)

Solving the latter ODE for the time interval [t0, t] and the
initial condition x(t0) ∈ Rn yields the closed form solution
V (x(t), t) = V (x(t0), t0) exp(−2α(t− t0)). This implies
that exponential convergence of x(t) to x?(t) requires con-
tinuous evaluation of the gradient and the inverse Hessian,
according to (4) and (5), which is computationally expensive
and is not amenable to digital implementation. Instead, we
can use a simple Euler method to discretize (4). More
precisely, suppose we use a sequence of periodic sampling
times {tk}k∈Z++

with period τ > 0, i.e., tk+1 − tk = τ for
any k ∈ Z+ to arrive at the following piece-wise affine state
update law,

d

dt
x̂(t) = h(x̂(tk), tk), t ∈ [tk, tk+1). (8)

Now if the vector field h(x, t) satisfies the uniformly Lip-
schitz property ‖h(x, t) − h(y, t)‖ ≤ L‖x − y‖ for all
x,y ∈ Rn and some L > 0, and that the initial condition
satisfies x̂(t0) = x(t0), the discretization error at time tk
would satisfy the bound ‖x̂(tk) − x(tk)‖2 ≤ O(τ) [22],
implying that we can only control the order of magnitude of
the discretization error by the step size τ . Instead, we are
interested in a sampling strategy that autonomously adapts
the sampling times to control the discretization error. We
formalize the problem next.

Problem 1 Given the dynamics (8), find a strategy that
determines the least frequent sequence of sampling times
{tk}k∈Z++

such that:
(i) for each k ∈ Z+, tk+1 is determined without having

access to the objective function for t > tk,
(ii) x̂(t) converges to any neighborhood of the optimal

trajectory after a finite number of samples, and remains
there forever, and

(iii) tk+1−tk > c > 0 for some c ∈ R++ and all k ∈ Z++.

The first property guarantees that the proposed method is
completely online. The second property enables the opti-
mizer to arbitrarily bound the discretization error. The last
property ensures Zeno behavior is avoided. In order to
develop the main results, we make the following Assumption
about the objective function.

Assumption 2 The objective function f(x, t) is twice con-
tinuously differentiable and satisfies the bounds

‖∇xxf(x, t)‖ ≤ Cxx, ‖∇xxxi
f(x, t)‖2 ≤ Cxxx, i ∈ [n]

‖∇xtf(x, t)‖2 ≤ Cxt, ‖∇xttf(x, t)‖2 ≤ Cxtt,
‖∇xxtf(x, t)‖2 ≤ Cxxt.

for all x ∈ Rn and all t ∈ R+.

3091

The first two Assumptions are equivalent to Lipschitz conti-
nuity of the gradient and the Hessian function, respectively,
and are standard in second-order methods [17]. All other
bounds are related to the time-varying aspect of the objective
function and bound the rate at which the gradient and
Hessian functions vary with time. Notice that except for
the bound ‖∇xttf(x, t)‖2 ≤ Cxtt, all the other bounds are
required for h(x, t) to be uniformly Lipschitz [11].

III. SELF-TRIGGERED STRATEGY

In this section, we design a self-triggered sampling strat-
egy that meets the desired specifications defined in Problem
1.

A. Triggering Policy

Consider the discrete implementation of the ideal dy-
namics (4) at a sequence of times {tk}k∈Z+ that is to be
determined,

ẋ(t) = h(x(tk), tk), tk ≤ t < tk+1. (9)

Recalling the Lyapunov function (6), the instantaneous
derivatives of V (x, t) at the discrete sampling times {tk}
are precisely

V̇ (x(tk), tk) = −2αV (x(tk), tk), k ∈ Z+. (10)

In other words, the property (7) that holds at all times
in the continuous-time framework is now only preserved
at discrete sampling times. This means in general there is
no guarantee that V̇ (t) remains negative between sampling
times t ∈ (tk, tk+1), as the optimizer is no longer updating
its dynamics during this time interval. We are interested in
predicting the earliest time after tk at which the Lyapunov
function could possibly increase, without having access to the
objective function or its derivatives for t > tk, and update
the state dynamics at that time, denoted by tk+1. To do so,
we desire a tight upper bound on V̇ (t) = V̇ (x(t), t) so that
we are taking samples as conservatively as possible. Mathe-
matically speaking, for each t ≥ tk, we can characterize the
upper bound as follows,

φk(t) =sup
F
{V̇ (x(t), t) : ẋ(t) = h(x(tk), tk), t ≥ tk}.

(11)

where F is the class of all strongly convex objective func-
tions f ′ : Rn × R+ → R such that

1) ∇xf
′(x(tk), tk) = ∇xf(x(tk), tk),

2) ∇xtf
′(x(tk), tk) = ∇xtf(x(tk), tk),

3) ∇xxf
′(x(tk), tk) = ∇xxf(x(tk), tk),

4) f ′(x, t) satisfies Assumption 2.

In words, F is the set of all possible objective functions that
agree with f(x, t) and its first and second-order derivatives
at (x(tk), tk), and satisfy the bounds in Assumption 2. Intu-
itively, the set F formalizes, in a functional way, the fact that
we find φk(t) without having access to the objective function
for t > tk. The above definition implies that V̇ (tk) ≤ φk(t).
In particular, we have that V̇ (tk) = φk(tk) = −2αV (tk) < 0

by (11) and (10). Once φk(t) is characterized at time tk as a
function of t, the next sampling time is set as the first time
instant at which φk(t) crosses zero, i.e.,

tk+1 = φ−1k (0), k ∈ Z+. (12)

where φ−1k (.) is the inverse of the map φk(.). This choice
ensures that V̇ (t) ≤ φk(t) < φk(tk+1) = 0 for t ∈
[tk, tk+1). With this policy, the evaluated Lyapunov func-
tion V (t) becomes a piece-wise continuously differentiable
monotonically decreasing function of t with discontinuous
derivatives at the sampling times. We can view φk(t) as a
triggering function which triggers the optimizer to sample
when the event φk(t′) = 0 occurs for some t′ > tk. This
concept is illustrated in Figure 1. In the next proposition, we
characterize φk(t) in closed-form.

φk(t)

V̇ (t)

tk+1

φk(tk+1) = 0

tk t

V̇ (t),φk(t)

0

V̇ (tk)

Fig. 1: Concept of the self-triggered strategy. The triggering
function φk(t) is a tight upper bound on V̇ (t), and the
optimizer is triggered to sample when the event φk(t′) = 0
occurs for some t′ > tk.

Lemma 1 (Triggering Function) Let k ∈ Z+. Then, given
the bounds {Cxxx, Cxxt, Cxtt} in Assumption 2, the trigger-
ing function φk(t) on the time interval tk ≤ t ≤ tk+1 is
given by the third order polynomial

φk(t) := c0,k + c1,k(t− tk) + c2,k(t− tk)2 + c3,k(t− tk)3,
(13)

with the coefficients defined by

c0.k = −2αV (tk), c1,k =
√

2V (tk)bk + 2α2V (tk),

c2,k =
3

2
α
√

2V (tk)bk, c3,k =
1

2
b2k. (14)

where bk > 0 is computed as

bk = (Cxxx‖ẋ(tk)‖1 + 2Cxxt) ‖ẋ(tk)‖2 + Cxtt. (15)

and ẋ(tk) is computed according to (9).

Proof: See Appendix A. �
It can be observed from (13) that φk(t) is fully characterized
at time tk without having access to the objective function for
t > tk. In this context, the self-triggered strategy is online,
implying the property (i) in Problem 1. Moreover, φk(t) has
a unique root on the interval (tk,∞) when V (tk) > 0,

3092

implying that the sampling time tk+1 = φ−1k (0) is well-
defined and the step size satisfies tk+1 − tk > 0 for all k.
See Figure (1).

In the next subsection, we show the asymptotic conver-
gence of the sampled dynamics (9) with the triggering policy
tk+1 = φ−1(0), k ∈ Z+.

B. Asymptotic Convergence

The triggering function developed in the previous lemma
has the following properties by construction:
(a) φk(t) is convex in and strictly increasing on tk ≤ t ≤

tk+1.
(b) V̇ (t) ≤ φk(t) < 0 on tk ≤ t < tk+1.
(c) φk(tk) = V̇ (tk) = −2αV (tk).
(d) φk(tk+1) = 0.

We establish in the next theorem that the above properties
guarantee asymptotic monotone convergence of the Lya-
punov function to zero.

Theorem 1 Let {tk}k∈Z++
be the sequence of sampling

times generated according to (12), where φk(t) is defined in
(13). Then, for any k ∈ Z+ the Lyapunov function satisfies
V (tk+1) < V (tk), and that lim

k→∞
V (tk) = 0.

Proof: See Appendix B. �

Remark 1 (Role of α) In the proof of Theorem 1, we
showed that the Lyapunov function at the sampling times
satisfies the inequality

V (tk+1)− V (tk) ≤ −αV (tk)(tk+1 − tk).

Combining this inequality with the trivial inequality
−V (tk) ≤ V (tk+1) − V (tk) lets us conclude that for all
k ∈ Z+, the step sizes are bounded as tk+1 − tk ≤ α−1.
Therefore, increasing α will reduce the step sizes such that
the effective step size α(tk+1 − tk) is bounded by one.
This observation is consistent with backtracking line search
method in stationary optimization in which the step sizes are
bounded by one.

We have the following corollary as an immediate conse-
quence of Theorem 1.

Corollary 1 Let {tk}k∈Z++
be the sequence of sampling

times generated according to (12), where φk(t) is defined
in (13). Then, for any ε > 0, there exist a finite positive
integer k′(ε) ∈ Z+ such that V (tk′(ε)) < ε.

Next, we discuss the objective (ii) and (iii) of Problem 1.

C. Implementation

It can be seen from Theorem 1 and the expression of
φk(t) in (13) that as k → ∞, V (tk) → 0, and therefore
tk+1−tk → 0, i.e., the step sizes vanish asymptotically. This
might cause Zeno behavior, i.e., the possibility for infinitely
many samples over a finite interval of time. To avoid this
possibility, we need to modify the algorithm to ensure that
the step sizes are lower bounded by a positive constant all

the time; a stronger property than no Zeno behavior. For
this purpose, we implement the algorithm in two phases: In
the first phase, we use the sampling strategy developed in
Subsection III-A until the state x(t) reaches within a pre-
specified neighborhood around x?(t). In the second phase,
we switch the triggering strategy so as to merely maintain
x(t) in that neighborhood forever. More specifically, for the
sequence of sampling times {tk}k∈Z+

and any ε > 0, define

k′(ε) = min{k ∈ Z+ : V (tk) ≤ ε}.

In words, tk′(ε) is the first sampling time at which the
Lyapunov function is below the threshold ε. By Corollary 1,
k′(ε) is finite. Now for t ≥ tk′(ε), we propose another self-
triggered sampling strategy such that the Lyapunov function
satisfies V (t) ≤ ε for all t ≥ tk′(ε). Recalling the inequality
V̇ (t) ≤ φk(t), we can obtain an upper bound for V (t) as
follows,

V (t) ≤ ψk(t) := V (tk) +

∫ t

tk

φk(σ)dσ, t ≥ tk. (16)

The right-hand side is a polynomial in t which can be fully
characterized at tk. Now for k ≥ k′(ε), we set the next
sampling time tk+1 as the first time instant after tk at which
the upper bound function in the right-hand side crosses ε,
i.e., we select tk+1 according to the following rule,

tk+1 = ψ−1k (ε), k ∈ Z+. (17)

This policy guarantees that V (t) ≤ ψk(t) ≤ ψk(tk+1) =
ε for all k > k′(ε). As a result, by virtue of strong
convexity [17], i.e., the inequality ‖x(t) − x?(t)‖2 ≤
2/m‖∇xf(x(t), t)‖2, and recalling (6), the following bound

‖x(t)− x?(t)‖2 ≤
2
√

2ε

m
. (18)

will hold for all t ≥ tk′(ε). The following theorem accom-
plishes the main goals defined in Problem 1.

Theorem 2 Let {tk}k∈Z+
be the sequence of sampling times

generated by Algorithm 1. Then, for any ε > 0, there exists
a nonnegative integer m ∈ Z+ such that: (i) V (tm) < ε for
all t ≥ tm; and (ii) tk+1 − tk > τ(ε) for all k ∈ Z+ and
some τ(ε) > 0.

Proof: The first statement follows directly from Corol-
lary 1. For the proof of the second statement, see Appendix
C. �

We summarize the proposed implementation in Table 1,
where we use the notation xk := x(tk) and ẋk := ẋ(tk).

IV. SIMULATION

In this section, we perform numerical experiments to
illustrate our results. For simplicity in our exposition, we
consider the following convex problem in one-dimensional
space

x?(t) = arg min
1

2
(x− cos(ωt))2 +

k

2
cos2(2ωt) exp(µx2).

3093

Algorithm 1 : Self-triggered optimizer

Third-order self-triggered strategy
Given: Cxxx, Cxxt, Cxtt in Assumption 2, α, t0, tf , x(t0), ε.

1: Initialization: Set k = 0, and x0 = x(t0).
2: while tk < tf do
3: Compute

ẋk = −∇−1
xxf0(xk, tk)[α∇xf0(xk, tk) +∇xtf0(xk, tk)].

4: if ‖∇xf0(xk, tk)‖2 ≥ (2ε)
1
2 then

5:
6: Compute tk+1 = φ−1

k (0) from (13).
7: else
8: Compute tk+1 = ψ−1

k (ε) from (16).
9: end if

10: Update xk+1 = xk + ẋk(tk+1 − tk).
11: Update k = k + 1.
12: end while

where x ∈ R, t ∈ R+, ω = π/5, k = 2, and µ = 1/2.
For these numerical values, we have that Cxxx = 3.7212,
Cxxt = 2.6924, and Cxtt = 6.9369. We solve this problem
for the time interval t ∈ [0, 7] via Algorithm 1 using the
triggering function (13), and setting α = 5 and ε = 0.01. The
total number of updates are N = 108, with the step sizes
having a mean value of h̄ = 0.0662 and standard deviation
σ = 0.0501. For comparison, we also solve the optimization
problem by a more standard periodic implementation. We
plot all the solutions x(t) in Figure 2 along with the loge
of the total number of samples required in each execution.
It can be observed that small sampling periods, e.g., h =
0.0001, 0.001, 0.01, yield a convergence performance similar
to the self-triggered strategy, but uses a far higher number
of updates. On the other hand, larger sampling periods, e.g.,
h = 0.1, 0.2, 0.3, result in comparable number of samples
as the self-triggering strategy at the expense of slower
convergence. It should also be noted that we do not know a
priori what sampling period yields good convergence results
with a reasonable number of requires samples; however, the
self-triggered strategy is capable of automatically tuning the
step sizes to yield good performance while utilizing a much
smaller number of samples. This advantage comes at the cost
of knowing the upper bound constants in Assumption 2

Effect of ε: Next, we study the effect of the design
parameter ε on the number of samples and the convergence
performance of the self-triggered strategy. More specifically,
we run Algorithm 1 with all the parameters as before, and
with different values of ε. Figure 3 shows the resulting
trajectories for various values of ε. It is observed that ε does
not change the transient convergence phase, but rather affects
the steady state tracking phase. Moreover, the number of
samples are almost unaffected by changing ε.

Effect of α: Finally, we study the performance of the
self-triggered strategy as α changes. Intuitively, higher val-
ues of α puts more weight on the descent part of the
dynamics (∇−1xxf(x, t)∇xf(x, t)) than the tracking part
(∇−1xxf(x, t)∇xtf(x, t)), according to (4). Hence, we expect
more rapid convergence to the ε-neighborhood of the optimal
trajectory by increasing α. Figure 4 illustrates the resulting

0 1 2 3 4 5 6 7
t

-7

-6

-5

-4

-3

-2

-1

0

1

x
(t
)

optimal trajectory
self-triggered
h = 0.0001
h = 0.001
h = 0.01
h = 0.1
h = 0.2
h = 0.3
h = 0.4

1
0

5

10

15

lo
g(
N
)

ϵ = 0.01
α = 5

Fig. 2: Plot of x(t) against t for the self-triggered strategy
in Algorithm 1, and for periodic discretization with various
sampling periods.

0 1 2 3 4 5 6 7
t

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

x
(t
)

optimal trajectory
ϵ = 0.0001
ϵ = 0.001
ϵ = 0.01
ϵ = 0.1
ϵ = 0.2
ϵ = 0.3
ϵ = 0.4
ϵ = 0.5

1
0

2

4

6

lo
g(
N
)

α = 5

Fig. 3: Plot of x(t) against t for the self-triggered strategy
in Algorithm 1, and for various values of ε.

trajectories for different values of α. As we increase α,
the trajectory converges faster to the optimal trajectory.
The number of samples, however, are not affected by α.
This observation is in agreement with Remark 1, where we
showed that the effective step sizes α(tk+1−tk) are bounded
by one. In the limiting case α → ∞, the step sizes get
arbitrarily small, which is not desirable.

V. CONCLUSION

In this paper, we proposed a real-time self-triggered strat-
egy to aperiodically implement a continuous-time dynamics
that solves continuously time-varying convex optimization
problems. The sampling times are autonomously chosen
by the algorithm to ensure asymptotic convergence to the
optimal solution while keeping the number of updates at the
minimum. We illustrated the effectiveness of the proposed
method with numerical simulations.

There are possibly other triggering strategies that are less
conservative than the proposed algorithm. For instance, one
could design a self-triggered strategy to guarantee that the
Lyapunov function constitutes a decreasing sequence at the

3094

1
0

1

2

3

4

5

0 1 2 3 4 5 6 7
t

-5

-4

-3

-2

-1

0

1

x
(t
)

optimal trajectory
α = 2
α = 4
α = 6
α = 8
α = 10

1
0

1

2

3

4

5

lo
g(
N
)

ϵ = 0.1

Fig. 4: Plot of x(t) against t for the self-triggered strategy
in Algorithm 1, and for various values of α.

sampling times, as opposed to the proposed method in this
paper where the Lyapunov function is guaranteed to decrease
all the time. Furthermore, once could consider the case where
the term ∇xtf(x, t) in (5) is not known, and needs to be
estimated with backward difference in time. We will address
these extensions in our future work.

APPENDIX

A. Proof of Lemma 1

We begin by fixing k ∈ Z+ and analyzing the Lyapunov
function during the inter-event time t ∈ [tk, tk+1). We aim
to find a tight upper bound on V̇ (t). First, we write V̇ (t) in
integral form as

V̇ (t) = V̇ (tk) +

∫ t

tk

V̈ (σ)dσ

Applying Jensen’s inequality gives us the inequality

V̇ (t) ≤ V̇ (tk) +

∫ t

tk

|V̈ (σ)|dσ, t ≥ tk. (19)

The main idea is then to bound |V̈ (σ)| for σ ≥ tk, using the
bounds in Assumption 2. By adopting the notation gk(t) :=
∇xf0(x(t), t), we can rewrite the Lyapunov function as

V (t) =
1

2
gk(t)>gk(t), t ≥ tk. (20)

By (8), we have that ẋ(t) = ẋ(tk) = h(x(tk), tk) for t ≥ tk,
and therefore, x(t) = x(tk) + ẋ(tk)(t − tk) for t ≥ tk.
Whence, gk(t) reads as

gk(t) = ∇xf0(x(tk) + ẋ(tk)(t− tk), t), t ≥ tk. (21)

We can write the first two time derivatives of V (t) from (20)
as follows,

V̇ (t) = gk(t)>ġk(t), t ≥ tk,
V̈ (t) = ġk(t)>ġk(t) + gk(t)>g̈k(t), t ≥ tk. (22)

In order to bound V̈ (t), we proceed to bound gk(t), ġk(t),
and g̈k(t), using the known upper bounds granted by As-
sumption 2. To do so, we first use chain rule to derive ġk(t)
from (21) as follows,

ġk(t) = ∇xxf0(x(t), t)ẋ(tk) +∇xtf0(x(t), t), t ≥ tk.
(23)

We apply the chain rule again on (23) to get

g̈k(t) =

(
n∑
i=1

∇xxxi
f0(x(t), t)ẋi(t)

)
ẋ(tk) +∇xttf0(x(t), t)

+ 2∇xxtf0(x(t), t)ẋ(tk). (24)

We use Assumption (2) to bound g̈k(t). The first term in
g̈k(t) can be bounded as follows,

‖
n∑
i=1

∇xxxif0(x(t), t)ẋi(tk)‖2

≤
n∑
i=1

‖∇xxxi
f0(x(t), t)ẋi(tk)‖2

≤
n∑
i=1

‖∇xxxi
f0(x(t), t)‖2|ẋi(tk)|

≤
n∑
i=1

Cxxx|ẋi(tk)| = Cxxx‖ẋ(tk)‖1.

The remaining terms in g̈k(t) can also be bounded as follows,

‖2∇xxtf0(x(t), t)ẋ(tk) +∇xttf0(x(t), t)‖
≤ 2‖∇xxtf0(x(t), t)‖2‖ẋ(tk)‖2 + ‖∇xttf0(x(t), t)‖2,
≤ 2Cxxt‖ẋ(tk)‖2 + Cxtt.

Putting the last two bounds together, we obtain

‖g̈k(t)‖2 ≤ (Cxxx‖ẋ(tk)‖1 + 2Cxxt) ‖ẋ(tk)‖2 + Cxtt,

= bk. (25)

where we have used the definition of bk in (15). Next, we
use Taylor’s theorem to express gk(t) and ġk(t) as follows,

ġk(t) = ġk(tk) + g̈k(η)(t− tk), (26)

gk(t) = gk(tk) + ġk(tk)(t− tk) +
1

2
g̈k(ξ)(t− tk)2. (27)

for some tk < η, ξ < t. By (25) we know that ‖g̈k(t)‖2 < bk
for t ≥ tk. Hence, we can bound ‖ġk(t)‖2 as

‖ġk(t)‖2 ≤ ‖ġk(tk)‖2 + bk(t− tk).

‖gk(t)‖2 ≤ ‖gk(tk)‖2 + ‖ġk(tk)‖2(t− tk) +
1

2
bk(t− tk)2.

(28)

We use the obtained bounds for ‖gk(t)‖2 and ‖ġk(t)‖2 to
bound |V̈ (t)| as follows,

|V̈ (t)| = ‖ġk(t)>ġk(t) + gk(t)>g̈k(t)‖2
≤ (‖ġk(tk)‖2 + bk(t− tk))

2

+ (‖gk(tk)‖2 + ‖ġk(tk)‖2(t− tk) +
1

2
bk(t− tk)2)bk.

3095

Notice that ‖gk(tk)‖2 =
√

2V (tk) and ‖ġ(tk)‖2 =
α
√

2V (tk) [cf. (23) and (24)]. Finally, we plug the last
bound in (19) and use the definition of φk(t) in (13) to
conclude that

V̇ (t) ≤ φk(t), t ≥ tk. (29)

The proof is complete.

B. Proof of Theorem 1

We saw in the proof of Lemma 1 that for tk ≤ t < tk+1,
the dynamics of the Lyapunov function satisfies

V̇ (t) ≤ φk(t) < φk(tk+1) = 0, tk ≤ t < tk+1.

Moreover, φk(t) is convex on tk ≤ t ≤ tk+1 with boundary
values φk(tk) = −2αV (tk) and φk(tk+1) = 0. Hence, we
can write

φk(t) ≤
(

1− t− tk
tk+1 − tk

)
φk(tk) +

(
t− tk

tk+1 − tk

)
φk(tk+1)

=

(
1− t− tk

tk+1 − tk

)
.(−2αV (tk)).

Therefore, we get the inequality

V̇ (t) ≤
(

1− t− tk
tk+1 − tk

)
(−2αV (tk)).

We integrate the above inequality on [tk tk+1] to obtain

V (tk+1)− V (tk) ≤ −αV (tk)(tk+1 − tk). (30)

Moreover, for any k ∈ Z+, the step size tk+1− tk is strictly
positive unless V (tk) = 0 (see the discussion after Lemma
1). In other words, the right-hand side of the above inequality
is strictly negative unless V (tk) = 0. Therefore, we must
have that lim

k→∞
V (tk) = 0. The proof is complete. •

C. Proof of Theorem 2

We first show that for any k with V (tk) ≥ ε, we have
that tk+1− tk > τ1(ε) for some τ1(ε) > 0 to be determined.
When V (tk) ≥ ε, we are in the first phase of the Algorithm,
where we have that V̇ (t) ≤ 0. This means that ε ≤ V (tk) ≤
V (t0) <∞. It then follows by the definition of V (t) in (6)
that ‖∇xf0(x(tk), tk)‖ is bounded. This implies that ‖ẋ(tk)‖
is bounded because we have that

ẋ(tk) = −∇−1xxf(x(tk), tk)
[
∇xtf(x(tk), tk) + α∇xf(x(tk), tk)

]
.

by (4). Therefore, ‖ẋ(tk)‖2 is bounded as

‖ẋ(tk)‖2 ≤
1

m

(
Cxt + α‖∇xf(x(t0), t0)‖2

)
.

where we have used the fact that (i) ∇xxf(x, t) � mIn
for all x ∈ Rn and t ∈ R+ (see Assumption 1); and (ii)
‖∇xtf(x, t)‖2 ≤ Cxt (see Assumption 2). Boundedness of
‖ẋ(tk)‖2 further implies that the coefficient bk in (15) is
bounded, i.e., supk bk < b for some 0 < b < ∞. Recalling
ε ≤ V (tk) ≤ V (t0), the coefficients of the triggering
function in (14) can be bounded as follows,

c0,k ≤ −2αε, and sup
k

max
i=1,2,3

ci,k < c <∞.

Therefore, φk(tk + τ) is bounded by

φk(tk + τ) ≤ cτ3 + cτ2 + cτ − 2αε. (31)

The polynomial in the right-hand side has a strictly positive
root. Call it τ1(ε) > 0. Therefore, by the substitution τ =
τ1(ε) in (31), we get

φk(tk + τ1(ε)) ≤ 0 = φk(tk + τk).

where in the second equality, we have used the fact that,
according to (12), φk(tk + τk) = 0, when V (tk) ≥ ε. Since
φk(tk + τ) is an increasing function of its argument, we
conclude from the last inequality that

0 < τ1(ε) ≤ τk, if V (tk) ≥ ε.

Ituitively, during the first phase of the Algorithm, the step
sizes are lower-bounded by a positive constant, denoted by
τ1(ε) > 0. Next, we consider the second phase of the
Algorithm where 0 ≤ V (tk) ≤ ε. Notice that, in this case,
we can bound φk(t) as

φk(tk + τ) ≤ cτ3 + cτ2 + cτ − 2αV (tk).

Integrate both sides and recall the definition ψk(tk + τ) =
V (tk) +

∫ tk+τ
tk

φk(σ)dσ in (16) to obtain

ψk(tk + τ) ≤ c

4
τ4 +

c

3
τ3 +

c

2
τ2 − 2αV (tk)τ + V (tk).

The right-hand side is an upper bound on the triggering
function ψk(tk + τ). Viewing this bound as a triggering
function, it follows that the step size obtained from this upper
bound is a lower bound on the actual step size obtained by
ψk(tk + τ). More precisely, denote τ ′k as the value of τ for
which the right-hand side of the inequality above is equal to
ε, i.e.,

c

4
τ ′k

4
+
c

3
τ ′k

3
+
c

2
τ ′k

2 − 2αV (tk)τ ′k + V (tk) = ε. (32)

It then follows that τ ′k < τk where τk is the actual step size
that satisfies ψk(tk + τk) = ε. Viewing τ ′k as a function of
η := V (tk) given by the implicit equation above, we wish
to find a lower bound on τ ′k(η) when 0 ≤ η ≤ ε. To do so,
we differentiate the last identity with respect to η = V (tk)
to obtain

(cτ ′k
3

+ cτ ′k
2

+ cτ ′k − 2αη)
dτ ′k
dη
− 2ατ ′k + 1 = 0,

By setting dτ ′k/dη = 0 in the last equation, we get the critical
value τ2 := (2α)−1. Next, we evaluate τ ′k for boundary
values η = 0, and η = ε. For η = V (tk) = ε we obtain
from (32) that

c

4
τ ′k

4
+
c

3
τ ′k

3
+
c

2
τ ′k

2 − 2αετ ′k = 0.

The above polynomial has one zero root (ignored by the
Algorithm) and a unique positive root, denoted by τ3(ε).
Hence, in this case τ ′k = τ3(ε) > 0. On the other hand, for
η = V (tk) = 0, we obtain from (32) that c

4τ
′
k
4

+ c
3τ
′
k
3

+
c
2τ
′
k
2

= ε. The above polynomial has also a unique positive
root, denoted by τ4(ε) > 0. Therefore, it follows that

τ ′k ≥ min{τ2, τ3(ε), τ4(ε)} > 0.

3096

Finally, recall that τ ′k is a lower bound on τk, the selected
step size. Hence,

τk ≥ min{τ2, τ3(ε), τ4(ε)} > 0.

This confirms that for the case 0 ≤ V (tk) ≤ ε, the step size
is strictly lower bounded by a positive function of ε. Hence,
the proof is complete. •

REFERENCES

[1] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” Control Systems Technology, IEEE Transactions on,
vol. 18, no. 2, pp. 267–278, 2010.

[2] J. Mattingley and S. Boyd, “Real-time convex optimization in signal
processing,” Signal Processing Magazine, IEEE, vol. 27, no. 3, pp.
50–61, 2010.

[3] S. Rahili and W. Ren, “Distributed convex optimization for continuous-
time dynamics with time-varying cost functions,” arXiv preprint
arXiv:1507.04878, 2015.

[4] M. Baumann, C. Lageman, and U. Helmke, “Newton-type algorithms
for time-varying pose estimation,” in Intelligent Sensors, Sensor Net-
works and Information Processing Conference, 2004. Proceedings of
the 2004. IEEE, 2004, pp. 155–160.

[5] W. Su, “Traffic engineering and time-varying convex optimization,”
Ph.D. dissertation, The Pennsylvania State University, 2009.

[6] H. Myung and J.-H. Kim, “Time-varying two-phase optimization and
its application to neural-network learning,” IEEE Transactions on
Neural Networks, vol. 8, no. 6, pp. 1293–1300, Nov 1997.

[7] Y. Zhao and W. Lu, “Training neural networks with time-varying opti-
mization,” in Neural Networks, 1993. IJCNN ’93-Nagoya. Proceedings
of 1993 International Joint Conference on, vol. 2, Oct 1993, pp. 1693–
1696 vol.2.

[8] S. G. Lee, Y. Diaz-Mercado, and M. Egerstedt, “Multirobot control
using time-varying density functions,” IEEE Transactions on Robotics,
vol. 31, no. 2, pp. 489–493, April 2015.

[9] A. Y. Popkov, “Gradient methods for nonstationary unconstrained
optimization problems,” Automation and Remote Control, vol. 66,
no. 6, pp. 883–891, 2005.

[10] M. Baumann et al., “Newton’s method for path-following problems on
manifolds,” Ph.D. dissertation, Ph. D. Thesis, University of Würzburg,
2008.

[11] A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro,
“A class of prediction-correction methods for time-varying convex
optimization,” arXiv preprint arXiv:1509.05196, 2015.

[12] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp.
1680–1685, Sept 2007.

[13] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered
control for nonlinear systems,” IEEE Transactions on Automatic
Control, vol. 55, no. 9, pp. 2030–2042, Sept 2010.

[14] S. Aleem, C. Nowzari, and G. J. Pappas, “Self-triggered pursuit of a
single evader,” Osaka, Japan, Dec. 2015, pp. 1433–1440.

[15] C. Nowzari and J. Cortés, “Self-triggered optimal servicing in dynamic
environments with acyclic structure,” vol. 58, no. 5, pp. 1236–1249,
2013.

[16] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An intro-
duction to event-triggered and self-triggered control,” Maui, HI, 2012,
pp. 3270–3285.

[17] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[18] P. Wan and M. D. Lemmon, “Event-triggered distributed optimization
in sensor networks,” San Francisco, CA, 2009, pp. 49–60.

[19] M. Zhong and C. G. Cassandras, “Asynchronous distributed optimiza-
tion with event-driven communication,” vol. 55, no. 12, pp. 2735–
2750, 2010.

[20] D. Richert and J. Cortés, “Distributed event-triggered optimization for
linear programming,” Los Angeles, CA, 2014, pp. 2007–2012.

[21] S. S. Kia, J. Cortés, and S. Martı́nez, “Distributed convex optimiza-
tion via continuous-time coordination algorithms with discrete-time
communication,” vol. 55, pp. 254–264, 2015.

[22] A. Iserles, A first course in the numerical analysis of differential
equations. Cambridge University Press, 2009, no. 44.

3097

