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Abstract— This paper addresses the discrete abstraction
problem for stochastic nonlinear systems with continuous-
valued state. The proposed solution is based on a function,
called the bisimulation function, which provides a sufficient
condition for the existence of a discrete abstraction for a given
continuous system. We first introduce the bisimulation function
and show how the function solves the problem. Next, a convex
optimization based method for constructing a bisimulation
function is presented. Finally, the proposed framework is
demonstrated by a numerical simulation.

I. INTRODUCTION

System abstraction, i.e., extracting a simpler but quali-

tatively similar model from a given system, has recently

aroused great interest. The reason lies in its great potential

for analysis and control of highly complex systems. For

example, when one wants to verify if a system satisfies a

certain property, the use of its abstracted model drastically

reduces the computational complexity.

For this topic, various results have been extensively ob-

tained. For deterministic systems, system equivalence has

been discussed based on the notion of bisimulation relation

[1], [2], and its generalization, called the approximate bisim-

ulation, has been proposed in [3]. Moreover, for stochastic

systems, the bisimulation notion has been developed in [4]–

[6]. These works have provided fundamental theories of

system abstraction. More concrete methodologies to abstract

systems have been studied in [7]–[18]. They can be classified

as Table I, where the systems with continuous-valued state

and those with discrete-valued state are respectively called

the continuous systems and the discrete systems. Item (i)

corresponds to the reduction of a continuous system to a

continuous system with lower dimensional state space, while

(ii) is the reduction of a continuous system to a finite-state

machine, which is called the discrete abstraction. On the

other hand, (a) and (b) are distinguished by whether the

original systems are deterministic or stochastic.

Here, we are interested in a problem in (ii)-(b), i.e., the

discrete abstraction of stochastic systems. This is motivated

by the recent result [19] on the biological control. There, the
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TABLE I

RESULTS ON SYSTEM ABSTRACTION.

(a) deterministic (b) stochastic

(i)
continuous system
to continuous system

[7]–[9] [10]–[15]

(ii)
continuous system
to discrete system

[16]
[17], [18],

[This paper]

stochastic continuous system model of a biological system

is abstracted into a Markov chain with two discrete states.

Then, by exploiting good properties of the Markov chain, it

has succeeded in establishing a promising control framework.

However, the abstracted model is derived by the Monte Carlo

method with a large number of numerical simulations. So

we need to develop a more systematic method to abstract

stochastic continuous systems to Markov chains. In addition,

it should be noticed that, as shown in Table I, a discrete

abstraction technique for stochastic systems has been pro-

posed in [17], [18]. However, the resulting systems are not

the standard Markov chains but the Markov set-chains which

are more challenging to utilize than the standard ones.

This paper thus addresses the discrete abstraction of

stochastic nonlinear systems to Markov chains, shown in

Fig. 1. This abstraction reduces analysis and control prob-

lems for continuous systems into those for Markov chains,

to which the existing useful techniques can be applied. For

example, a basic issue for stochastic systems is the so-called

reachability problem, that is, to compute the probability

that the system does not reach an undesirable state set.

For continuous systems, the problem is in general difficult

to solve due to its exponential complexity with the state

dimension. In contrast, it can be easily solved for Markov

chains, because, as is well known, various probabilities on

the system evaluation can be easily computed from the

stochastic state transition matrices.

In this paper, to solve the discrete abstraction problem, we

introduce a function, called the bisimulation function, which

provides a sufficient condition for the existence of a Markov

chain which is bisimilar to a given original system. Although

the bisimulation function has been originally proposed in [3],

the function proposed here is slightly different; the original is

analysis-oriented, while ours is rather design-oriented. After

introducing the bisimulation function, we next propose a

method for deriving a bisimulation function. This is based

on convex optimization, which enables efficient computa-

tion. Finally, the proposed framework is demonstrated by a

numerical simulation.
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Fig. 1. Discrete Abstraction of Stochastic Systems into Markov Chains.

Notation: Let R, R0+, and N be the real number field,

the set of nonnegative real numbers, and the set of positive

integers, respectively. We denote by P
n×n the set of n × n

stochastic matrices, and denote by B(x, ε) the closed ball of

center x and radius ε. We use In to express the n×n identity

matrix, and M1 ⊗ M2 to express the Kronecker product of

the matrices M1 and M2. For the random variable w, let

E[w] be the expected value and let E[w|π] be the expected

value when the event π occurs. Finally, for the vector x
and the matrix M , the symbols ‖x‖ and ‖M‖ express the

Euclidean norm and the Frobenius norm, respectively, i.e.,

‖x‖ =
√

x⊤x and ‖M‖ =
√

tr(M⊤M).

II. PROBLEM FORMULATION

Consider the discrete-time nonlinear system

Σc : x(t + 1) = f(x(t)) + g(x(t))w(t) (1)

where x ∈ R
n is the state, w ∈ R

m is the stochastic process,

and f : R
n → R

n and g : R
n → R

n×m are functions.

The initial state is given as x(0) ∈ X0 for a bounded set

X0 ⊂ R
n. For the process w, it is assumed that

(A1) w(t) ∈ W for a bounded set W ⊂ R
m,

(A2) E[w(t)|x(t) = ξ] = 0 for all ξ ∈ R
n,

(A3) E[w(t)w⊤(t)|x(t) = ξ] = W (ξ) for a given

variance-covariance matrix W (ξ) ∈ R
m×m (which

depends on x(t)).

The first assumption means that w is bounded. The second

and third ones specify the expected value and the variance.

Note here that (A2) does not lose any generality; when

E[w(t)|x(t) = ξ] = e(ξ) �= 0, we recover the same results

for the system transformed with the new input valuable

w̄(t) := w(t) − e(x(t)).
In this paper, we are interested in abstracting Σc into the

following Markov chain:

Σd(P ) : Pr[ z(t + 1) = ζj | z(t) = ζi ] = Pij (2)

where z ∈ {ζ1, ζ2, . . . , ζN} (ζi ∈ R
n) is the state, which

takes one of the N vector values, and Pij ∈ [0, 1] is the

probability for the transition ζi → ζj in one time step. We

express by P the stochastic state transition matrix, i.e., P :=
[Pij ] ∈ P

N×N .

The system Σc and its state are often called the continuous

system and the continuous state, respectively. Likewise, the

system Σd(P ) and its state are called the discrete system

and the discrete state. In addition, the reachable set of Σc is

defined as

Reach(Σc) :=
{

x+ ∈ R
n

∣

∣

∣

∣

∃(t, x0, w0, . . . , wt−1) ∈ N× X0 × W
t

s.t. x+ = x(t, x0, w0, . . . , wt−1)

}

where x(t, x0, w0, . . . , wt−1) is the state x(t) under the

condition x(0) = x0, w(0) = w0, . . . , w(t − 1) = wt−1.

For evaluating the distance between the two systems Σc

and Σd(P ), we employ

∆1(ξ, ζi, P ) :=
∥

∥E[x(t+1) |x(t)=ξ ]

− E[ z(t+1) | z(t)=ζi ]
∥

∥, (3)

∆2(ξ, ζi, P ) :=
∥

∥E[x(t+1) x⊤(t+1) |x(t) = ξ ]

− E[ z(t+1) z⊤(t+1) | z(t) = ζi ]
∥

∥, (4)

which are based on the first- and second-order moments of

the states.

Definition 1 (ε-bisimulation): For the systems Σc and

Σd(P ), suppose that a precision ε ∈ R0+ satisfying

ε ≥ max
ξ∈Reach(Σc)

min
i∈{1,2,... ,N}

‖ξ − ζi‖ (5)

is given. Then the systems Σc and Σd(P ) are said to be

ε-bisimilar (denoted by Σc ≃ε Σd(P )) if, for all (ξ, ζi)
satisfying ‖ξ − ζi‖ ≤ ε, the relations

∆1(ξ, ζi, P ) ≤ ε, (6)

∆2(ξ, ζi, P ) ≤ ε2 (7)

hold.

Note that (5) guarantees that, for each x(t) ∈ Reach(Σc),
there exists a discrete state ζi which is an ε-neighbor of x(t).

Note also that the right hand side of (7) is bounded by the

square of ε, since ∆2 is based on the second-order term of

x and z. Other types of relations, such as ∆1(ξ, ζi, P ) ≤ ε,

∆2(ξ, ζi, P ) ≤ δ with independent values ε and δ, can be

also handled by the straightforward extention.

Then the following problem is addressed in this paper.

Problem 1: For the continuous system Σc, suppose that

the discrete states ζ1, ζ2, . . . , ζN are given.

(i) Given a stochastic matrix P ∈ R
N×N and a precision

ε ∈ R0+, determine if Σc ≃ε Σd(P ).
(ii) Find a P and an ε satisfying Σc ≃ε Σd(P ).

Several remarks on Problem 1 are given.

First, the relation Σc ≃ε Σd(P ) allows us to easily

(but approximately) solve the reachability problem for the

continuous system Σc, that is, compute the probability that

any initial state on a set does not reach an undesirable set.

For example, the probability for Σc that any x(0) ∈ X0 =
B(ζ1, ε) does not reach a set X1 = B(ζN , ε) within time T
is approximated by

Pr[ z(1) �= ζN , z(2) �= ζN , . . . , z(T ) �= ζN | z(0) = ζ1 ]
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for the discrete system Σd(P ). Then this is easily computed

as

T
∏

t=1

(1 − P t
1N )

where P t
1N is the (1, N)-th element of P t (the stochastic

transition matrix to the t-th power).

Second, in Problem 1, the discrete states {ζ1, ζ2, . . . , ζN}
are pre-fixed, though one might have a flexibility in choosing

{ζ1, ζ2, . . . , ζN} in some cases. This type of problem is

considered in the situation where some key states in the dy-

namics are known a priori. For example, it has been pointed

out in [19] that in a biological system, stable equilibria are

dominant factors to describe the dynamics.

Finally, due to mathematical difficulty, it is too difficult to

solve Problem 1 exactly. In fact, (i) and (ii) correspond to

the so-called nonnegativity problem and the robust inequality

problem, in which the arising inequalities ((6) and (7)) are

nonconvex with respect to ξ (which will be shown later).

This fact motivates us to introduce a bisimulation function

which provides a sufficient condition for the existence of

(P, ε) satisfying Σc ≃ε Σd(P ).

III. BISIMULATION FUNCTIONS

A. Definition

In this paper, a bisimulation function is defined based on

the decomposition of ∆1(ξ, ζi, P ) and ∆2(ξ, ζi, P ) in (3)

and (4).

We decompose ∆1(ξ, ζi, P ) into two parts:

∆1(ξ, ζi, P )

=
∥

∥E[x(t+1) |x(t)= ξ ] − E[x(t+1) |x(t)= ζi ]

+ E[x(t+1) |x(t)= ζi ] − E[ z(t+1) | z(t) = ζi ]
∥

∥

≤
∥

∥E[x(t+1) |x(t)= ξ ] − E[x(t+1) |x(t)= ζi ]
∥

∥

+
∥

∥E[x(t+1) |x(t)= ζi ] − E[ z(t+1) | z(t) = ζi ]
∥

∥ (8)

Here, the first term expresses the difference by the state-

space quantization and the second term does the difference

of the dynamics. For simplicity of notation, we denote these

terms by ∆11(ξ, ζi) and ∆12(ζi, P ), i.e.,

∆1(ξ, ζi, P ) ≤ ∆11(ξ, ζi) + ∆12(ζi, P ). (9)

In a similar way to this, ∆2(ξ, ζi, P ) can be decomposed

as

∆2(ξ, ζi, P ) ≤
∥

∥E[x(t+1)x⊤(t+1)|x(t)=ξ ]

− E[x(t+1)x⊤(t+1)|x(t)=ζi ]
∥

∥

+
∥

∥E[x(t+1)x⊤(t+1)|x(t)=ζi ]

− E[ z(t+1)z⊤(t+1)| z(t)=ζi ]
∥

∥

= ∆21(ξ, ζi) + ∆22(ζi, P ) (10)

where ∆21(ξ, ζi) and ∆22(ζi, P ) are similarly defined. Note

that ∆11(ζi, ζi) = 0 and ∆21(ζi, ζi) = 0. Then a bisimula-

tion function is introduced as follows.

Definition 2 (Bisimulation functions): A function φ :
R0+ × {ζ1, ζ2, . . . , ζN} → R is a bisimulation function for

Σc and {ζ1, ζ2, . . . , ζN} if

(a) φ(‖ξ − ζi‖, ζi) is differentiable with respect to ‖ξ − ζi‖,

(b) φ(‖ξ − ζi‖, ζi) ≤ ‖ξ − ζi‖ − ∆11(ξ, ζi),
(c) ‖ξ − ζi‖φ(‖ξ − ζi‖, ζi) ≤ ‖ξ − ζi‖2 − ∆21(ξ, ζi),

(d) there exists a positive scalar ω such that

ω ≤ ∂φ(‖ξ − ζi‖, ζi)

∂‖ξ − ζi‖
,

(e)
∂φ(‖ξ − ζi‖, ζi)

∂‖ξ − ζi‖
≤ 1.

B. Significance of Bisimulation Functions

The significance of the bisimulation function is stated as

follows.

Theorem 1: If there exists a bisimulation function φ for

Σc and {ζ1, ζ2, . . . , ζN}, the following statements hold.

(i) There exist a stochastic matrix P and a precision ε such

that Σc ≃ε Σd(P ).
(ii) If the pair (P, ε) satisfies

−φ(ε, ζi) + ∆12(ζi, P ) ≤ 0 (i = 1, 2, . . . , N), (11)

−εφ(ε, ζi) + ∆22(ζi, P ) ≤ 0 (i = 1, 2, . . . , N), (12)

then Σc ≃ε Σd(P ).
Proof: First, we prove (ii). By applying Def. 2 (b) and

(11) to (9), it follows that

∆1(ξ, ζi, P ) ≤ ‖ξ − ζi‖ − φ(‖ξ − ζi‖, ζi) + φ(ε, ζi)

holds for every (ξ, ζi) ∈ R
n × {ζ1, ζ2, . . . , ζN}. From

Def. 2 (e), ‖ξ − ζi‖ − φ(‖ξ − ζi‖, ζi) is monotonically

nondecreasing with ‖ξ−ζi‖, which implies that if ‖ξ−ζi‖ ≤
ε, then

∆1(ξ, ζi, P ) ≤ ε − φ(ε, ζi) + φ(ε, ζi) ≤ ε.

On the other hand, in a similar way to the above, it can be

shown from (10), (12), and Def. 2 (c) that

∆2(ξ, ζi, P )

≤ ‖ξ − ζi‖2 − ‖ξ − ζi‖ φ(‖ξ − ζi‖, ζi) + εφ(ε, ζi).

Then since Def. 2 (b) and (e) imply that ‖ξ− ζi‖(‖ξ− ζi‖−
φ(‖ξ−ζi‖, ζi)) is monotonically nondecreasing with ‖ξ−ζi‖,

we have

∆2(ξ, ζi, P ) ≤ ε2 − εφ(ε, ζi) + εφ(ε, ζi) ≤ ε2

under the condition ‖ξ−ζi‖ ≤ ε. These mean Σc ≃ε Σd(P ).
Next, (i) is proven. Def. 2 (d) means that −φ(‖ξ − ζi‖, ζi)
is monotonically decreasing with ‖ξ − ζi‖. Furthermore,

it means that −‖ξ − ζi‖φ(‖ξ − ζi‖, ζi) is monotonically

decreasing with ‖ξ − ζi‖ on [ε̄,∞) (ε̄ is some value). So

for any stochastic matrix P , there exists an ε satisfying (11)

and (12). This and (ii) imply (i).

Statement (i) provides a sufficient condition for the contin-

uous system Σc to have an ε-bisimilar system Σd(P ), and (ii)

characterizes (P, ε) for the bisimulation by 2N inequalities.

Note that (i) does not always hold, because, for example, an

1037



unstable continuous system cannot be approximated by any

finite state machine.

Once a bisimulation function is obtained, the solutions to

Problem 1 can be readily derived. The decision problem (i)

is solved by checking the satisfaction of (11) and (12) for the

given (P, ε). On the other hand, (ii) is resolved by finding a

pair (P, ε) satisfying (11) and (12). For example, a solution

with the minimum ε, which may be the most useful, is given

as follows.

Theorem 2: The pair (P (∞), ε(∞)) given by the follow-

ing algorithm is an asymptotic solution of (11) and (12) with

the minimum ε.

(Algorithm BISIM)

(Step 1) Set

εmin := the minimum ε satisfying (5),

εmax := a sufficiently large positive number,

ε(0) :=
εmin + εmax

2
,

i := 0 (counter initialization).

(Step 2) Solve the following optimization problem and let

(γ(i), P (i)) be the solution.

min
γ∈R,

P∈P
N×N

γ

s.t.



























−φ(ε(i), ζi) +
∥

∥f(ζi) − [ζ0 ζ1 · · · ζN ]P⊤ei

∥

∥≤ γ
(i = 1, 2, . . . , N),

−ε(i)φ(ε(i), ζi) +
∥

∥f(ζi)f
⊤(ζi) + g(ζi)W (ζi)g

⊤(ζi)

− [ζ0ζ
⊤
0 ζ1ζ

⊤
1 · · · ζNζ⊤N ](P⊤⊗ InN )Ei

∥

∥ ≤ γ
(i = 1, 2, . . . , N)

where ei := [0 · · · 0 1 0 · · · 0]⊤ is the i-th standard basis in

R
N and Ei is the nN × n matrix of the form

Ei := [0n×n · · · 0n×n In 0n×n · · · 0n×n]⊤.
↑

the i-th block

(Step 3) If γ(i) > 0,

ε(i + 1) :=
εmax + ε(i)

2
, εmin := ε(i),

otherwise

ε(i + 1) :=
εmin + ε(i)

2
, εmax := ε(i).

(Step 4) i := i + 1 and go to Step 2.

Proof: See Appendix I.

The above method is based on the convex optimization for

P (and γ) and the bisection search for ε. Thus a solution to

Problem 1 (ii) can be efficiently computed.

As a consequence of the above discussion, Problem 1 can

be reduced into finding a bisimulation function φ. In the

next section, we propose a computationally tractable method

to derive a bisimulation function.

IV. CONSTRUCTION OF BISIMULATION FUNCTIONS

In order to compute bisimulation functions, the following

result plays an important role.

Theorem 3: All bisimulation function for Σc and

{ζ1, ζ2, . . . , ζN} are given by

φ(‖ξ − ζi‖, ζi) = ‖ξ − ζi‖ −
√

α(‖ξ − ζi‖, ζi) (13)

where α : R0+ × {ζ1, ζ2, . . . , ζN} → R0+ is the parameter

function satisfying

(a’) α(‖ξ− ζi‖, ζi) is differentiable with respect to ‖ξ− ζi‖,

(b’) α(‖ξ − ζi‖, ζi) − ‖f (ξ) − f(ζi)‖2 ≥ 0,

(c’) α(‖ξ − ζi‖, ζi)‖ξ − ζi‖2

− ‖f (ξ)f⊤(ξ) + g(ξ)W (ξ)g⊤(ξ)

−f (ζi)f
⊤(ζi) − g(ζi)W (ζi)g

⊤(ζi)‖2 ≥ 0,

(d’) there exists a positive scalar ω such that

4(1− ω)2α(‖ξ − ζi‖, ζi) −
(

∂α(‖ξ − ζi‖, ζi)

∂‖ξ − ζi‖

)2

≥ 0,

(e’)
∂α(‖ξ − ζi‖, ζi)

∂‖ξ − ζi‖
≥ 0,

where f , g, and W are defined in Section II.

Proof: It is obvious that (13) is a bijective relation

between φ and α (note α(‖ξ− ζi‖, ζi) ∈ R0+). So we show

that (a)–(e) are equivalent to (a’)– (e’).

(a) ↔ (a’): Trivial from (13).

(b) ↔ (b’): By calculating an explicite form of E[x(t+
1) |x(t)= ξ ], we have

∆11(ξ, ζi) = ‖f (ξ) − f(ζi)‖. (14)

This and (13) prove that (b) and (b’) are equivalent.

(c) ↔ (c’): By a straightforward calculation, we can derive

∆21(ξ, ζi) = ‖f (ξ)f⊤(ξ) + g(ξ)W (ξ)g⊤(ξ)

− f(ζi)f
⊤(ζi) − g(ζi)W (ζi)g

⊤(ζi)‖. (15)

This and (13) imply that (c) and (c’) are equivalent.

(d) ↔ (d’): Consider the inequality in (d’). By transposing

the second term to the right hand side and taking the square

root of both sides, the inequality is expressed as

2(1 − ω)
√

α(‖ξ − ζi‖, ζi) ≥
∂(

√

α(‖ξ − ζi‖, ζi))
2

∂‖ξ − ζi‖
,

and, equivalently,

2(1 − ω)
√

α(‖ξ − ζi‖, ζi)

≥ 2
√

α(‖ξ − ζi‖, ζi)
∂
√

α(‖ξ − ζi‖, ζi)

∂‖ξ − ζi‖
.

Furthermore, this is represented as

1 − ∂
√

α(‖ξ − ζi‖, ζi)

∂‖ξ − ζi‖
≥ ω.

Since (13) implies

∂φ(‖ξ − ζi‖, ζi)

∂‖ξ − ζi‖
= 1 − ∂

√

α(‖ξ − ζi‖, ζi)

∂‖ξ − ζi‖
, (16)
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it is shown that (d’) is equivalent to (d).

(e) ↔ (e’): Trivial from (13).

In Definition 2, the bisimulation function φ is introduced

with the properties (b) and (c) including square-root terms,

e.g., ‖ξ − ζi‖ (=
√

(ξ − ζi)⊤(ξ − ζi)). On the other hand,

Theorem 3 provides a parameterization of φ by the function

α which is not characterized by square-root terms (in (b’)

and (c’)). This enables us to derive a bisimulation function

via a sum of squares problem (which is convex! [20]).

Suppose that the elements of f , g, and W are quotients of a

polynomial by a positive polynomial (or can be approximated

by them), and α is of the form

α(‖ξ − ζi‖, ζi) = bi‖ζi‖2 +
M
∑

j=1

cij‖ξ − ζi‖2j (17)

where bi, cij ∈ R are coefficients and M ∈ N is an

accuracy parameter selected by users. Then the function α is

constructed with the solution to the following sum of squares

problem.

Find bi, cij (i = 1, 2, . . . , N, j = 1, 2, . . . , M)

s.t.































Left hand side of (b’) × p1(ξ) is a sum of squares,
Left hand side of (c’) × p2(ξ) is a sum of squares,
Left hand side of (d’) is a sum of squares,
Left hand side of (e’) × ‖ξ − ζi‖ is a sum of

squares,
(i = 1, 2, . . . , N),

where p1, p2 and ω are arbitrarily given positive polynomials

and a small positive scalar. Note that α and

(

∂α(‖ξ − ζi‖, ζi)

∂‖ξ − ζi‖

)2

are polynomials of ‖ξ − ζi‖2 (= (ξ − ζi)
⊤(ξ − ζi)), i.e.,

polynomials of ξ. In addition, notice that, since (b’), (c’),

and (e’) are not always polynomial conditions, they are trans-

formed into equivalent polynomial conditions by introducing

the positive polynomials p1, p2 and the positive term ‖ξ−ζi‖.

By solving this sum of squares problem, we can derive a

function α and thus obtain a bisimulation function φ.

V. EXAMPLE

Consider the following continuous system

Σc :















x1(t + 1) = 0.3x1(t) +
x2(t)

3 + x2
1(t)x

2
2(t)

,

x2(t + 1) = −0.15x1(t) + 0.3x2(t) + w(t)

where xi ∈ R (i ∈ {1, 2}), w ∈ W := [−1, 1], E(w) = 0,

and E(w2) = 0.3. The discrete states of Σd(P ) are given by

ζ1 :=

[

−1
−1

]

, ζ2 :=

[

−1
0

]

, ζ3 :=

[

−1
1

]

,

ζ4 :=

[

−1
0

]

, ζ5 :=

[

0
0

]

, ζ6 :=

[

0
1

]

,

0.08

0.34

1

2

3

4

5

6

7

8

9

0.10

0.10

0.14

0.66

0.34

0.51

0.19

0.60

0.07

0.7

0.15

0.15 0.60

0.19 0.10

0.18

0.51

0.10

0.66

0.20

0.55

0.11
0.14

0.07

0.45

Fig. 2. Discrete abstraction by the proposed method. In this figure, some
nodes with small probability are omitted.

ζ7 :=

[

1
−1

]

, ζ8 :=

[

1
0

]

, ζ9 :=

[

1
1

]

.

Then the proposed method provides the bisimulation func-

tion

φ(‖ξ − ζi‖, ζi) = ‖ξ − ζi‖ −
√

0.27‖ξ − ζi‖2 + 0.26‖ζi‖2.

This guarantees that there exists a stochastic matrix P and a

precision ε such that Σc ≃ε Σd(P ) (see Theorem 1). Using

this, we obtain the Markov chain Σd(P ) in Fig. 2 with ε ≃
0.8, where some nodes with small probability are omitted.

For the system Σc and the discrete states {ζ1, ζ2, . . . , ζ9},

the minimum ε satisfying (5) is
√

2/2 (≃ 0.707). Compared

with this, it turns out that the discrete system Σd(P ) with

ε ≃ 0.8 is a good approximation of Σc.

In this way, the proposed method solves the discrete

abstraction problem for stochastic continuous systems.

VI. CONCLUSION

This paper has considered the discrete abstraction problem

for stochastic nonlinear systems. The problem has been re-

duced into the problem of finding the bisimulation function,

which provides a systematic method to abstract stochastic

continuous systems to Markov chains. We also have pre-

sented a construction technique of the bisimulation function

based on sum of squares programming.

APPENDIX I

PROOF OF THEOREM 2

A. Preliminary: Explicite Formulas of ∆12(ζi, P ) and

∆22(ζi, P )

By a straightforward calculation with Assumptions (A2),

(A3) and equations (3), (4), we have the following explicite
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formulas of ∆12(ζi, P ) and ∆22(ζi, P ):

∆12(ζi, P ) =
∥

∥f(ζi) − [ζ0 ζ1 · · · ζN ]P⊤ei

∥

∥, (18)

∆22(ζi, P ) =
∥

∥f(ζi)f
⊤(ζi) + g(ζi)W (ζi)g

⊤(ζi)

− [ζ0ζ
⊤
0 ζ1ζ

⊤
1 · · · ζN ζ⊤N ](P⊤⊗ InN )Ei

∥

∥. (19)

B. Proof of Main Part

First, Algorithm BISIM corresponds to the (standard) bi-

section root finding method for the following scalar equation

with the variable ε:

min
P∈PN×N

max
i∈{1,2,... ,N}

max{−φ(ε, ζi) + ∆12(ζi, P ),

−εφ(ε, ζi) + ∆22(ζi, P )} = 0.

(20)

Thus we have a solution to (20) by the procedure.

Next, we show that (20) holds for the solution of (11) and

(12) with the minimum ε. From (3) and (4), ∆12(ζi, P ) ≥ 0
and ∆22(ζi, P ) ≥ 0. Thus it follows that

φ(ε, ζi) ≥ 0 (21)

holds for the all solutions to (11) and (12). For ε satisfying

(21), −φ(ε, ζi) and −εφ(ǫ, ζi) are monotonically decreasing,

which means that ε is the minimum if one of the 2N terms

min
P∈PN×N

−φ(ε, ζi) + ∆12(ζi, P ) (i = 1, 2, . . . , N),

min
P∈PN×N

−εφ(ε, ζi) + ∆22(ζi, P ) (i = 1, 2, . . . , N)

is zero and the others are nonpositive. This condition is

expressed in (20), which completes the proof.
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