
Automatically Synthesizing a Planning and Control Subsystem
for the DARPA Urban Challenge

Hadas Kress-Gazit,George J. Pappas*
GRASP Laboratory, University of Pennsylvania

Philadelphia, PA 19104, USA
{hadaskg,pappasg}@grasp.upenn.edu

Abstract— To incorporate robots into society, they must be
able to perform complex tasks while interacting with the
world around them in a safe and dependable manner. The
recent DARPA 2007 Urban Challenge made a step towards
that goal by testing how well robotic vehicles can interact in
an urban environment while dealing with static and dynamic
obstacles and other cars. This paper uses the Urban challenge to
demonstrates a general approach for automatically synthesizing
correct hybrid controllers from high level descriptions. Here
we create a planning and control subsystem for the vehicle
that, if the information gathered by the sensor is correct,
satisfies the requirements of the challenge for different dynamic
environments. This approach automatically produces a system
that is guaranteed to behave according to the traffic laws while
interacting with other vehicles. Furthermore, it allows systems
to be changed rapidly and easily thus reducing design time and
eliminating human error.

I. INTRODUCTION

Robots are different from other hardware and software
systems in that they are expected to perform different com-
plex tasks in dynamically changing and partially known
environments, while ensuring the safety of their surroundings
and themselves. To achieve this goal, robots must employ
advanced control methods together with sensing capabilities
and the ability to reason and make decisions about their state
and the state of the world surrounding them. One of the
major challenges for designing such systems [1] therefore is
to find methods for combining these different requirements
in a unified, effective and verifiable way.

The Defense Advanced Research Projects Agency
(DARPA) 2007 Urban Challenge is the second of two
challenges initiated by DARPA that put to the test the
ability of current technology to deal with these challenges.
Its predecessor, the 2005 Grand Challenge required robotic
vehicles to complete a 132 mile desert course in up to 10
hours, while dealing with rough terrain and static obstacles
but with practically no interaction with other vehicles. The
2007 Urban Challenge extended the previous challenge by
moving to an urban environment where the robot must
complete a multi-part mission while negotiating hazards,
overcoming blocked roads, avoiding both static and dynamic
obstacles and obeying the California traffic laws.

In this paper we use the DARPA 2007 Urban Challenge,
specifically the planning and control aspects, as a case study
for an approach we have developed in [7], [6], [3] that tackles
the control and decision making challenges of autonomous
vehicles. This approach automatically transforms a high level
description of a reactive task, a task that depends on the

*This work was supported by Army Research Office MURI SUBTLE
W911NF-07-1-0216.

information gathered by the robot at run time, into a hybrid
controller that is guaranteed by construction to satisfy that
task, if at all possible. This approach allows the robot to
reason about and react to information about other vehicles
as well as dynamic and static obstacles in the environment,
while reaching its goals.

As discussed in Section II, the teams that participated in
the challenge had hand written logic that was responsible for
the high level behavior of their car (passing, making a U-turn,
etc.). The design of this logic was time and effort consuming
and since in most parts it was only tested, not verified, it
led to vehicles exhibiting strange behaviors. The strengths
of the approach described in this paper are that it allows the
system designer to reason at a high level, have guarantees of
correctness and easily and quickly create complex systems
thus replacing error prone hand coded design.

The paper is structured as follows. Section II describes the
Urban Challenge together with a general system architecture
many teams employed. It also describes how the approach
taken in this paper can contribute to the design of such a
system. Section III gives a general description of the method,
Section IV gives the details concerning the planning and
control subsystem of the Urban Challenge and Section V
describes simulations in which the robot exhibits different
behaviors.

II. THE DARPA URBAN CHALLENGE

A. The Challenge
For DARPA’s 2007 Urban Challenge, a robotic vehicle

must be able to complete a mission which comprises of going
through a sequence of checkpoints in a course that is 60
miles long. It must obey the California traffic laws while
encountering traffic circles and intersections. It must also
operate in an environment with other moving vehicles, static
obstacles such as parked cars, and blocked roads.

Each Urban Challenge team receives two text files de-
scribing the challenge. The Route Network Definition File
(RNDF) contains the description of the course, road seg-
ments, lanes, waypoints and locations of stop signs and
checkpoints. It also includes zones which are polygonal areas
in which the robot can move freely (while avoiding obstacles)
and parking spots that are within these zones. The second
file, given to the team five minutes before the start of the
mission, is the Mission Data File (MDF) containing the
sequence of checkpoints to be traversed together with speed
limits for the different road segments.

As a safety precaution, all teams must include the emer-
gency stop (E-stop) system provided by DARPA. This system
is used to send start and stop commands remotely to the



robots. It consists of a radio receiver which is installed on
the robot and a remote transmitter that has two switches.
One switch sends a Enable/Disable command and the other
a Run/Pause command. In Disable mode the robot must,
irrespective of the other switch, first stop and then shut down.
In Enable mode the behavior depends on the Run/Pause
switch where in Run mode the robot should carry out its
mission and in Pause mode it should come to a complete
stop.

B. The general solutions
Many teams participating in the challenge [4] chose com-

mon design concepts such as creating a modular architecture
with a variety of interconnected modules. Tasks adressed
can be roughly split into two categories, one dealing with
gathering the sensor information and estimating the state of
the robot and the world while the other deals with planning
the mission and controlling the robot.

Here we demonstrate a general approach by focusing on
the planning and control aspects of the Urban Challenge.
Figure 1 shows a high level generalization of the approach
of many semifinalists. Starting from the highest level, the
mission planner takes the RNDF and the MDF and finds
a sequence of waypoints that need to be traversed in order
to complete the mission. It then sends to the Finite State
Machine (FSM) the next waypoint that should be reached.
The FSM, based on the state of the robot and the world that
it receives from the sensor modules, searches for a suitable
behavior that will cause the robot to reach the given waypoint
(driving, changing lanes, making a U-turn). Following that,
the FSM either sends the controller a reference trajectory to
track or sends a message to the planner that the waypoint
cannot be reached, for example if the road is blocked. If
a reference trajectory is found, the controller then sends
steering and velocity commands to the robot that ensure it
moves according to the required path.

Fig. 1: A General high level description of the planning and
control architecture of various DARPA Challenge teams

C. Synthesizing the planner and controller
The mission planner can employ different graph searching

techniques such as Dijkstra’s algorithm and A* search. The
controller can use a wide range of well studied control
methods such as sampling based or feedback policies [2].
However, the FSM is still written and tested by hand in a
tedious and error prone manner. While some teams have used
formal verification to validate small parts of their design,
the majority of the system was tested in a limited way and

simulated without any formal guarantees that it actually does
what the system designer intended it to do.

In this paper we show how this complex subsystem,
containing the mission planner, the hand coded behavior
FSM and the controller, can be automatically synthesized
from a high level description of the problem. This synthesis
approach allows the system designer to either decompose
the problem into several interacting pieces or treat it as
one large system. It naturally supports giving many short
instructions and it is guaranteed to either produce a system
that always satisfies those instructions by construction or give
the designer an indication that the required behavior cannot
be satisfied.

III. METHOD

Here we give an overview of the method used to transform
instructions given in Structured English together with a
description of the workspace into a hybrid controller that is
guaranteed to drive a robot according to the desired behavior.

Fig. 2: Overview of the steps taken to create a hybrid
controller from high level specifications

Figure 2 shows the three main steps. First, the user
specification combined with a discrete abstraction of the
workspace and any assumptions that are made regarding
the environment are translated into a Linear Temporal Logic
formula ϕ [5]. Next, an automaton A is synthesized such that
every execution of A satisfies ϕ. Finally, a hybrid controller
based on the the automaton A is created.

To illustrate the first two steps we create a small automaton
that handles the discrete behavior concerning the E-stop
system, as required by DARPA [4].

The first step, the translation, build upon the work pre-
sented in [6]. There, the user must first specify two sets
of binary propositions. One set represents the information
the robot gathers through its sensors and communication
channels and the other represents the state of the robot
that is under its control, including location, actions and
transmissions. For the E-stop example we define four discrete
propositions. The sensor, or in this case transmitted, variables
are {Enable, Run} 1. The automaton’s outputs to be used
by the robot’s main controller are {Stop, ShutDown}. Once
the propositions are defined the user can then proceed to
describe the required behavior using structure English. These
instructions are then automatically translated into a Linear
Temporal Logic formula ϕ.

1Since Disable/Enable and Run/Pause are binary switches we only require
one proposition for each switch. Thus Disable = ¬Enable and Pause =
¬Run where ¬ is the logical connective ‘NOT’



• “Environment starts with true, Robot starts with false”
• “Do ShutDown if and only if you are not sensing
Enable”
• “Do Stop if and only if you are sensing Enable and you
are not sensing Run or you are not sensing Enable”
We assume that the initial state is such that the E-stop is
Enable and Run therefore the robot’s propositions Stop and
ShutDown are both false. The desired behavior states that
the robot must be shut down if and only if the E-stop is
in Disable mode and it must stop whenever E-stop is in
Enable and Pause state or it is in Disable. Note that in this
specification the automaton issues a Stop command together
with the ShutDown when the E-stop is in Disable mode.
We omit the generated LTL formula ϕ.

The next two steps, i.e. the synthesis of the automaton
and creation of the hybrid controller, follows the work in
[7]. The synthesis algorithm generates an automaton A that
implements the desired behavior, if this behavior can be
achieved. Every execution of the automaton, based on the
sensor information, is guaranteed to satisfy the desired robot
behavior as long as the environment satisfies the assumptions
we encoded in ϕ. The automaton can be non-deterministic,
and is not necessarily unique, i.e. there could be a different
automaton that satisfies ϕ as well.

The automaton for the E-stop example is shown in Fig. 3.
The circles represent the automaton states and the proposi-

Fig. 3: Synthesized automaton for the E-stop example
tions that are written inside each circle are the robot propo-
sitions’ truth value in that state. The edges are labeled with
the sensor propositions’ values that enable that transition,
for example a transition labeled with Enable,¬Run can be
taken only if the E-stop switches are in Enable and Pause
modes. A run of this automaton would start at the top most
state. In this state the robot should not stop and not shutdown.
At every time step, depending on Enable and Run, the
values of Stop and ShutDown may change.

An automaton implementing the desired behavior for this
simple example can be easily written by hand. Furthermore,
it would probably be smaller, having only three states (com-
bining the left most and right most states in Fig. 3 into one).
However, as the number of propositions grows and as the
specification becomes more complex writing such automata
becomes cumbersome, time consuming and error prone. The
strength of the method described here is that it generates
a correct automaton whenever possible and alerts the user
whenever a desired behavior cannot be achieved.

In general, the final step is to construct the hybrid con-
troller that is used to drive the robot and control its actions

continuously. This controller executes the discrete automaton
in a continuous manner by composing simple controllers
based on the information that is gathered by the sensors. In
the E-stop example, since the required output signals Stop
and ShutDown are discrete by nature, a hybrid control is
not implemented. In section IV-B we discuss the creation of
the hybrid controller that generates continuous trajectories
and behaviors for the robot in more detail.

IV. THE SYNTHESIZED SYSTEM

In this section we elaborate on the specifications used to
generate the Urban Challenge automata. While the whole
planning and control subsystem can be created as one very
large hybrid controller, we created two subsystems as de-
picted in Fig. 4. The first subsystem is a discrete automaton

Fig. 4: Synthesized planning and control system

(much like the behavior FSM) that captures the road behavior
based on the sensor information that is gathered by the
sensor processing modules. It is used to detect hazardous
conditions that require the vehicle to stop, to recognize
blocked roads and to determine behavior at intersections.
The second subsystem is a hybrid controller that drives the
vehicle such that it satisfies its mission while taking into
account obstacles and blockages.

A. Subsystem I - Traffic Behavior
This subsystem is designed to alert the driving control to

situations in which it must stop the car and to situations
in which the road or lane is blocked. In order to keep it
small and easier to specify, we define 3 separate intercon-
nected automata that capture all the desired behaviors. These
automata include the E-stop automaton of Section III, an
automaton that deals with intersection behavior, or “right of
way” and finally one that deals with obstacles, determines
blockages and sends inputs to the driving control described
in Section IV-B. In the following, we define input and output
propositions together with required behavior for both the
intersection and the obstacle automata.

1) Intersection Automaton:
: The sensor information is given through these binary input
propositions: intersection (The robot is at an intersection),
leftOcc, rightOcc, frontOcc (Lanes from Left/Right/Front
in the intersection are occupied. This is used to determine
the whether the car should stop at an intersection), left-
Moved, rightMoved, frontMoved (Vehicle coming from the
Left/Right/Front has moved into and cleared the intersec-
tion). The output propositions describing the robot state as



controlled by this automaton are: interOcc (The intersection
is not free, the robot does not have right of way), leftClear,
rightClear, frontClear (Lanes from Left/Right/Front in the
intersection are clear and the robot can move. The specifica-
tions regarding these propositions will determine the robot’s
behavior in an intersection.

The behavior of these outputs together with the assump-
tions we make about the environment, i.e. the input signals,
are captured in the structured English specification below.
Sentences 1 and 4 specify what happens initially, when the
automaton starts executing. We assume that if the robot is
not at an intersection the lanes cannot be occupied and that if
a lane was not occupied in the previous time step, a vehicle
cannot move in that direction in the current step (items 2,3).
These assumptions are not necessary for the correct behavior
of the robot, they are used here to demonstrate the possibility
of such assumptions and to reduce the size of the generated
automaton. Note that while they are not necessary, once
specified the inputs must obey these assumptions in order
for the automaton to behave correctly [3].

Sentences 4 to 9 specify how the outputs should behave.
The output interOcc is set whenever a direction is not
considered clear (item 5). Items 6 to 10 specify under what
conditions a direction is considered clear. All directions are
clear if not at an intersection (item 6), if a vehicle has moved
(item 7) or if when arriving at an intersection the direction
is clear (item 10). A direction is not clear if it wasn’t clear
before and no vehicle moved in that direction (item 8) or if
arriving at an intersection and a vehicle is already there (item
9). This behavior assumes all intersections are all-way stops
and that the right of way is given only to the first vehicle
in each direction that arrived at the intersection before the
robot did.
1) “Environment starts with false”
2) “If you did not sense intersection then always not
leftOcc” - same for right and front
3) “If you did not sense leftOcc then always not
leftMoved” - same for right and front
4) “Robot starts with not interOcc and leftClear and
rightClear and frontClear”
5) “Do not interOcc if and only if you are activating
leftClear and you are activating rightClear and you are
activating frontClear”
6) “If you are not sensing intersection then do leftClear
and rightClear and frontClear”
7) “If you are sensing leftMoved then do leftClear” -
same for right and front
8) “If you are sensing intersection and you did not activate
leftClear and you are not sensing leftMoved then do not
leftClear” - same for right and front
9) “If you did not sense intersection and you are sensing
intersection and you are sensing leftOcc then do not
leftClear” - same for right and front
10) “If you did not sense intersection and you are sensing
intersection and you are not sensing leftOcc then do
leftClear” - same for right and front
An automaton implementing the specification takes a few
seconds to compute and has 134 states.

Using this approach, it is very easy and fast to adjust
the desired behavior of the robot, add inputs and change
the outputs as opposed to hand coded automata. If, for

example, we want to implement a right-timid driver that
only enters an intersection when its his turn and there are no
cars waiting on his right, we can omit the input propositions
rightMoved and the robot propositions rightClear, remove
specifications 3,6-9 for rightMoved, adjust 4 and change
specifications 5 to have ¬rightOcc instead of rightClear.

We can easily encode more complex behaviors such as
requiring the robot to always give right of way to two cars
coming from the right and never to cars coming from the
left, or always wait a few seconds before moving by adding
an external timer. Other traffic behaviors might require extra
inputs such as intersection type (all-way stop or merging into
a highway), other vehicle signaling lights or more detailed
outputs such as slow down, speed up or honk the horn. Such
changes can come up during system development and this
method can facilitate and expedite the process of generating
the controller.

2) Obstacle Automaton:
: This subsystem is designed to alert the driving control to
situations in which it must stop the car and to situations in
which the road or lane is blocked. The input propositions
for this automaton capture both sensor information and the
state determined by the E-stop and intersection automata:
stop (The vehicle received a stop command from the E-
stop system. This input is the Stop output of the automaton
described in section III), obstacle (There is an obstacle in
the way), interOcc (The vehicle is at an intersection and
doesn’t have right of way. This input is the interOcc output
of the intersection automaton of section IV-A.1), timerUp
(A timer has timed up; This is used to decide when the
lane is blocked rather than temporarily obstructed). The
output propositions are: hazard (The vehicle should take into
consideration that there is a hazard, either an obstacle in the
lane, someone else’s turn at an intersection or an E-stop was
issued), blocked (The current lane is blocked), startTimer,
resetTimer (Set and reset a timer to determine when an
obstacle is considered a lane block).

This automaton sets and resets an external timer to mea-
sure the time that elapsed since encountering an obstacle
thus determining whether the obstacle is a blocked road. It
also activates the hazard and blocked outputs based on the
timer and the other inputs. The detailed specifications for
this automaton are omitted due to space.

B. Subsystem II - Driving control
The second subsystem takes as input the hazard and

blocked outputs of the first subsystem and data structures
that were created by parsing the RNDF and the MDF files
and outputs continuous velocity, steering and signaling com-
mands. This subsystem is a hybrid controller that executes
a discrete automaton by composing atomic controllers based
on the inputs it receives. We first describe the creation of
the discrete automaton and then we give a brief overview of
how the hybrid controller is created and executed.

1) Automaton
: The input propositions for the discrete automaton are
hazard and blocked. The outputs are signalL, signalR that
are true whenever the left or right signal lights need to be
turned on, stop, stopSign indicating that the controller must
cause the car to stop, either until a hazard has cleared or
momentarily at a stop sign. Another output is waypoint



which is a binary vector encoding the next waypoint that
needs to be reached.

The synthesis algorithm basically solves a game between
the environment and the robot [10], [7]. In the game the
environment acts as an adversary and only if the robot can
satisfy its goals no matter what the environment does, an
automaton is extracted. For this automaton the goal is to
reach a sequence of checkpoints while negotiating hazards
and blockages. We make no assumptions on the behavior of
hazard therefor we state the goal to be “reach a checkpoint
or stop” (see item 11 below). However, if we make no
assumptions on blocked the environment can prevent us from
reaching our goal simply by blocking all lanes leading to the
checkpoint. This may cause the robot to move in a loop while
never reaching its goals and therefor the synthesis algorithm
will terminate with a message that the specification cannot be
satisfied and an automaton will not be created. To avoid this
problem we assume that at some unspecified point in time,
there will be no more blocks. To encode that we define a
dummy input endBlocked that when set to true guarantees
that no more blocks will occur and we also assume that
eventually this new input will become true (items 2-4). These
assumptions prohibit the environment from always blocking
the way to the checkpoints which is an assumption true
for the real challenge as well since a mission cannot be
completed if any checkpoint is not accessible.

Furthermore, the synthesis algorithm generates an in-
finitely executing automaton meaning that it satisfies its
desired behavior infinitely many times. In this specifications
the goals of the robot are to reach a set of checkpoints so if
the first checkpoint can be reached from the last (creating a
possibly infinite loop of execution) the automaton is created.
However, if the last point is a one way dead end road,
the algorithm will report that the desired behavior cannot
be satisfied. In the NQE there were two types of missions,
repeating and non-repeating. In zone A the mission was to
loop as many times as possible in a set time frame between
two checkpoints. For this mission an automaton was created
that causes the robot to reach these two points repeatedly. To
create an automaton for non-repeating missions we add an
extra robot output missionCounter that keeps track of how
many checkpoints were reached and after all were visited,
the automaton issues a stop command.

The LTL formula ϕ that represents the desired behavior
is created using the structured English interface (items 1-6)
and an automatic tool that transforms the RNDF and MDF
information to the required logical statements (items 7-11).
1) “Environment starts with false” - we assume that initially
hazard and blocked are false
2) “If endBlocked then always endBlocked” - we assume
that once the robot is told that there are no more blocks that
information will not change (this assumption is for technical
reasons, in the actual execution of the automaton this input
will be set to false)
3) “If endBlocked then always not blocked” - we assume
that if the robot is told that there are no more blocks, there
will indeed be no more blocks
4) “Infinitely often endBlocked” - we assume that at some
point we will know that there are no more blocks
5) “Robot starts in initialWaypoint with false” - The robot’s
starting position is captured by initialWaypoint

6) “Do stop if and only if you are sensing hazard”
7) Topology: automatic encoding of the adjacency relation
of the waypoints based on the parsing and preprocessing
of the RNDF file. We distinguish two types of links con-
necting pairs of waypoints, regular links and “escape” links
needed to avoid a block (these links either change a lane
or perform a U-turn). The desired behavior is to use the
regular lanes whenever possible and only use the escape
links when a block is detected. Therefore the statements
added to ϕ are of the form: If you were in waypointi then
always waypointi or (regularSuccessor and not blocked)
or (escapeSuccessor and blocked)
8) Signal lights: First, the set of links that connect two
waypoints using a turn is determined. Then, for both
signalL and signalR, based on the turn, the statement
added is: “Do signalL if and only if (you were in
waypointsource1 and you are in waypointtarget1 ) or (you
were in waypointsource2 and you are in waypointtarget2 )
or ... ” for all source/target waypoints of the relevant links.
9) Stop signs: Waypoints that are specified in the RNDF
as locations with a stop sign are found and the correspond-
ing statement is “Do stopSign if and only if you are in
(stopWaypoint1 or stopWaypoint2 or ...)”
10) Mission counter: This binary vector is only added
in non-repeating missions. The robot initialization sets this
vector to zero, meaning that no checkpoint has been reached.
After reaching the next checkpoint the counter is incremented
and once the last checkpoint is reached the automaton issues
a stop output.
11) MDF Checkpoints: for every waypoint that corresponds
to a checkpoint in the MDF we add the sentence: “Go to
waypoint or stop”. If we had not added the stop proposition,
the synthesis algorithm would have told us that the desired
is not realizable since there are no assumptions about the
behavior of the hazard input, which causes the robot to
stop, thus it could be always true preventing the robot from
moving to its goals. Furthermore, for non-repeating missions,
after reaching the final checkpoint the robot is stopped.

This automaton uses the fine grained waypoints to define
the current and next location of the robot. If a smaller
automaton is desired, the lanes and zones can be defined
instead for the robot’s location. For the NQE example, the
RNDF included 53 lanes in 41 segments and 3 zones while
defining 405 waypoints.

The automatically created automaton that satisfies the
above specifications can be large in size, however it contains
all contingency plans. If any road is blocked or any lane
occupied, there is no need to replan online for a different
route since all these route are already encoded as an execu-
tion path in the automaton and can be chosen based on the
inputs received in that situation.

2) Hybrid Controller
: In order to get continuous commands for the robot’s
actuators, the discrete automaton needs to be converted into
a hybrid controller. This is done by using a set of atomic
controllers that are able to either stop the robot, take it
from one waypoint to an adjacent one or drive it from one
waypoint to the next and then stop it. Such controllers can
be either feedback controllers [3], [9] or sampling based
controllers [2], [8] where the next waypoint serves as the
goal and the road as the constraints.



A continuous execution of the synthesized automaton be-
gins in the initial state defined by the initial waypoint (robot’s
starting position). At each time step, the values of hazard
and blocked are evaluated. Based on these inputs, all possible
successor states (states whose edge labels correspond to the
value of the inputs) are determined. A discrete transition in
the automaton is taken in two cases. Either the robot has
reached the waypoint in one of the successors states or there
exists a successor state with the same waypoint as the current
state. If in the new current state a stop is set, a controller
stopping the robot is activated. If no transition was made, a
successor state is chosen and a controller driving the robot
from the current waypoint to the waypoint in the chosen
successor is activated. If in the successor state stopSign is
set, the controller will cause the robot to stop when arriving
at the successor waypoint.

V. SIMULATIONS

The approach described in this paper is demonstrated by
simulations in MATLAB of different traffic scenarios using
the actual RNDF and MDFs of the NQE. For this event, the
RNDF contained 405 waypoints defining three areas, each
of which had at least one MDF associated with it.

Since the focus of this paper is the planning and hybrid
control rather than the controllers driving the robot from
one waypoint to the next, the robot is simulated as a
fully actuated point robot that perfectly tracks the trajectory
connecting two adjacent waypoints. More complex dynamics
can be handled as done in [3], [9]. All behaviors seen in the
following have been generated using the exact same behavior
automaton and driving controller relating to the MDF. The
different behaviors exhibited are due to the different sensor
information gathered in the different scenarios.

In the following figures, the robot is represented as a blue
square whenever it is moving and as a red triangle when it
stops. Waypoints are marked with a blue ‘+’ while waypoints
that have a stop sign are marked with a blue ‘*’. If present,
obstacles are represented by a magenta ‘X’ and other vehicles
by different colored stars.

Figures 5 and 6 depict area A where the mission is to
repeatedly reach the checkpoints marked with red diamonds.
Note that the leftmost waypoint in the middle horizontal road
has a stop sign associated with it. Figure 5 shows snapshots
of the behavior induced by encountering an obstacle and Fig.
6 shows the behavior when a road block is detected.

(a) stopping due to obstacle (b) stopping at stop sign

Fig. 5: Behavior while encountering an obstacle
Figure 7 depicts area C where there are two 4-way stops.

In this area, two other vehicles are driving. The robot arrives
at an intersection shortly after the green car stopped (a) so
it stops until the green car has cleared the intersection and
then resumes its course (b).

(a) stopping due to obstacle (b) taking a different route

Fig. 6: Encountering a blocked road

(a) both cars stop (b) the green car moves

Fig. 7: 4-way stop

VI. CONCLUSIONS

This paper presents an automatic and correct by construc-
tion method for creating the system in charge of planning
and control of a robot competing in the DARPA Urban
Challenge. This approach allows the designer to specify
the robot’s desired behavior by using a set of propositions
and high level instructions rather than hand coding different
automata, thus eliminating errors and reducing development
time. Furthermore, when the robot encounters a blocked road
or lane there is no need to replan the route since all such
contingency plans are included in the automata.

ACKNOWLEDGMENT

The authors thank the Ben Franklin racing team as well
as team Caltech for all their help and insights.

REFERENCES

[1] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas. Symbolic planning and control of robot motion: State of
the art and grand challenges. Robotics and Automation Magazine,
14(1):61–70, 2007.

[2] H. Choset, K. M. Lynch, S. Hutchinson, W. B. G. Kantor, L. E.
Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Algo-
rithms, and Implementations. MIT Press, 2005.

[3] D. C. Conner, H. Kress-Gazit, H. Choset, A. A. Rizzi, and G. J.
Pappas. Valet parking without a valet. In IEEE/RSJ Int’l. Conf. on
Intelligent Robots and Systems, San Diego, CA, October 2007.

[4] DARPA. Urban challenge documentation. available online at
http://www.darpa.mil/grandchallenge/rules.asp.

[5] E. A. Emerson. Temporal and modal logic. In Handbook of theoretical
computer science (vol. B): formal models and semantics, pages 995–
1072. MIT Press, Cambridge, MA, USA, 1990.

[6] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. From structured
english to robot motion. In IEEE/RSJ Int’l. Conf. on Intelligent Robots
and Systems, San Diego, CA, October 2007.

[7] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Where’s waldo?
sensor-based temporal logic motion planning. In IEEE International
Conference on Robotics and Automation, pages 3116–3121, 2007.

[8] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006.

[9] S. R. Lindemann, I. I. Hussein, and S. M. LaValle. Realtime feedback
control for nonholonomic mobile robots with obstacles. In IEEE
Conference on Decision and Control, San Diego, CA, 2006.

[10] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of Reactive(1) Designs.
In VMCAI, pages 364–380, Charleston, SC, Jenuary 2006.


