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Abstract

A great challenge for modern systems theory is the de-
sign of controllers for continuous systems but with log-
ical specifications. In this paper, we are interested in
developing algorithmic methods which given a discrete-
time controllable linear system and a discrete specifica-
tion (in the form of a finite transition system or a tem-
poral logic formula), automatically design controllers
resulting in desired, closed-loop behavior. This can
be achieved using a natural approach involving three
steps. In the first step, given a controllable linear sys-
tem and discrete specification, we extract a finite tran-
sition system model which is equivalent (bisimilar) to
the continuous system. The second step solves the con-
troller synthesis problem for finite transition systems
using well known and well developed algorithms. The
third step, which is the focus of this paper, refines the
discrete controller of the finite transition system, to
a (necessarily) hybrid controller for the original con-
tinuous system. The hybrid controller composed with
the continuous plant results in a closed-loop hybrid sys-
tem that, by construction, satisfies the desired, discrete
specification.

1 Introduction

The invasion of computation and networking inside
physical devices has resulted in great challenges for
modern and future systems and control theory. Im-
proved understanding and reliable design tools for soft-
ware controlled systems remain elusive. The greatest
technical challenge for our community is understand-
ing the relationship, and mapping properties between
the continuous world of control systems, and the dis-
crete world of (programming) languages, automata,
and logic.

The above problems very frequently arise when one
would like to design a controller for a continuous system
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but with discrete or logical specifications. Consider, for
example, the controllable discrete-time system

Σ : x(t + 1) = Ax(t) + Bu(t)

where the desired specification is neither traditional
controllability nor stabilizability objectives, but rather
a (linear) temporal logic formula φ, such as

φ : 2 (o1 =⇒ 35 o2 ∨ (3 o3))

where o1, o2, o3 are symbols representing regions of
the state space of Σ (for example o1 could denote the
set (x1 < −5 ∧ x2 < −3)), 2 means always, 3 means
eventually, and 35 means within five time steps. The
desired specification for our example is : it is always
the case that if the system visits region o1 then either
the system goes to o2 within five steps, or, otherwise,
must eventually go to region o3.

Note that the specification captures both desired con-
tinuous behavior but also desired discrete logic. There-
fore, controller design for this problem includes design-
ing the software logic in addition to designing the con-
tinuous control. Furthermore, note that any controller
for the above problem must have at least one bit of
memory in order to know whether o1 has been visited
or not. Our goal is to develop algorithmic methods
that design controllers for linear systems with respect
to temporal logic specifications.

In the computer science community it is well known
how to algorithmically translate temporal logic formu-
las to finite transition systems [16]. We therefore con-
sider the equivalent problem of designing controllers
for control system Σ for specifications modeled as fi-
nite transition systems. Our approach involves three
steps. In the first step (which is the focus of [15]),
given controllable system Σ and an observation map,
sending continuous states into a finite set of symbols
O = {o1, . . . op}, we construct a finite transition system
that is bisimilar to the continuous system. Therefore
both the controllable system and the discrete transition
system can generate exactly the same sequences of sym-
bols. In the second step, we can use existing methods



and algorithms ([8, 10, 5]) for temporal logic synthesis
of finite transition systems. The third step of the ap-
proach, which is the focus of this paper, is concerned
with mapping the controller designed for the discrete
transition system, to a controller for the original con-
tinuous system. If the specification is not memoryless,
then the controller is necessarily a hybrid system speci-
fying continuous (control) as well as discrete (software,
switching logic) information. Furthermore, we show
that the hybrid controller composed with the original
system indeed satisfy the the desired discrete specifica-
tion, which is our overall goal.

Related literature: Controller synthesis using logic
is described in [12] however, logic is not used as a spec-
ification mechanism but rather to motivate the devel-
opment of the synthesis procedures as well as to prove
several facts regarding the proposed algorithms. Other
synthesis techniques for continuous or hybrid systems
with discrete specifications include supervisory control
based on approximate finite abstractions [3], invariants
for the continuous dynamics [14], convexity properties
of affine systems [6], game theoretic approaches [7], and
mixed integer linear programming [1]. Language based
descriptions of motion have also been considered result-
ing in motion description languages [2, 9, 4].

2 Transition Systems

Transition systems, which we now define, will be the
main modeling tool in this paper.

Definition 2.1 A transition system with observations
is a tuple T = (Q,Q0,−→, O, H), where:

• Q is a (possibly infinite) set of states,

• Q0 ⊆ Q is a set of initial states,

• −→⊆ Q×Q is a transition relation,

• O is a (possibly infinite) set of observations,

• H : Q → O is a map assigning to each q ∈ Q an
observation H(q) ∈ O.

We say that T is finite when both Q and O are finite,
and infinite otherwise. We will usually denote a pair
(q, q′) ∈−→ by q −→ q′. The Post operator returns
all the states that are one step reachable from a given
state, formally we have:

Post(q) = {q′ ∈ Q : q −→ q′}
Linear systems can be seen as generating infinite tran-
sition systems. Given the discrete-time linear system

Σ : x(t + 1) = Ax(t) + Bu(t)

we can define transition system

TΣ = (Rn,Rn,−→Σ, O,HΣ) (2.1)

where Q = Q0 = Rn, the state space, and the tran-
sition relation is defined as x −→Σ x′ iff there exists
input u ∈ Rm such that x′ = Ax + Bu. The tran-
sition system therefore captures the state dynamics
of Σ, without maintaining the input which produced
them. Therefore, TΣ is a slightly more (control) ab-
stract model than Σ. In order to complete the def-
inition of transition system we must also specify the
observation map HΣ and O. The correct choice of O
and HΣ is one of the factors enabling the refinement of
discrete to hybrid controllers.

Transition systems, with possibly different number of
states, can be related by so-called simulation and bisim-
ulation relations. Given a relation R ⊆ Q1 × Q2 we
denote by R(Q1) the image of Q1, that is

R(Q1) = {q2 ∈ Q2 | ∃q1 ∈ Q1 with (q1, q2) ∈ R}

and by R−1 we denote the inverse relation defined by:

R−1 = {(q2, q1) ∈ Q2 ×Q1 : (q1, q2) ∈ R}

Definition 2.2 Let T1 = (Q1, Q
0
1,−→1, O, H1) and

T2 = (Q2, Q
0
2,−→2, O, H2) be transition systems and

let R ⊆ Q1 × Q2 be a relation. Relation R is called a
simulation relation from T1 to T2 if R(Q0

1) ⊆ Q0
2, and

(q1, q2) ∈ R implies:

• if q1 −→1 q′1, then there exists q′2 ∈ Q2 such that
q2 −→2 q′2 and (q′1, q

′
2) ∈ R,

• H(q1) = H(q2).

Relation R is a bisimulation relation between T1 and
T2 if R is a simulation relation from T1 to T2 and R−1

is a simulation relation from T2 to T1.

Note that, in Definition 2.2, we require the observation
spaces of T1 and T2 to be the same. If T1 is a transition
system with state set Q1, then transition system T2

with state set Q2 ⊆ Q1 is called a subtransition system
(or subsystem) of T1 if T1 simulates T2 with respect to
the inclusion map i : Q2 −→ Q1, that is, the relation
R = {(q2, q1) ∈ Q2 × Q1 | q1 = i(q2)} is a simulation
relation.

We now define a composition operator for the class
of transition systems that we consider in this paper.
In particular, we consider a composition operator that
synchronizes the transition systems based on their re-
spective observations.



Definition 2.3 Let T1 = (Q1, Q
0
1,−→1, O,H1) and

T2 = (Q2, Q
0
2,−→2, O,H2) be two transition systems

with the same observation set O. The parallel com-
position of T1 and T2 (with output synchronization) is
denoted by

T1 ‖O T2 = (Q,Q0,−→, O,H)

where

• Q =
{
(q1, q2) ∈ Q1 ×Q2 : H1(q1) = H2(q2)

}
;

• Q0 =
{
(q1, q2) ∈ Q0

1 ×Q0
2 : H1(q1) = H2(q2)

}
;

• (q1, q2) −→ (q′1, q
′
2) for (q1, q2), (q′1, q

′
2) ∈ Q iff

q1 −→1 q′1 and q2 −→2 q′2;

• H(q1, q2) = H1(q1) = H2(q2).

Our controller synthesis problem is the following :
Given continuous plant Σ, its corresponding infinite
transition system TΣ, and discrete specification TS , de-
sign controller TC such that TC ‖O TΣ is simulated
by the specification TS . Therefore the closed loop be-
havior is captured by the desirable behavior. This is
performed in three steps. In the first step, described
in Section 3, given a continuous linear system Σ we
show how to extract a finite transition system T∆ that
is bisimilar to TΣ. The second step, described in Sec-
tion 4, we show that controllers for T∆ exist if and only
if controllers for TΣ exist. Finally, in Section 5, we show
how to construct the closed loop system for TΣ, given
designed discrete controllers for T∆.

3 From the continuous to the discrete

In this section, we summarize the results obtained
in [15], which are utilized in this paper. Consider a
discrete time controllable linear system:

Σ : x(t + 1) = Ax(t) + Bu(t)

Controllability guarantees the existence of a feedback
transformation:

[
y
v

]
= U

[
x
u

]
=

[
F 0n×m

G H

] [
x
u

]
(3.1)

transforming system Σ into Brunovsky normal
form [13]. This transformation incorporates important
system information that will be used in this section as
well as in Section 5. Associated with Σ is the infinite
transition system TΣ described in (2.1):

TΓ = (Rn,Rn,−→Σ, O, HΣ)

To obtain a finite bisimulation of TΣ we consider a finite
set of observations O. Observations will correspond

to subsets of Rn defined by boolean combinations of
predicates of the form:

fx + c ∼ 0 (3.2)

where f is a row of matrix F , c ∈ Q and∼∈ {<,≤, =,≥
, >}. Given p such predicates we define the observation
space to be {0, 1}p and the observation map as:

HΣ(x) =




HΣ1(x)
HΣ2(x)

...
HΣp(x)


 HΣi =

{
1 if fix + ci ∼i 0
0 if otherwise

(3.3)
The vector HΣ(x) will then have a 1 at position i when
state x satisfies the predicate fix + ci ∼i 0 and a 0
otherwise. The main result of [15] can now be stated
as follows:

Theorem 3.1 ([15]) Let Σ be a discrete time control-
lable linear system and TΣ its associated infinite tran-
sition system with observation space O = {0, 1}p and
observation map as defined in (3.3). Then, there exists
an effectively computable finite transition system T∆,
bisimilar to TΣ.

The bisimulation relation between TΣ and T∆ is in fact
defined by a map π : Rn → Q∆, that is R = {(x, q) ∈
Rn × Q∆ : π(x) = q}. More details regarding the
construction of relation R and transition system T∆

can be found in [15].

In this paper, we are interested in designing controllers
for TΣ, where the desired specification is modeled
by a finite transition system with observation space
O = {0, 1}p. Such transition systems can be transla-
tions of temporal logic formulas, such as LTL (see [16])
formulas, or they can be high level specifications for
the desired closed loop behavior expressed directly in
transition system form. We denote such a specification
transition system by TS and we will assume that the
observation space of TS is the observation space of the
plant.

4 Discrete Controllers

A controller forcing our discrete model T∆ to satisfy
the specification given by TS can now be defined.

Definition 4.1 (Discrete Controller) Let T∆ be
the transition system described in Theorem 3.1, and
let TS be a transition system with the same observation
space, modeling the desired specification.



A controller for T∆, denoted by TC , is a subtransition
system of TS ‖O T∆, that is, TS ‖O T∆ is a simulation
of TC with respect to the inclusion map.

We now show in what sense TC can be seen as a con-
troller.

Proposition 4.2 Transition system TS is a simula-
tion of transition system TC ‖O T∆.

The existence of a simulation from TC ‖O T∆ to TS

implies that the observed behavior of TC ‖O T∆ is in-
cluded in the observed behavior of the specification.
We also note that we can choose our controller to be
TC = TS ‖O T∆, however TS ‖O T∆ may fail to sat-
isfy certain important properties usually required by
a controller, such as nonblocking for example. Such a
drawback can be incorporated in the control design by
selecting a subtransition system of TS ‖O T∆ with the
desired (say nonblocking) properties. Proposition 4.2
is a consequence of the following two lemmas:

Lemma 4.3 Transition system TC is bisimilar to tran-
sition system TC ‖O T∆.

Proof: Consider the relation R ⊆ (QS×Q∆)×((QS×
Q∆) × Q) defined by ((qS , q∆, ), ((q′S , q′∆), q′′∆) ∈ R iff
q∆ = q′∆ = q′′∆ and qS = q′S . We first show that TC ‖O

T∆ simulates TC . Assume that (qS , q∆) −→C (q′S , q′∆)
and note that this implies q∆ −→∆ q′∆. Consider now
any state R-related to (qS , q∆). By definition of R,
such state is of the form ((qS , q∆), q∆) and by defini-
tion of parallel composition, we have that (qS , q∆) ∈
QC ⇒ HC(qS , q∆) = H∆(q∆) = H‖O

((qS , q∆), q∆).
Similarly HC(q′S , q′∆) = H∆(q′∆) = H‖O

((q′S , q′∆), q′∆)
holds. These equalities between observation maps com-
bined with (qS , q∆) −→C (q′S , q′∆) and q∆ −→∆ q′∆ now
imply that ((qS , q∆), q∆) −→‖O

((q′S , q′∆), q′∆) which
shows that TC ‖O T∆ simulates TC .

Conversely, lets assume that ((qS , q∆), q∆) −→‖O

((q′S , q′∆), q′∆). Such transition implies that
(qS , q∆) −→C (q′S , q′∆) and since any state R-
related to ((qS , q∆), q∆) is of the form (qS , q∆) we only
need to show that H‖O

((qS , q∆), q∆) = HC(qS , q∆)
and H‖O

((q′S , q′∆), q′∆) = HC(q′S , q′∆) to conclude that
TC simulates TC ‖O T∆. However this immediately
follows from the definition of parallel composition with
output synchronization.

Lemma 4.4 Transition system TS simulates transi-
tion system TC .

Proof: The proof follows the same argument as
the proof of Lemma 4.3 once one considers the relation
R ⊆ QC ×QS defined by (qC , q′S) = ((qS , q∆), q′S) ∈ R
iff qS = q′S .

We now show that a controller TC for T∆ exists if and
only if a controller T ′C for TΣ exists. This is a conse-
quence of the existence of a bisimulation relation be-
tween TΣ and T∆.

Theorem 4.5 A controller TC forcing system T∆ to
satisfy specification TS exists iff there exists a controller
T ′C forcing system TΣ to satisfy specification TS. Fur-
thermore, we can take TC = T ′C .

This theorem is a simple consequence of the follow-
ing well know property of bisimulations and Proposi-
tion 4.2.

Proposition 4.6 (Adapted from [11]) Let T1 and
T2 be transition systems with the same observation
space. If T1 is bisimilar to T2 then, for any transition
system T with the same observation space, T ‖O T1 is
bisimilar to T ‖O T2.

The proof of Theorem 4.5 is now a simple application of
the previous proposition. Given transition systems T1

and T2, we denote by T1
∼= T2 the existence of bisimula-

tion relation between T1 and T2. We now have TΣ
∼= T∆

from which follows TC ‖O TΣ
∼= TC ‖O T∆ by Propo-

sition 4.6. Now since TS simulates TC ‖O T∆ it also
simulates TC ‖O TΣ which shows that TC is a controller
for TΣ.

Existence of controllers is therefore ensured, however
TC is an abstract (discrete) description of our con-
troller. In the next section we refine our controller from
the discrete system T∆ to the continuous system TΣ.

5 From the discrete to the continuous

Given any controller TC , we now construct a (discrete-
time) hybrid control system H based on Σ and TC

such that the transition system TH associated with
H is bisimilar to TC ‖O TΣ. We start by character-
izing the set of inputs for the linear system Σ asso-
ciated with a given transition in T∆. We denote by
[q] the set of all points x ∈ Rn such that π(x) = q
(the map π defines the bisimulation relation between
TΣ and T∆ as discussed in Section 3). This set is de-
fined by boolean combinations of predicates of the form
φi = fix + ci ∼i 0, i ∈ I. The predicates φi and the
map Ξ defined by

Ξ(φi) = True



when i /∈ {k1, k1 + k2, . . . , k1 + k2 + . . . + kr} and

Ξ(φi) = gjx + hju + ci ∼i 0

when i = k1 +k2 + . . .+kj and where gj and hj are the
rows of matrices G and H defined in (3.1), respectively,
will be instrumental in stating the next result:

Proposition 5.1 Let T∆ be the finite bisimilar quo-
tient of transition system TΣ associated with a dis-
crete time controllable linear system Σ = (A,B). If
q∆ −→∆ q′∆ in T∆ and [q′∆] is defined by:

[q′∆] =
{

x ∈ Rn :
∨

r∈R

∧

s∈Sr

φrs(x)
}

(5.1)

then, the inclusion Ax + Bu ∈ [q′∆] is satisfied for any
x ∈ [q∆] iff (x, u) ∈ A(q∆, q′∆) with A defined by:

A(q∆, q′∆) =
{

(x, u) ∈ [q∆]×Rm :
∨

r∈R

∧

s∈Sr

Ξ(φrs)(x, u)
}

(5.2)

Proof: Assume, without loss of generality, that Σ has
been transformed into Brunovsky normal form. From
q∆ −→∆ q′∆ and bisimilarity between T∆ and TΣ fol-
lows that any y ∈ [q∆] satisfies:

y −→Σ y′ ∈ [q′∆] (5.3)

Furthermore, from the Brunovsky form of Σ, (5.3)
holds iff the inputs v satisfy:

vj = y′k1+k2+...+kj
(5.4)

for j = 1, 2, . . . , m. Since y′ ∈ [q′∆], y′ satisfies the
predicates in (5.1) and from (5.4) we conclude that v
satisfies all the predicates φrs defining [q′∆] such that
φrs = y′k1+k2+...+kj

+ c ∼ 0. Noting that the trans-
formed inputs v are obtained from the original states
x and inputs u by v = Gx + Hu we immediately see
that:

y′k1+k2+...+kj
+ c = vj + c

= wjv + c

= wj(Gx + Hu) + c

= wjGx + wjHu + c

= gjx + hju + c

where wj is the row vector with a 1 on position j and
zeros elsewhere. We thus see that for any x ∈ [q∆] we
have that Ax + Bu ∈ [q′∆] iff (x, u) ∈ A(q∆, q′∆).

Having identified the set of inputs associated with any
transition in T∆, we can control Σ by restricting its
inputs. Such restriction is captured in the following
hybrid closed loop model:

Definition 5.2 Given a controllable discrete-time
linear system Σ = (A,B) and a controller
TC = (QC , Q0

C ,−→C , O, HC), the implementation of
TC ‖O TΣ is given by the hybrid closed loop system H
defined by:

x(t + 1) = Ax(t) + Bu(t)

(x(t), u(t)) ∈ Â(qC(t))
qC(t + 1) ∈ H−1

C ◦HΣ(x(t + 1))

where

Â(qC(t)) =
⋃

q′C∈Post(qC(t))

A(
π∆(qC(t)), π∆(q′C)

)

and π∆ : QS×Q∆ → Q∆ is the natural projection from
QS ×Q∆ to Q∆.

Associated to hybrid system H is the transition system
TH = (QH , Q0

H ,−→H ,HH , O) defined by:

• QH = QC × Rn;

• Q0
H = {(q, x) ∈ Q0

C × Rn : HC(q) = HΣ(x)};
• (qC , x) −→H (q′C , x′) iff x′ = Ax + Bu, (x, u) ∈
Â(qC) and HC(q′) = HΣ(x′).

• HH(qC , x) = HC(qC) = HΣ(x).

Transition system TH allows to show that the closed
loop hybrid system H is in fact an implementation of
the closed loop behavior described by TC ‖O TΣ.

Proposition 5.3 Transition system TH is bisimilar to
TC ‖O TΣ.

Proof: Consider the relation R ⊆ QH × (QS ×
Q∆) defined by (qH , (qS , q∆)) = ((qc

∆, x), (qS , q∆)) =
(((q′S , q′∆), x), (qS , q∆)) ∈ R iff (q′S , q′∆) = (qS , q∆). The
proof now follows the same argument as the proof of
Lemma 4.3.

Proposition 5.3 shows that H constitutes the desired
closed loop system since TC ‖O T∆ being bisimilar to
TH and TC ‖O T∆ satisfying the desired discrete spec-
ification TS implies that TH also satisfies the specifi-
cation. Furthermore, as every step in the construction
of H is effectively computable we have the following
result:

Theorem 5.4 Let Σ be a discrete time controllable
linear system, TΣ its associated transition system with
observation space O = {0, 1}p and observation map as



defined in (3.3) and TS a specification transition sys-
tem. Then, it is decidable to determine if there is a
controller for Σ enforcing the specification TS. Further-
more, when such controller exists, it admits the hybrid
closed loop implementation described by H which is ef-
fectively computable.

Proof: Deciding the existence of a controller for
Σ amounts to determine if the observed behavior of
TS ‖O T∆ is non-empty which is decidable. Further-
more, since H is obtained from TC by enriching the
states of TC with the finite predicates defining Â, H is
also effectively computable.

The previous result summarizes the paper main con-
tributions. Existence of controllers for discrete spec-
ifications can be decided. Furthermore, when a con-
troller exists it admits a hybrid closed loop implemen-
tation that can be obtained in a totally automated fash-
ion. Another important characteristic of the presented
method is the automatic synthesis of both the switch-
ing logic (implemented by software) and the continu-
ous aspects of control. This fact is especially important
since verification of hybrid systems is currently limited
to systems with very simple continuous dynamics such
as timed automata. The proposed approach, thus over-
comes the need for formal verification since the result-
ing system satisfies the specification by design.

6 Discussion

In this paper we have shown how to design controllers
enforcing discrete specifications for discrete time con-
trollable linear systems. The synthesis procedure relied
on the computation of a finite bisimulation of the orig-
inal plant as described in [15]. A finite controller is
first computed for the finite model and subsequently
refined to an hybrid closed loop. The proposed syn-
thesis methodology thus generates the switching logic
stemming from the discrete specification as well as the
continuous inputs that are admissible to steer the sys-
tem while satisfying the specification.

The presented results suggest a framework for the auto-
matic synthesis of controllers for temporal logic specifi-
cations by converting logic formulas into discrete spec-
ifications in the form of transition systems. Further-
more, the algorithmic nature of the approach also sug-
gests the complete automation of controller synthesis
which is currently being investigated by the authors.
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