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Abstract— Verification of continuous systems remains one of
the main obstacles in the safety verification of hybrid systems.
In this paper, by exploiting the structure of linear dynamical
systems, we convert the exact safety verification of linear
systems with certain eigen-structure as an emptiness problem
for a semi-algebraic set. Sum of squares (SOS) decomposition
is then employed to check emptiness of the set defined by
polynomial equalities and inequalities which can be effectively
computed by semidefinite programming.

I. INTRODUCTION

The safety problem for hybrid systems asks whether
trajectories starting from a set of initial states reach a set of
unsafe (final) states. Safety verification of purely discrete
systems is mature [1]. However, verification of continuous
systems remains one of the main obstacles in the safety
verification of hybrid systems. This is a difficult problem
that even for linear systems of the form & = Ax has escaped
analytic solution.

For safety verification, approximate methods over- or
under-approximate the reachable set by using polyhedral,
level-sets, or ellipsoid representations. Given a set of initial
states, reachable sets are computed which rely on opti-
mization techniques combined with numerical methods for
flow-pipe approximations [2], polygonal computations [3],
ellipsoidal calculus [4], and Hamilton-Jacobi equations [5].
A scalable verification method, which provides safety cer-
tificates in realistic computation times, has been developed
for linear systems with polytopic sets of initial and final
states by exploiting linear dynamical system structure and
using geometric programming relaxations [6].

Exact safety verification of linear systems starting in a
semi-algebraic set is possible under certain eigen-structure
conditions [7], [8]. In [9], quantifier elimination techniques
coupled with understanding of linear system eigen-structure
resulted in over-approximating the reachable set for linear
systems with almost arbitrary eigen-structure. In [8], exact
reachable set of linear systems with certain eigen-structure
is computed. Unfortunately, such symbolic computations
rely on expensive quantifier elimination techniques [10].

In this paper, we are interested in exact safety verification
of linear systems. We do not compute the reachable set
as in [8], but we simply provide safety certificates. The
set of initial and final (unsafe) states are considered to be
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semialgebraic sets. We convert the exact safety verification
of linear systems with certain eigen-structure to an empti-
ness of a set defined by polynomial equalities and inequal-
ities. We use recent advances in algebraic optimization, in
particular the sum of squares (SOS) decomposition [11]
for which software tools are available [12]. Using sum of
squares decomposition, Positivstellensatz [13] provides a
characterization of infeasibility certificates for systems of
polynomial equalities and inequalities. Also, it has been
recently shown [11] that Positivstellensatz refutations can be
computed using hierarchies of semidefinite programming,
which promises to be a scalable solution to the exact safety
verification problem. For more general nonlinear system
verification, the method in [14] provides sufficient condi-
tions, whereas the method in this paper provides sufficient
and necessary conditions for more restricted linear systems.
Also, it is shown that the polynomial sets derived in this
paper are good seeds for the discrete abstraction of hybrid
systems [15] with linear dynamics.

II. PROBLEM FORMULATION
In this paper, we consider linear systems of the form,
& = Ax, (1)
where x(t) € R™ is the state at ¢, and A € Q"*" is the

system matrix. Given an initial state o = x(0), the solution
to the differential equation (1) for ¢ > 0 is,

z(t) = ey, 2)

We shall consider sets of initial and final states X, and
X as semialgebraic sets defined as,

Xo={zo €R" | A pi(xo) >0}, 3)
=1
m+k
Xp={eseR"| N pilxp) >0}, @
1=m-+1

where p;(x) are polynomial functions with rational coeffi-
cients.

Given a set of initial states X, the forward and backward
reachable sets of the linear system (1) are defined as,

POSt(A, XQ) = {QTf e R” | It dxg :

t>0 A x0 € XoAzy=etlag} 3)
Pre(A, Xo) = {zy € R | 3t Jxo :
t<0 A x0 € XoAzp=etlag} (6)

Given a set of final or unsafe states Xy, we define the
forward and backward safety predicates as,
1 if Post(A, Xo) N Xy =10
0 otherwise

Safe (4, X0, X7) = { ™



1 if Pre(A, Xo)N Xy =10

0 otherwise ®)

Safe_(A, Xo,Xy) = {
We say Safe(A, Xo, X¢) = 1 if Safe (A4, Xo, Xy) = 1A
Safe_(A, Xy, X5) = 1.
In this paper, we are interested in the following problem,
Problem 2.1: Given a linear system (A, Xy, Xy), deter-
mine if Safe; (A, X9, X¢) =1 and Safe_(A, Xo, X5) = 1.

III. REACHABILITY OF LINEAR SYSTEM WITH
RATIONAL EIGENVALUES

In this section, we consider linear systems with rational
eigenvalues. We first transform the system in modal or
eigen-coordinates.

Assuming the matrix A is diagonalizable, we have A =
T~'AT or A = TAT—! where A € Q"*" is a diagonal
matrix whose diagonal entries are eigenvalues of matrix A
and T € Q™*™ is an invertible transformation matrix de-
fined as T = [ |na] - - - [na]” where 7; are left eigenvectors
of A. If we define a new state vector

z=Tx, € R" 9

and substitute * = T~ 'z into the differential equation
(1), then we obtain the following equivalent differential
equation,

5= Az, (10)

Note that, this is actually transforming the state space
into eigenspace by the transformation (9). The differential
equation (10) in eigenspace has the following solution,

(1)

where \; are the eigenvalues of the system matrix A and
zo = T'zg is the initial state vector. The transformed states
and the sets of initial states and final states in eigen-
coordinates are as follows,

Zi ze)‘itzoi, 1= 17...,’[1,

20 = TSL'(], ZO = {ZO | 20 = Til’(), o € Xo}, (12)

zp=Tay, Zy=A{zp|zp=Tay, xy € X5}, (13)

where zg and z; are the initial and final states in eigenspace,
Zop and Z; are the sets of initial and final states in
eigenspace, o and x ; are the states in the sets X, and X.
Note that, since the transformation matrix 7" is invertible,
given semialgebraic sets Xy and Xy in state space, the
transformed set of initial states Z; and set of final states
Zy in eigenspace are also semialgebraic in the form,

Zy = {20 €R" |\ pzilz0) > 0},

(14)
=1
m+k

Zy={zreR"| N pulzp) 20}, (15
i=m-+1

where p.;(z) are polynomial functions with rational coeffi-
cients. Therefore, we verify the system (A, Zy, Z;) in modal
coordinates which is equivalent to verifying the system
(A, Xo, X ) in original coordinates.

Theorem 3.1: Given a diagonalizable linear system
(A, Xo, X ) with rational eigenvalues, the following state-
ments are equivalent,

1) Safey(A, Xy, Xp)=1

2) Safey (A, Zy, Zy) =1

3) The set defined by the following set of polynomial

equalities and inequalities is empty for the system in
modal coordinates,

a2 ,ai11 . ail ,a12 —
251”020 T Zf2 2ol =
a2 . a21 azi ,a22

22 %03 T %3 202

(16)

A R -
pes(zr) = pes(20) >0 (17)
p:i(20) >0 i=1,...,m (18)
P2i(zp) >0 i=m+1,....m+k (19)

where pip(2) = Ai2f + Aozl + -+ 4+ \22,
aﬂ:ﬁ,am:ﬁ,izl,...,n—l (20)
i Ci

A = % are rationals in reduced form, n; € Z, d; € Z,

d= H:izl d;, d € ZJr, s$i = Nd, 8; E 7, c; = ng(Si, Si+1)
and gcd denotes the greatest common divisor.

Proof: (1) < (2): Since the transformation matrix
T is invertible, Safey (A, Xy, Xs) = 1 if and only if
Safey (A, Zy, Zy) = 1.

(2) & (3): A state zy is reachable from z; at some time if
and only if there is a trajectory satisfying the system’s model
defined by (10) passing from both zg and zy. Now, we find
the set of polynomial equalities that uniquely defines all
the possible trajectories of the system defined in (10) with
the solution in (11). For simplicity, we assume \; > 0. For
general case, the proof is similar. We assume that \; = Z—
are in reduced form. We define d = [[|_, d;. By eliminating
the term ed from the solutions in (11), the solutions can be
written as,

(=L

22 Zn

)8283...57,, — (

)sls;;...sn _ .. =
201 202 Z0n

)8182...871,71

(21
where s; = \;d, s; € Z. If we consider the leftmost equality,
we obtain, . .

Slyse (22481
( o )% = ( 202)

(22)

To represent the solutions in (11) equivalently with poly-
nomials, we divide the powers of (22) by ¢; = ged(sq, $2)
which yields,

al2 a1l ayl @12 __
2517 202" — 2y 2017 = 0,

(23)
where ai; and a2 are defined as in (20). Similarly,
considering all the equalities in (21), we can equivalently
represent all the possible trajectories of the system with the
n — 1 polynomial equalities defined by (16). Since these
polynomial equalities are obtained from the solution (11) of
the differential equation (10) , for an initial state zg € R",
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z(t) is a trajectory generated by the linear system if and
only if zp and z(t) satisfy the polynomial equalities (16)
for all t. Therefore, given two states zo and zy, the set of
polynomial equalities (16) is nonempty if and only if there
is a trajectory passing from the states zp and zj.

Note that, in the set of polynomial equalities (16) that
defines the system trajectories, we eliminate time ¢. There-
fore, if the set defined by polynomial equalities is nonempty
for some 2o and zy, we cannot conclude if zy is forward
or backward reachable from z;. We consider the following
polynomial function that is transverse to the trajectories of
the system (10),

1 1 1
pef(z) = 5)\12’% + 5)\223 + -+ 5/\112,21 (24)

The time derivative of the function p; (%) is,

%Q(Z) = A121%1 + AazaZa + -+ Ap2nin

= A%z%—i—)\%zg +~-~+)\izi

When we exclude the origin point !, the time deriva-
tive of p,s(z) is always greater than zero which means
that p;¢(z) always increases with time. In other words,
pef(t1) > pep(t2) if and only if ¢ > to. We know from the
monotonicity of the exponential function that ¢; > ¢9 if and
only if et > e'2. Since the states of the system are also
exponential functions of time, p;;(z(t1)) > pis(2(t2)) if
and only if ¢; > t5. Hence, a state z; is forward reachable
from the initial state zy at some time ¢ > 0 if and only if

pep(zf) — piy(20) > 0. 25)

Therefore, given two states zp and zy, zy is forward
reachable from initial state z; if and only if the polynomial
inequality (25) is satisfied and the set of polynomial equali-
ties (16) is nonempty. Hence, the set defined by polynomial
equalities and inequalities in (16), (17), (18) and (19) is
empty if and only if Safe (A, Zy, Z;) = 1. ]

Remark 3.2: Using similar arguments in the proof, it
is straightforward to show that Safe_(A,Zy,Z;) = 1 if
and only if the set defined by polynomial equalities and
inequalities in (16), (18), (19) and pir(2zf) — prs(20) < 0
is empty.

Remark 3.3: In [15], a qualitative discrete abstraction
method is proposed for hybrid systems whose success cru-
cially depends on the choice of seed polynomial set which is
used to construct abstraction. Abstraction is done by starting
from a set of polynomials and adding the time derivatives
of the polynomials in this set until the set saturates. This
procedure is not guaranteed to terminate. In this sense, the
polynomials in (16) provide useful polynomial seeds for the
abstraction. If we consider the polynomial defined in (23),

p(2) = 2§ 205" — 25 201%, and take the derivative, we get,
= p((1))
dt ged(Ar, Az)

'We exclude the origin in the computations since if initial state is at the
origin, then the state will remain at the origin for all time. Conversely, the
origin is not reachable from any nonzero state in finite time.

Similar analysis can be performed to remaining polynomials
in (16). Adding higher order time derivatives of the poly-
nomials does not produce new polynomials and the seed
polynomial set saturates. Therefore, the set of polynomials
in (16) form a good seed polynomial set for the abstraction.

IV. LINEAR SYSTEMS WITH PURELY IMAGINARY
EIGENVALUES

In this section, we consider linear systems with purely
imaginary eigenvalues which have rational imaginary parts.
In this case, we shall transform the systems in modal coordi-
nates. Assuming the matrix A is diagonalizable, the matrix
A € Q?™*2™ can be decomposed into block diagonal form
by an invertible transformation matrix 7' € Q2™*2™ _If we
define a new state vector z € R™, z = Tz, then we obtain
the equivalent linear system

i=Az (26)

where A = T71AT, and A € Q?™*2™ is a matrix of the
form,
0 -\
] 0

O 0 —An
Am 0
where eigenvalues of A are +i); and A\; € Q. Therefore,
to any complex conjugate eigenvalue pair there exists a 2-
dimensional subspace of the state space.

The differential equations in each 2-dimensional subspace
take the form,

Zoici | | 0 =N 29i-1 i—1 m
Z9; A0 Zop |7 Y

27)

(23)
which has the following solution,
Z2i—1 = COS()\it)Zoygi_l — SiIl()\it)ZQ,Ql'
22i = sin(/\it)zo,gi_l + COS(Ait)ZO,Qi 29)

Theorem 4.1: Given a diagonalizable linear system
(A, Xo, X ) with purely imaginary eigenvalues which have
rational imaginary parts, the following statements are equiv-
alent,

1) Safe(4, Xo,Xyf) =1

2) Safe(A, Zy, Zp) =1

3) The following set defined by polynomial equalities

and inequalities is empty for the system in modal
coordinates,

—zf2i +Yiz0,2i-1 + wizo2; = 0,0 =1,....m
—2f2i—1 + W;20,2i—1 — Yiz0,2i = 0,
w; — fei(w,y) =0,i=1,...,m (30)

Yi — g (w,y) =0,
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wr+y?—1=0,

pzi(ZO)ZOa izla"'am (31)

p2i(zp) >0, i=m+1,.... m+k (32)

where \; = Z— are rationals in reduced form, n; € Z,

d; € Z+, d = H?:l d;, d € Z+, s; = \d,

s; € Z, ¢ = ged(sy, ..., S$p) where ged denotes the

greatest common divisor and f,(z,y) and g, (x,y)
are polynomial functions defined as [8]

= fa(cost,sint), a>1

= ga(cost,sint), a >1

(33)
(34)

cos(at)
sin(at)

Proof: (1) < (2): Since the transformation matrix
T is invertible, Safe(A4,Xo,Xy) = 1 if and only if
Safe(A, Zy, Zy) = 1.

(2) < (3): As in Section III, we find the set defined
by polynomial equalities that uniquely defines the possible
trajectories of the system defined by (26). For simplicity, we
assume \; > 0. For general case, the proof is similar. We as-
sume that \; = % are in reduced form with positive denom-
inators. We define d = H:L:l d; and s; = \;d. If we con-
sider the equalities in (29) for ¢ = 1, 2, we will have terms
cos(A1t), cos(Aat), sin(A1t), sin(Aqt) in the equalities. Us-
ing the change of variables 7 = %, these terms can be equiv-
alently written as cos(s17),cos(sa7),sin(s17),sin(sa7). If
we define w; = cos(%i7) and y; = sin(:7), by denoting
w = cos(7) and y = sin(7) we have,

w; = fu(w,y) (35)
yi =gu(w,y) (36)
Note that, we divide the s; terms by ¢ = ged(s1,...,8n)

to represent the solutions in (29) equivalently with poly-
nomials. By the change of variables w = cos(7) and
y = sin(7), using the trigonometric identity w? + y? = 1
and substituting (35) and (36) into (29), we can equivalently
express the possible trajectories of the system with the set
defined by polynomial equalities in (30).

Since, trajectories of the linear system with purely imag-
inary eigenvalues are periodic, there is no notion of back-
ward and forward reachability, in fact they are equivalent.
Hence, the set defined by polynomial equalities and in-
equalities in (30), (31) and (32) is empty if and only if
Safe(A, Z()7 Zf) =1. |

Remark 4.2: 1f we consider the first polynomial defined
in (30) and take the second derivative, we obtain,

d?*p(=(t
THE) — Nan(e)
Similar to the conclusion in Remark 3.3, the set of polyno-
mials in (30) also form a good seed polynomial set for the
abstraction.

V. LINEAR SYSTEMS WITH NILPOTENT SYSTEM
MATRIX

In this section, we consider linear systems with nilpotent
system matrices. Consider nilpotent system matrix A €

Qm*™ where A" = 0. Using the series for the matrix
exponential, we can write z(t) = e?zy which is the

solution of the differential equation (1) as,

n n—1

() =3

j=1 k=0

n—1
= Z fir(z0)t"”

k=0

th
A )ijToj

(37)

where f € Q" ™ is the matrix whose entry ik is the
coefficient of the polynomial term ¢* of the state x;.

We consider the sets of initial and final states as semial-
gebraic sets defined in (3) and (4).

Theorem 5.1: Given a linear system (A, Xo, Xy) with
nilpotent system matrix A, Safey (A4, X, X;) = 1 if and
only if the following set is empty,

—Tpi + ZZ;S fir(zo)tk =0
pi(xg) >0

) (38)
pi(xf)
t

i=m+1,....m+k

i=1,....,m

AVARAVA

0
0
where f € Qm*™ is the matrix whose entry ik is the
coefficient of the polynomial term t* of the state x ;.
Proof: Trajectories of the system can be written as a set
defined by polynomial equalities in (37). Therefore, given
two states xo and xy, the set in (37) is nonempty if and
only if there is a trajectory passing from the states zy and
zy. Moreover, x ¢ is forward reachable from initial state xg
if and only if £ > 0. Hence, the set in (38) is empty if and
only if Safe; (A, Xo, Xy) = 1. ]
Remark 5.2: 1t is straightforward to show that

Safe_(A, Xy, Xys) = 1 if and only if the set defined
in (38) is empty when the time constraint is —¢ > 0.

VI. SUM OF SQUARES DECOMPOSITION

The results we have so far indicate clearly the importance
of proving set emptiness to verify system safety. Now we
will give a brief outline of a method based on sum of
squares (SOS) decomposition and semidefinite program-
ming for proving that a basic semialgebraic set is empty.
Readers are referred to [11], [12] for more details.

A multivariate polynomial f(x) is a sum of squares if it
can be written as f(z) = Y_*, fZ(x) for some polynomials
fi(z), i =1,...,m. The condition that f(z) =", f(z)
is equivalent to the existence of a positive semidefinite
matrix @ such that f(z) = Z7(x)QZ(x) for some vector
of monomials Z(z). Here we may choose Z(x) to consist
of all monomials whose degrees are at most equal to
deg(f(x))/2. Thus, checking if a polynomial is a sum
of squares amounts to finding ¢ > 0O that at the same
time satisfies the equation above, which is a semidefinite
programming feasibility problem.

For presenting the method that can prove emptiness of
semialgebraic sets, we need the following definitions from
polynomial algebra.
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Definition 6.1: Given a finite set of polynomials {p;(x)},
the ideal 1(p;) generated by {p;(z)} is

I(p;) = {Z a;p; | a; are polynomials for all 4

Definition 6.2.? Given a finite set of polynomials {p;(z)},
the multiplicative monoid generated by {p;(x)}, which is
denoted by M (p;), is the set of finite products of elements
pi, including the empty product (the identity).

The following is an equivalent characterization of a cone
generated by a finite set of polynomials in the polynomial
ring.

Definition 6.3: Given a finite set of polynomials {p;(x)},
the cone generated by {p;(x)}, which is denoted by P(p;),
is

k
Plp)={ a+ ijqj | a,b; are sums of squares,
j=1
gj € M(p;) for j =1,...,k}

All the above definitions are used in the Positivstellen-
satz [13], a central result from real algebraic geometry.
The theorem provides a characterization of infeasibility
certificates for real solutions of systems of polynomial
equalities and inequalities.

Theorem 6.4 (Positivstellensatz): Let f;, g be finite sets
of polynomials in z. Then the following are equivalent:

1) The following set is empty,

{z eR" [ fi(z) =2 0,gr(x) =0, Vi, k}  (39)
2) There exist f € P(f;), g € I(gx) such that
frg+1=0. (40)

It has been recently shown [11] that Positivstellensatz
refutations (i.e., f, g that satisfy (40)) can be computed
using hierarchies of semidefinite programming. The idea
is to choose a degree bound for the polynomials, and
then affinely parameterize a family of candidate f and g.
This converts the problem into a sum of squares feasibility
problem. For example, the software SOSTOOLS [12] can
be used to compute suitable polynomials f and g which
prove that (39) is empty. This provides a hierarchy of safety
certificates for the exact safety verification problem.

VII. ILLUSTRATIVE EXAMPLES
A. Linear Systems with Rational Eigenvalues

Consider the 2-dimensional linear system (A, Xo, X¢),

A= [ - ] Hpwg > hy, Hyzg > ho,  (41)
where ) 4
~3 3 1 -1
— % _% h —2 ho = 2
HpHo=1 7 F= | 4 0 10
10 —6 ~12

and the matrix A has rational eigenvalues A\; = 1 and Ay =
4.

If we transform the linear system (A, Xo,Xy)
into engensanlce by the transformation  matrix
= 3 3, } we have (A, Zy, Zy) as,
3 73
10 . - _
A= 0 4 ) Hfo > hf; HOZO > hOa (42)
where
1 -1 1 —1
o 11| 2| - 2
HpHo=1 =] 4 [ho=| 9
-1 -1 —6 —12

Then, the set defined in (16), (17), (18) and (19) becomes,

21201 + 42)2“2 — 2 — 42,

2;12’02 — zp220y =0
201 — 2zo2 + 1 >0
—201 + 202 — 2 >0
zo1 + 202 — 10 >0
—201 — 202 + 12 >0
zp1 —2p2 — 1 >0
—zp1 + 2p2 + 2 >0
zp1 + 20 — 4 >0
—zf1 — 252+ 6 >0

Performing SOS decomposition test returns that the solution
to above set is empty. Hence Safey (A, Xy, X;) = 1. The
required CPU time for computation is 0.65 seconds.

B. Linear Systems with Purely Imaginary Eigenvalues

Consider the 2-dimensional linear system (A, Xo, X ),

Az[ ’ 1], Hywy > hy, Hovo = hy,  (43)

-9 0
where
3 -1 -1 1
-3 1 2 -2
HpHo=| o 4 Lhr=1 19 [ho=1| 4 |5
-3 -1 —-12 —6

and the matrix A has purely imaginary eigenvalues A\; =
i3 and Ay = —i3. If we transform the linear system
(A, Xo, X¢) into modal coordinates by the transformation

matrix 7" = [ g (f }, we have (A, Zy, Zy) as,
0 -3 _ - _
A= 3 0 | Hyzp > hy, Hozo > ho, (44)
where
1 -1 -1 1
- 1 1 | - 2 | - -2
Hf,H()— 1 1 ,h/f 10 ’h’O_ 4
-1 -1 —12 —6

We choose w = cos(3t) and y = sin(3t), then the set
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defined in (30), (31) and (32) becomes,

—z51 +wzor — Yzo2 =0
—zp2 +Yz01 +wzg2 =0
w? 41?2 —1 _
201 — 202 — 1 >0
—201 + 202 + 2 >0
201 + 202 — 4 >0
—Zzo01 — 202 + 6 >0
zp1 — zp2 +1 >0

—2f1 + 2p2 — 2 >0

zp1+ 252 — 10 >0

—z51 — 252+ 12 >0
SOS decomposition test returns that Safe (A4, X, X;) = 1.
The required CPU time for computation is 0.26 seconds.

C. Linear Systems with Nilpotent System Matrices

Consider the 3-dimensional linear system (A, Xo, X)
where the matrix A is nilpotent,

0 1 1
A=10 0 1|, Hpxy > hy, Hozo > ho, (45)
0 0O
where
-1 0 1 -1 0
-1 1 0 -1 1 0
Hi=t ¢ 1 opH=] 1 1 of
-1 -1 0 -1 -1 0

hy = [2,—6,10,—12]T, hy = [1,—2,4,—6]T. Then
the set defined in (38) becomes,

—xs + %xoth + (xo3 + wo2)t + 201 =0

—T 2 + To3t + To2 =0
—Zf3 + To3 =0

Tol — Toz — 2 >
—xp1 + To2 + 6 >0
To1 + To2 — 10 >0
—Zo1 — Toz2 + 12 >0
Tp —Tpo—1 >0
—xp +x g2+ 2 >0
Ty +xpo—4 >0
—zp1— T2 +6 >0
t >0

SOS decomposition test returns that Safe (A, X, X;) = 1.
The required CPU time for computation is 8 seconds.
Remark 7.1: Theorems 3.1, 4.1, and 5.1 provide theoret-
ical procedures for exact safety verification. On the other
hand, SOS decomposition theoretically provides hierarchies
of infeasibility certificates. Since, there is no a priori bound
on the degree of the certificate, the search may not be
computationally feasible. Hence, failure of the SOS test in
practice does not mean that the system is not safe.

VIII. CONCLUSION

In this paper, we converted the exact safety verification
of linear dynamical systems with certain eigen-structure to
an emptiness of a set defined by polynomial equalities and
inequalities. Emptiness of such a set can be checked using
SOS decomposition. Such decomposition can effectively be
computed by semidefinite programming which promises to
be a scalable solution to the exact verification problem.
Also, it was shown that such polynomial sets are good seeds
for the abstraction of hybrid systems with linear dynamics.
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