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Abstract— The problem of designing hybrid controllers in
order to satisfy safety or liveness specifications has received
much attention in the past decade. Much more recently, there
is an increased interest in designing hybrid controllers in
order to achieve more sophisticated discrete specifications, such
as those expressible in temporal logics. A great challenge is
how to compose safety and liveness controllers in order to
achieve more complex specifications. Existing approaches are
predominantly bottom-up, in the sense that the overall control
and composition (or switching) logic requires verification of
the integrated closed-loop hybrid system. In this paper, we
advocate and develop a top-down approach for this problem
by synthesizing controllers which satisfy the specification by
construction. Given a flat linear temporal logic specification
as an input, we develop an algorithm that translates the
temporal logic specification into a hybrid automaton where
in each discrete mode we impose controller specifications for
the continuous dynamics. In addition to achieving the desired
specification by construction, our methodology provides a very
natural interface between high level logic design and low level
control design.

I. INTRODUCTION

In the last decade, there has been an increased interest in
the design of hybrid controllers that satisfy safety and/or
reachability properties [1]–[6]. Reachability specifications
require that the system reaches within a finite time a prede-
termined region of the state space, while safety specifications
call for trajectories that always remain within a set. Note that
these two problems are actually dual. That is, one can pose
the safety problem as a reachability problem by requiring
that no trajectory would ever enter the unsafe set.

The purpose of this paper is to present the basis for
a framework for the synthesis of controllers that satisfy
specifications beyond the classical safety and reachability
properties. Such specifications characterize sequences of
events and set invariants. One way to attack the problem
is to utilize regular languages for the description of the
specifications and abstractions for the discretization of the
continuous plant [7] and, thus, to formulate an event-based
framework for the supervisory control of hybrid systems [8].
Here, we propose a fragment of the Linear Temporal Logic
(LTL) as a formalism that captures an interesting class of user
specifications. We believe that LTL is a natural mathematical
language that enables control engineers to automate the
controller synthesis problem in a way that minimizes errors
due to software or human factors.

The Linear Temporal Logic (LTL) over models with
underlying time flow the natural numbers has been proven
extremely useful in a wide range of applications. In the
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context of Discrete Event Systems (DES), it was initially
proposed as a verification tool [9]. Recently, LTL has also
found applications in the synthesis of (non-reactive) hybrid
controllers for linear systems both in continuous [10], [11]
and discrete time [12]. In a different approach [13], genera-
tors of models for LTL formulas (Büchi automata) have been
utilized as supervisors of multi-robot navigation functions.

The common characteristic of all the aforementioned
approaches is that at the level of the logic they either
take an event-based approach or they assume an explicit
discretization of the time. In the case of discrete-time, the
limitations are apparent especially when one considers multi-
agent systems where the interaction between the agents can
take place at any time instant. On the other hand, the event
based approach might seem adequate for modelling continu-
ous dynamical systems, but that also has its limitations. For
one, it cannot distinguish between events that must hold at a
particular time instant and events that must hold for a non-
zero time interval. Moreover, when event based semantics
are used for planning purposes there is no clean way to state
at the logical level that a system should remain for all future
times (events) within an invariant set (recall that LTL defines
infinite behaviors).

In this paper, we take a different approach which is
similar to [14]. We define the semantics of LTL over the
real time line R+

0 in an attempt to model the continuous
system behavior. We then identify the fragments of flat
LTL for which we can built generators of their models in
a modular way and in the form of hybrid automata. The
modular construction is inspired by a similar construction
for partially-ordered deterministic Büchi automata [15] and
it relies on the closure properties of the hybrid automata
under union and intersection and the semantics of LTL for
the valuation of the atomic propositions.

The hybrid automaton that results from the above pro-
cedure has only an abstract description of the continuous
system (differential inclusions) in each discrete location.
Therefore, even though it is a non-deterministic generator
for the models of flat LTL formulas, it cannot act as a
generator of deterministic continuous trajectories that would
satisfy the same temporal specification. For that, we need
to design controllers for the continuous system in each
discrete location. Given a formula, we develop an algorithm
that derives a set of safety and reachability requirements
from each discrete location of the hybrid automaton. Using
this set of requirements, we can construct feedback control
laws employing a number of design methodologies [1]–
[6], not necessarily the same in each control location. The
resulting hybrid automaton, which is actually now reduced
to a sequential composition of controllers, generates contin-
uous trajectories that satisfy the temporal specification by
construction.



II. PROBLEM FORMULATION

We consider an n-dimensional continuous dynamical sys-
tem Σ which is described by the differential equation

ẋ(t) = f(x(t), u(t)) x(t) ∈ X ⊆ Rn u(t) ∈ U ⊆ Rn

where x(t) describes the state of the system at time t and
u(t) is the control input. The goal of this paper is to construct
a closed-loop hybrid controller that generates control inputs
u(t) for system Σ so that the resulting continuous trajectory
x(t) for a set of initial conditions X0 ⊆ X satisfies a
formula–specification φ in the Linear Temporal Logic (LTL).

For the high level planning problem, we consider the
existence of a number of regions of interest to the user in the
state space X of the system Σ. Let Π = {π1, . . . , πn} be a
finite set of symbols that label these regions. The denotation
[[·]] : Π→ 2X of each symbol in Π represents a subset of X ,
i.e. for any π ∈ Π it is [[π]] ⊆ X . We make the assumption
that for all π ∈ Π the set [[π]] is connected.

In order to outline the expediency of LTL as a specification
language for control problems, we first give an informal
description of the temporal operators. The formal syntax
and semantics of LTL are presented in Section IV. LTL
formulas are built over a set of atomic propositions, the
set Π in our case, using combinations of the traditional
(∨,∧,¬) and temporal (♦,�,U ,R) operators. Informally,
the specification ♦φ, which reads as eventually φ, indicates
that the subformula φ will become true in the future. Thus,
it formalizes reachability specifications. Safety specifications
and system invariants are captured by the always operator.
For example �π (or �¬π) specifies that every trajectory
of the system should always remain within (or avoid) the
region [[π]]. The formula φ1 Uφ2 intuitively expresses the
property that φ1 is true until φ2 becomes true. Finally, the
release operator φ1Rφ2 denotes that φ2 always holds, a
requirement which is released as soon as φ1 becomes true.
More complicated specifications can be composed from the
basic temporal and Boolean operators (for examples see
[10]–[12]). In order to better explain the different steps in our
framework, we consider throughout this paper the following
example.

Example 1: Consider the system ẋ(t) = u(t) with x ∈
R2. Assume that there exist four areas of interest denoted
by π0, π1, π2, π3 such that [[π1]], [[π2]], [[π3]] ⊆ [[π0]] (see
Figure 2). The initial conditions of the system are somewhere
in the set π0. The desired specification for the system given
in natural language is: “Stay always in π0 and visit area π1,
then area π2 and then go to region π3 while avoiding π1.”

For such spatio-temporal specifications, in this paper we
provide a computational solution to the following problem.

Problem 1 (Temporal Logic Controller Synthesis): Given
a dynamical system Σ, a set of initial conditions X0 ⊆ X
and a flat LTL formula φ over Π, construct a closed-loop
system in the form of a hybrid automaton H such that the
resulting system trajectories x(t) starting at some point
x(0) ∈ X0 satisfy the formula φ.

III. HYBRID AUTOMATA

A hybrid automaton is a mathematical model that captures
systems that exhibit both discrete and continuous dynamics
[7], [16]. In brief, a hybrid automaton is a tuple

H = (X,V,E, Inv, F low, Init,Guard, F )

where X is the state space of the system Σ, V is the set of
control locations, E ⊆ V × V is the set of control switches,
Inv : V → 2X assigns an invariant set to each location,
Flow : V × X → 2Rn

constraints the time derivative of
the continuous part of the state, Init(v) : V → 2X assigns
to each control location a set of initial conditions, Guard :
E → 2X is the guard condition that enables a control switch
e and, finally, F ⊆ V is the set of final locations.

Note that in the hybrid automata that we use in this paper
all the reset maps [16] are defined to be the identity function.
In the following, we assume that the guards and the location
invariants are connected sets. Also, we let H = V × X to
denote the state space of the hybrid automaton H.

Informally, the trajectories of the hybrid automaton H
consist of combinations of continuous flows and discrete
transitions. A trajectory of the automaton H can only start
at a location v iff x(0) ∈ Init(v). When the system is in
control location v, then it evolves under the gradient of a
vector field whose value is constraint by the set Flow(v, ·)
while the state x remains always within the invariant set
Inv(v). When the continuous part of the trajectory enters a
guard set, for example x ∈ Guard(v, v′), the edge (v, v′)
becomes enabled and the system instantaneously switches
to the control location v′. The new state of the system will
be (v′, x). Due to the way that the guard sets are defined,
more then one control switches may become enabled when
the continuous trajectory enters a guard set. Thus the hybrid
automaton H exhibits non-deterministic behavior. The other
source of non-determinism in the hybrid automaton model
is the non-uniquely defined flow conditions.

Formally, the semantics of a hybrid automaton are given
in terms of generalized or timed transition systems [16]. A
generalized transition system is a tuple TH = (H,H0,→)
where H0 is the set of initial conditions and→ is a transition
relation. Due to space limitations, we refer the reader to [7],
[16] for the exact definition of the generalized transition
system. For the purposes of this paper, we overload the
definition of a trajectory η of the transition system TH and
we define it to be a function η : R+

0 → X . In other words, we
only consider the projection of the actual trajectory of TH on
the continuous state space X . Note that this definition of the
trajectory as a function is meaningful since the reset maps
of H are the identity functions. The set of all trajectories η
of TH starting from a state in H0 is the language L(TH) of
the generalised transition system TH.

In section V, we will need the notions of union and
intersection of hybrid automata. Given two hybrid au-
tomata with the same continuous state space, we construct
a hybrid automaton that has the same language as the
union and intersection of the languages of its components.
Let H1 = (X,V1, E1, Inv1, F low1, Init1, Guard1, F1) and
H2 = (X,V2, E2, Inv2, F low2, Init2, Guard2, F2) be two
hybrid automata such that the sets V1 and V2 are disjoint
(this can always be achieved by renaming). The defini-
tion of their union is straightforward: H = H1 ∪ H2 =
(X,V1 ∪V2, E1 ∪E2, Inv1 ∪ Inv2, F low1 ∪Flow2, Init1 ∪
Init2, Guard1 ∪ Guard2, F1 ∪ F2). The definition of their
intersection H1 ∩ H2 is a hybrid automaton H = (X,V1 ×
V2, E, Inv, F low, Init,Guard, F1 × F2) where

• Inv(v1, v2) = Inv1(v1) ∩ Inv2(v2)
• Flow(v1, v2) = Flow1(v1) ∩ Flow2(v2)
• Init(v1, v2) = Init1(v1) ∩ Init2(v2)



• e = ((v1, v′1), (v2, v
′
2)) ∈ E iff

1) e1 = (v1, v′1) ∈ E1 and v2 = v′2. In this case we
set Guard(e) = Guard1(e1) ∩ Inv2(v2).

2) v1 = v′1 and e2 = (v2, v′2) ∈ E2. In this case we
set Guard(e) = Inv1(v1) ∩Guard2(e2).

3) e1 = (v1, v′1) ∈ E1 and e2 = (v2, v′2) ∈ E2. In
this case Guard(e) = Guard1(e1)∩Guard2(e2).

The following proposition follows directly from the defi-
nition of the union and the Proposition 12 in [17].

Proposition 1: Let H1 and H2 be hybrid automata. If
H = H1 ∪ H2, then L(TH) = L(TH1) ∪ L(TH2) and if
H = H1 ∩H2, then L(TH) = L(TH1) ∩ L(TH2).

IV. FLAT LINEAR TEMPORAL LOGIC

In this section, we review the syntax of the flat Linear
Temporal Logic (LTL) [18] in the Normal Negation Form
(NNF) and define its semantics with respect to a generalised
transition system T . Recall that in NNF the negation can
appear only in front of the atomic propositions. If Π is the
finite set of atomic propositions, then we denote by Π the set
of all boolean combinations of elements of Π. The definition
of the map [[·]] is extended naturally as follows [[π1 ∧ π2]] =
[[π1]] ∩ [[π2]] and [[¬π]] = [[π]]c = X\[[π]].

In the so-called flat fragment of LTL, the left operant of
the until (U) and release (R) temporal operators consists
only of Boolean combinations of atomic propositions, i.e.
elements of the set Π. Therefore, the until and release
temporal operators are syntactically restricted to the form
π Uφ and πRφ respectively. For clarity of presentation, we
denote the flat versions of the until and release operators by
U and R. For π ∈ Π, the syntax of flat LTL in NNF is

φ ::= π | φ ∧ φ | φ ∨ φ | π Uφ| πRφ

As usual, the boolean constants > (true) and ⊥ (false)
are defined as > = π ∨ ¬π and ⊥ = ¬> respectively.
The various additional temporal operators are defined as
eventually ♦φ = >Uφ, always �φ = ⊥Rφ and unless
πWφ = �π ∨ π Uφ. Note that the syntax does not contain
the next time operator since it is meaningless with dense time
semantics. Also in the following discussion, we employ the
notation LTL(op1, . . . , opk) to denote the fragment of LTL
in NNF for which the formulas are build using only the
boolean and temporal connectives in the list op1, . . . , opk.
For example, LTL(U ,∧) is the fragment of flat LTL that
uses only the conjunction and the flat until operator. The
fragment LTL(U ,∧,∨) captures reachability specifications,
while the fragment LTL(�,∧,∨) safety properties.

We define the semantics of LTL(U ,R,∧,∨) formulas with
respect to a generalized transition system T . For η ∈ L(T )
and t ∈ R+

0 , we define the t right shift of η to be η|t(s) =
η(t+s). Let φ ∈ LTL(U ,R,∧,∨), η ∈ L(T ) and t, s ∈ R+,
then the semantics of the formula φ are defined recursively
as follows

• η |= π iff η(0) ∈ [[π]]
• η |= φ1 ∧ φ2 iff η |= φ1 and η |= φ2

• η |= φ1 ∨ φ2 iff η |= φ1 or η |= φ2

• η |= π Uφ iff there exists t ≥ 0 such that η|t |= φ and
for all s if 0 ≤ s ≤ t then η(s) ∈ [[π]]

• η |= πRφ iff for all t ≥ 0 it is η|t |= φ or there exists
s such that 0 ≤ s ≤ t and η(s) ∈ [[π]]

When η |= φ, we say that the trajectory η is a model
of φ or that η satisfies the specification φ (we write η 6|= φ
otherwise). Also, we say that an LTL formula φ is satisfiable
if there exists a trajectory η such that η |= φ. If for all η ∈
L(T ) it is η |= φ, then we say that T satisfies φ or that φ is
true in T . We should point out that when we adopt the normal
negation form of LTL we do not loose in expressive power.
The loss in the expressive power is due to the “flatness” [18]
and the non-standard semantics (closed right bound) of the
until operator.

Example 2: Going back to Example (1), we can now
formally write the specification using a flat LTL formula:

φ = �π0 ∧ ♦(π1 ∧ ♦(π2 ∧ (¬π1)Uπ3)) (1)

V. FROM FLAT LTL TO HYBRID AUTOMATA

In this section, we describe an algorithmic procedure
for deriving a hybrid automaton whose transition system
generates the models of certain fragments of LTL. The
construction that we develop mimics the modular construc-
tion of partially-ordered deterministic Büchi automata that
is presented in [15]. First, we derive algorithms for the
LTL(U ,∧,∨) and LTL(�,∧,∨) fragments of the logic.
Then, using the properties of closure of the hybrid automata
under the operations of union and intersection, we give a
solution for any formula φ generated using the grammar

φ ::= π | φ� | φ ∧ φ | φ ∨ φ | π Uφ

where φ� ∈ LTL(�,∧,∨). We denote the aforementioned
fragment of LTL by LTLU�.

A. The LTL(U ,∧,∨) Fragment

The fragment LTL(U ,∧,∨) contains the boolean operators
of conjunction and disjunction and the flat until tempo-
ral operator. For example, the subformula ♦(π1 ∧ ♦(π2 ∧
(¬π1)Uπ3)) in Example 2 belongs to this fragment. For
notational convenience, we denote the hybrid automaton
whose transition system generates models of φ by Hφ and
its transition system by Tφ (instead of THφ

). We refer to
both of them as generators of the models of φ. We proceed
to construct such a hybrid automaton in a modular way. The
following propositions are immediate from the definitions.

Proposition 2: Hπ = (X, {v}, ∅, X,Rn, [[π]], ∅, {v}) is
the resulting hybrid automaton when φ = π ∈ Π.

The next proposition is the basic building block for
constructing a generator for the models of any LTL(U ,∧,∨)
formula.

Proposition 3: Let φ = π Uψ such that ψ ∈ LTL(U ,∧,∨)
and assume that the hybrid automaton Hψ = (X , V , E, Inv,
Flow, Init, Guard, F ) is given, then for v′ 6∈ V

Hφ = (X,V ∪ {v′}, E′, Inv′, F low′, Init′, Guard′, F )

where for Vin = {v ∈ V | Init(v) ∩ [[π]] 6= ∅} we have
• E′ = E ∪ {(v′, v) | v ∈ Vin}
• Inv′(v′) = Init′(v′) = [[π]] and Flow(v′) = Rn
• Inv′(v) = Inv(v) for all v ∈ V
• Flow′(v) = Flow(v) for all v ∈ V
• Init′(v) = Init(v) ∩ [[π]] for all v ∈ V
• Guard′(v′, v) = Init′(v) for all v ∈ Vin
• Guard′(e) = Guard(e) for all e ∈ E



Algorithm 1 The LTL(U ,∧,∨) Fragment
Input: A formula φ ∈ LTL(U ,∧,∨)
Output: The hybrid automaton Hφ

1: procedure LTLUTOHA(φ)
2: if φ = π then
3: return Hπ . Proposition 2
4: else if φ = φ1 ∧ φ2 then
5: return LTLUTOHA(φ1) ∩ LTLUTOHA(φ2)
6: else if φ = φ1 ∨ φ2 then
7: return LTLUTOHA(φ1) ∪ LTLUTOHA(φ2)
8: else if φ = π Uψ then
9: Hψ ← LTLUTOHA(ψ)

10: return Hφ . Proposition 3
11: end if
12: end procedure

Note that in the above construction, the time derivative
of the continuous state of the hybrid automaton is uncon-
strained. Therefore, we must impose some fairness require-
ments in the following sense. If in a control location there
exist outgoing edges, then the continuous flow can remain
only for a finite time within that location. This is taken care
of in Section VI at the level of the atomic controllers.

Informally, Proposition 3 states that if the initial conditions
for the execution of the hybrid automaton Hψ are satisfied,
then the current position must also be in the set [[π]]. The
intersection Init(v) ∩ [[π]] in the set Init′(v) is due to the
non-standard semantics of the until operator, that is we have
allowed a non-strict inequality in the upper bound of the
interval of the first operant (invariant condition) of the until.
On the other hand, if the execution of Hψ cannot start in the
current state, then the system must flow under the invariant
[[π]] until such a state is reached.

Algorithm 1 presents the procedure for the synthesis of a
hybrid automaton that generates the models of a specification
φ in LTL(U ,∧,∨). The correctness of the algorithm is
immediate from Propositions 1-3. As far as the complexity
is concerned, the intersection of the hybrid automata in line
5 as well as the set intersections in Propositions 1 and 3 are
the dominating terms. If automaton Hφi has size ni, then
the automaton H1 ∩H2 has size O(n1n2). If we denote by
|φ| the length of the formula φ, then the resulting automaton
Hφ has size O(exp(|φ|)) [15]. As far as the intersection and
the complementation of the sets are concerned, these depend
on the representation of the sets and on the dimension of the
space.

It is easy to verify that the graph G = (V,E) of the
hybrid automaton Hφ is acyclic. Notice that initially we
mark the locations without outgoing edges as final. After the
construction of Hφ is completed, several locations v could
have Inv(v) = ∅. Similarly, there could exist edges e for
which Guard(e) = ∅. We must remove such locations and
control switches as these characterize non-feasible solutions
for our system. Discarding such nodes and edges could
convert intermediate control locations, i.e. locations which
are not final, to locations without outgoing control switches,
we refer to these locations as deadlock locations. Deadlock
locations and their incoming edges also need to be removed.
If at the end of the procedure there do not exist locations

marked as final reachable from a location with non-empty
initial conditions, then there does not exist a continuous
trajectory that would satisfy the specification φ. In this case,
the language L(Tφ) is empty and we call the respective
hybrid automaton Hφ as empty. Furthermore, the formula φ
is unsatisfiable with respect to our model of hybrid automata.
To summarize

Proposition 4: Let φ ∈ LTL(U ,∧,∨) and let Hφ be the
output of Algorithm 1, then η ∈ L(Tφ) implies η |= φ.

B. The LTL(�,∧,∨) Fragment
First note that due to the syntactic equivalences ��φ ≡

�φ and �(φ1 ∧ φ2) ≡ �φ1 ∧ �φ2 for any formulas
φ, φ1, φ2 ∈ LTL, we only need to study the translation of
the LTL(�,∨) fragment of the logic. In more detail, the
following can be proven by induction on the depth of the
nested always temporal operators.

Proposition 5: Let φ ∈ LTL(�,∧,∨), then φ can be
rewritten in the form φ =

∧
i∈I

(
πi ∨

∨
j∈Ji

�ψj
)

where
I,Ji ⊆ N and ψj ∈ LTL(�,∨).

In the following, we give a brief description for the
construction of generators for the LTL(�,∨) fragment.

Proposition 6: H�π = (X, {v}, ∅, [[π]],Rn, [[π]], ∅, {v}) is
the resulting hybrid automaton when φ = �π.

Proposition 7: Let φ = �(π ∨ ψ) with ψ ∈ LTL(�,∨)
and assume that the hybrid automaton Hψ = (X , V , E, Inv,
Flow, Init, Guard, F ) is given, then for v′ 6∈ V

Hφ = (X,V ∪{v′}, E′, Inv′, F low′, Init′, Guard′, F∪{v′})

where for Vin = {v ∈ V | Init(v) ∩ [[π]] 6= ∅} we have
• E′ = E ∪ {(v′, v) | v ∈ Vin}
• Inv′(v′) = Init′(v′) = [[π]] and Flow′(v′) = Rn
• Inv′(v) = Inv(v), Flow′(v) = Flow(v) and Init′(v)

= Init(v) for all v ∈ V
• Guard′(v′, v) = Init(v) ∩ [[π]] for all v ∈ Vin
• Guard′(e) = Guard(e) for all e ∈ E

Let us give the intuition behind the above construction. Note
that ψ = �ψ1 ∨ . . . ∨�ψn since π includes all the possible
boolean combinations of the atomic propositions at the top
level. Also, we point out the equivalence �(�φ1 ∨�φ2) ≡
�φ1 ∨ �φ2. The semantics of η |= �(π ∨ ψ) are (∀t ≥
0).(η(t) ∈ [[π]] ∨ η|t |= ψ). Therefore, there exist three non-
deterministic choices

1) π holds now and for all future times (the system
remains in the control location v′)

2) π holds for a finite time interval of the form [t, s) and
then ψ holds for all future times s′ ≥ s (the system
jumps from location v′ to some location v of Hψ)

3) ψ holds for all future times (the initial conditions of
Hψ must be satisfied in this case)

Note that in case 2, the semantics of the logic do not
enforce continuity conditions, but the semantics of the hybrid
automaton do (identity reset maps). Therefore we modify
accordingly the Guard′ constraints. Moreover, for this frag-
ment of the logic we do not need fairness conditions. A
continuous flow can remain in the same control location for
an infinite duration.

Proposition 8: Let φ ∈ LTL(�,∧,∨) and let Hφ be the
resulting hybrid automaton, then η ∈ L(Tφ) implies η |= φ.

Due to space limitations we do not present the algo-
rithm for this fragment of the logic, but it is similar to
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Fig. 1. The hybrid automaton Hφ of Example 3. The set Inv(vi) is
displayed inside each circle. The set Guard(vi, vi−1) is displayed on top
of each edge (vi, vi−1). The floating arrows point to control locations with
non-empty initial conditions. The double circle denotes the final location.
Above: Before checking emptiness. Below: The finalized hybrid automaton.

Algorithm 1. A similar construction can also be developed
for the LTL(R,∨) fragment, but the LTL(�,∧,∨) and
LTL(U ,∧,∨) seem more suitable for control applications.

C. The LTLU� Fragment

The LTLU� fragment captures combinations of reachability
and safety properties. A typical example of a formula that
belongs to this fragment is �(π1 ∨ �π2) ∧ ♦(π3 ∧ ♦π4 ∨
π5 U�π6) ∧ ♦π7. From the above discussion, the following
proposition is immediate.

Proposition 9: Let φ ∈ LTLU�. If η ∈ L(Tφ), then η |= φ.
Example 3: Fig. 1 displays the hybrid automaton Hφ that

generates the models of the temporal specification (1).

VI. DERIVING THE CONTROLLER SPECIFICATIONS

The hybrid automaton construction that we presented in
the previous section can be used to model the closed-loop
behavior of system Σ if a finite set of controllers is suitably
designed. There exist two issues to be resolved. First, the
specifications on the vector fields in each location are too
abstract in the sense we have only specified the desired
closed loop behavior. Second, there may exist several control
switches out of each location which may have overlapping
guard sets or whose guard sets might never be reachable. In
this section, we resolve these issues by deriving very specific
constraints for each control location and by determinizing the
hybrid automaton.

Assume the existence of a set C of triplets {A,B,Γ},
where B and Γ are connected subsets of X such that
A ⊆ B and Γ ⊆ B. Let G : C → XU be a mapping
from the set of triplets to the set of all possible feedback
control laws g : X → U for the system Σ. For some
c ∈ C and a gc ∈ G(c), the autonomous system becomes
ẋ(t) = fc(x(t)) = f(x(t), gc(x(t))), which we assume
that it has a unique solution. The triplet c = {A,B,Γ}
captures the constraints that the trajectory x(t) must satisfy.
The semantics for each triplet c ∈ C are as follows

• A describes the initial conditions where the control law
gc can be applied, i.e. x(0) ∈ A.

• Γ describes the final conditions (goal set), i.e. there
exists some finite time tg ∈ R+ such that x(tg) ∈ Γ .

• B captures the invariance that the control law must
satisfy, i.e. for all 0 ≤ t ≤ tg it is x(t) ∈ B.

By slightly abusing terminology, we call the triplet c as
an atomic controller (instead of the actual control law gc).

Consider now that given a formula φ ∈ LTLU�, we derive
the hybrid automaton Hφ using the procedure outlined in
Section V. There are two possible ways to proceed in order to
design the continuous control specifications for each control
location and, hence, derive a set of controllers that would
generate the desired high-level behavior for the closed-loop
system. Given a neighborhood of initial conditions X0 ⊆ X
of the system Σ such that X0 ⊆ Init(v) for some v ∈
V , we can construct the required controllers on-the-fly by
traversing the graph G using Breadth or Depth First Search
until we reach a final state (both algorithms’ running time
is O(V + E)). If such a sequence of control locations is
v0, v1, . . . , vm such that X0 ⊆ Init(v0) and vm ∈ F , then it
is easy to verify that the atomic controllers have the following
constraints for 0 < i < m

• c0 = {Init(v0), Inv(v0), Guard(v0, v1)}
• ci = {Guard(vi−1, vi), Inv(vi), Guard(vi, vi+1)}
• cm = {Guard(vm−1, vm), Inv(vm), ∅}
Having defined the constraints c for each atomic controller,

we proceed to design each feedback control law fc as it is
outlined in Section VII. Note though that it is not always
the case that such a feedback controller exists for a set
of constraints c. When such a situation occurs, we have to
remove the respective edges from the graph and repeat the
procedure. As there exists only a finite number of edges, we
know that the process terminates in finite time. As before, if
a final control location is not reachable from the location v0
(after cutting out the unrealizable controller specifications),
then there does not exist a feasible solution.

The other approach consists of designing off-line con-
trollers for all the possible initial conditions. We use again
the Breadth First Search algorithm, but now we start from
each final control location and we built a spanning tree by
traversing the edges of the graph backward. The resulting
directed tree GT = (VT , ET ) has the following structure.
Each node v ∈ VT can have at most one outgoing edge and it
may have several incoming edges. We denote the latter set of
edges by Ei, while the former (singleton or empty) set by Eo.
Therefore, for each control location v ∈ VT we can derive
the following atomic controller constraints, if Eo = {eo}

• c =
{⋃

e∈Ei
Guard(e) ∪ Init(v), Inv(v), Guard(eo)

}
otherwise, if Eo = ∅

• c =
{⋃

e∈Ei
Guard(e) ∪ Init(v), Inv(v), ∅

}
As before, by providing this set of constraints to the

control engineer along with the system description Σ, we can
potentially create a vector field fc which satisfies the required
constraints (Section VII). If no such feedback control law
can be generated, then the respective control switch eo is
removed from the initial graph G and a new tree GT is
generated by repeating the above procedure.

Finally, let Hφ = (X,V,E, Inv, F low, Init,Guard, F )
and let GT = (VT , ET ) ⊆ G be the path or the
spanning tree constructed as described above. If we de-
terminize the flow in each control location v ∈ VT
by setting Flow′(v, x) = fc(x) for the corresponding
atomic controller c, then the new hybrid automaton H′φ =
X,VT , ET , Inv, F low

′, Init,Guard, F ∩VT ) is the desired
closed-loop deterministic system whose trajectories η ∈
L(T ′φ) satisfy the specification φ by construction.

Example 4: Using any of the two proposed methods on
the hybrid automaton of Example 3, we get: c1 = {[[π3]],



[[π0]], ∅}, c2 = {[[π2]], [[π1]]c, [[π3]]}, c3 = {[[π1]], [[π0]], [[π2]]}
and c4 = {[[π0]], [[π0]], [[π1]]}.

VII. DESIGNING THE CONTROLLERS

In this section, we demonstrate an approach for designing
a control law gc given a set of constraints in the form of an
atomic controller c. As mentioned in the introduction, there
exist several methodologies [1]–[6] that can accomplish this
task, but here we will focus on Navigation Functions (NV)
[5]. Note though that the translation procedure introduced in
this paper is a general framework for producing controller
specifications and need not be specifically linked to any
of the referred controller design methodologies. Even more
importantly, different control design methodologies can be
applied to different atomic controllers. Therefore, if a design
framework fails, we can try another one.

We illustrate the applicability of the proposed methodol-
ogy using navigation functions [5]. The workspace consists
of the regions of interest shown in Fig. 2. Consider the
specification (1) and suppose that the underlying system is a
fully actuated robot described by the trivial kinematic model
ẋ = u. Navigation function based controllers provide vector
fields that can be constructed based on metrics denoting the
distance from the good and the bad sets. We will use the
following notation to denote a navigation function controller

F [µg, µb] (x) , −K∇

[
µg(

µkg + µb
)1/k

]
(x)

where µg and µb denote metrics from the good sets and
the bad sets respectively. For details on the construction and
operation of those controllers the interested reader is referred
to [5]. Based on the constraints for each atomic controller
provided in Example 4 the following controllers are created:

• c1 : u = F
[
1, |·|∂π0

]
(x)

• c2 : u = F
[
|·|q ,

(
|·|∂π0

) (
|·|∂π1

)]
(x) with q ∈ [[π3]]

• c3 : u = F
[
|·|q ,

(
|·|∂π0

)]
(x) with q ∈ [[π2]]

• c4 : u = F
[
|·|q ,

(
|·|∂π0

)]
(x) with q ∈ [[π1]]

The trajectories of the system under the controllers spec-
ified by the translation of formula φ defined in (1) are
depicted in Fig. 2. As we can see, the system moved from
its initial position x to the region defined by π1 under the
influence of controller c4, then to the region defined by π2

under the influence of controller c3 and, then, to the region
defined by π3 while avoiding region [[π1]] under the influence
of controller c2. The last controller c1, whose task was to
maintain the system in the [[π0]] region, had the net effect of
moving the system in the center of the workspace. Note that
the last controller is not required to avoid region [[π1]]. As we
can see, the LTL specification is satisfied by the trajectory.

π

π
1

π
3

π
2x

Fig. 2. Trajectory of the system ẋ = u with control laws created based
on the controller specifications produced by the flat LTL formula (1)

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a new methodology for the controller
synthesis problem. Given a flat linear temporal logic spec-
ification, we construct a hybrid automaton that generates
trajectories that satisfy the specification. The vector fields for
each control location can be designed using existing methods
from the literature [1]–[6]. This gives us the flexibility to use
a variety of methods in control design, even different for each
control location of the automaton. The future directions of
research are two-fold. First, we are working on an algorithm
that can handle the full LTL and, second, we are investigating
a distributed version of the presented framework.
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