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Stable Multi-Particle Systems and Application in Multi-Vehicle Path
Planning and Coverage
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Abstract— We present a path planning algorithm for co-
operative coverage using a set of nonholonomic autonomous
vehicles. The paper describes our overall framework and
algorithm for the computation of trajectories that maximize
spatio-temporal coverage while satisfying hard constraints such
as collision avoidance and specifications on initial and final
positions. Our approach is based on approximation of the
trajectories of vehicles using sequence of waypoints and treating
each way point as a moving particle in the space. We defines
interaction forces between the particles such that the resulting
multi-particle system will be stable, moreover, the trajectories
generated by the waypoints in the equilibria of the multi-
particle system will satisfy all of the hard constraint while
generating a suboptimal solution to the coverage problem.

I. INTRODUCTION

In this paper we consider the problem of multi-vehicle path
planning and coverage with spatio-temporal boundary con-
ditions. Each vehicle is modeled as a nonholonomic vehicle
with a bounded curvature trajectory which is known as Du-
bin’s vehicle in the literature [1]. In this paper we present an
approximate solution to this problem which can be generated
in polynomial time. With the assumption of constant speed
the trajectory of each vehicle can be considered as a fixed
length bounded curvature curve that connects the initial and
final positions of the vehicle. In this paper we approximate
this bounded curvature curve by a polygonal curve and
each node of this polygonal curve represents a waypoint of
the vehicle. We find necessary and sufficient conditions for
bounded curvature polygonal curves. The polygonal curve is
constructed by treating each node of the curve as a moving
particle in the space. We define interaction forces between the
particles such that the resulting multi-particle system would
be stable; moreover, the polygonal curve generated by the
waypoints in the equilibria of the multi-particle system will
satisfy all of the necessity conditions for bounded curvature
curve as well as other hard constraints such as collision
avoidance.

Most of prior work in the area of coverage problem
concentrated on sensor network problem [2]. The cooperation
of multiple sensors is often achieved by choosing different
sensors (or sensor modes) for different tasks (targets) at
different times and motion planning is not involved in these
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Fig. 1. Approximation of a smooth curve by a polygonal curve.

problems. Cortes et al. [5] studied the multi-sensor localiza-
tion problem in a polygonal environment and developed a
gradient-descent algorithm for optimal coverage and sensing
policies. Each sensor agent is expected to converge to its
optimal location and stay there. Enrigh et al. [6] considered
the problem of visiting stochastically-generated targets in a
planar bounded region with the objective of minimization
of the expected waiting time between the appearance of
a target, and the time it is visited. In [10] and [11] the
coupling between flight path and the camera field of view is
studied and an Integer Programming(IP)-based algorithm for
time-critical cooperative surveillance using a set of UAVs is
introduced.

The paper is organized as follows, first we find the
conditions for bounded curvature polygonal curves. Then we
try to solve the path planning problem in a most basic form
which is to find a bounded curvature curve connecting two
points. Then we add multi-vehicle scenario which involves
collision avoidance. Eventually we consider the multi-vehicle
coverage problem.

II. POLYGONAL CURVE APPROXIMATION

Since each vehicle travels with constant speed and the
time horizon of each vehicle is fixed; therefore, the length
of the path that the vehicle travels is fixed. In the rest of
the paper, we assume that the trajectory of each vehicle is
a fixed length bounded curvature curve with a given initial
and final configuration.

Consider a bounded curvature curve y with length L,
connecting points C and D. We can approximate the curve
using finite number of vertices each lying on the curve,
connected by straight edges. The resulting polygonal curve
Y, is represented by its ordered vertices po,p1,...,Pn € R?,
where po = C, p, = D and p;p;+; is the line segment
connecting p; to p;+1 (Fig. 1).

The length of polygonal curve ¥, is given by:

len(yp) = Y llpi = pi-all ~ L (1)
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Fig. 2. Approximation of a smooth curve by a polygonal curve.

With the assumption of equidistance edges with length d, we
get:
= |lpi— pi-1ll = L/n (2)

In order to approximate the curvature of the polygonal
curve at point p;, we can use the circle passing through
the points p;_i, p; and p;1|, as an approximation to the
osculating circle to the curve at p; (Fig. 2). Then the inverse
value of the radius r; is an approximation of the curvature
at p;. Let A denote the area of the triangle p; {p;pi+1 and
dij = ||pi — pj||. The discrete curvature k; of the circle is
given by:

K=1/ri= Y )
dii—nidiirndi-1)@i+v1)

With the assumption of equidistance edges,
ing the fact that the area of a triangle abc
Vs(s—a b)(s—c) (where s = “2+¢) we get

2_ 72
2\/d _d(ifl)(i+l)/4
7 4)
Since y has a maximum curvature K, therefore, k; < k. In

order that 7, satisfies the bounded curvature constraint we
should have

K212
||pi—1_pi+1||: (i—1)(i+1) >L/l’l\/47 o)

In summary, the n+ 1 ordered points pg, p1, ..., pn € Q, where
po=C, p, =D, form an equidistance polygonal curve with
bounded curvature k and length L, if and only if, for all
i = l..n, distances ||p;—1 — pil| and ||pi—1 — pit1]|| satisfy
(2) and (5). In the following section we try to find points
P05 P1,---, Pn € L, that satisfy constraints (2) and (5) by using
multi-particle dynamical system approach.

and us-
is A =

Ki =

III. PATH PLANNING USING STABLE MULTI-PARTICLE
SYSTEMS

This section of the paper is organized as follows: In part
A we consider path planning for single vehicle. In part B
we address the multi-vehicle path planning problem. Finally
we consider the problem of maximizing the coverage. Please
note that in all of the cases we assume that there exist a dense
set of solutions and we try to find one of them.

WePI120.14

A. Single Vehicle Path Planning

1) Continuous Forces: Consider the waypoints of the
vehicle as pog,...,pn € Q as shown in (Fig. 1). Now lets
assume that the points po, ..., p, € Q are point mass moving
particles with initial random distribution in the space. Also
assume that the vector F; is a force acting on the i —th point.
Therefore, we have

m;p; = F; (6)

Now assume pyg = C, p, = D are fixed, we can do this by
assuming my, m, — oo.

In the following we try to find vector forces F;, i =0...n
in the way that the set of stable equilibria of the dynamical

system (6) would be equal to the set of points py,..., p, that
satisfy constraints (2) and (5).
Define vector forces F;, i =0...n as follows:
F= Y fillpi—pjl)ei;—gi(p) (N
j=0
J#i
Where ¢;; = ﬁ is a unit vector from in the direction of
pi to the p;.

With the following conditions on functions f;; and g;:

1) fij(x) = fji(x) for all i and j

2) For any vector P = (po,...ps) € Q! we have
fij(|pi—pjl) =0 for all z,]—O...n i # j if and only
if, p; and p; satisfy (2) and (5) for all i, j =0...n.

3) Functions f;; are locally passive around their roots, i.e.
if fij(x) =0 then

o'ﬁj(xO—f—G)ZO VO- e [_6070-0} (8)

4) g(x)=0if and only if x=0

5) For all the vectors x € R?, x.g;(x) >0

6) Functions f;; and g; are continuous.

theorem 1: The vectors P = (py,...p,) € Q"F! that satisfy
(2) and (5) are asymptotical stable equilibria for the dynam-
ical system (6).

Proof: For any P = (pg,...pns1) € Q"' we define E(P)
as follows:
n P 2
-y Z Uslp- )+ 5 )
Jj=i+li=
Where »
o) = /ao Fii(E)dE (10)

and o is root of fj;, i.e. fij(on)=0.
Since function f;; is locally passive U;;(or) > 0; therefore

E(p)>0 vPeQ"! (an
and
JE U " U;i(|lpi—pi
= = Y Y< ”(Hg’ pJH),Pi>+<P,P>(12)
! J: i=1 Di
JF#i
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also

Uij(lpi—pjll) 9|pi—pjl
api dpi

< —2,pi >=<fij(lpi — pj|) =5, pi >
=< fij(lpi = pjl)eji, pi >=< —fij(lpi — pjl)eij, pi >(13

Using (6) and (7) in substituting P we get

JE -

—=-) <g(pi),pi><0
1

FA) (14)

The last inequality is from x.g;(x) < 0. So we get %—f <

0, hence from the Lyapunov theorem we can establish the
stability of the dynamical system (6) also one can prove local
asymptotic stability of the desired formation using LaSalle’s
invariance principle [9]. ]
Please note that there are always additional unwanted equi-
libria for the dynamical system (6). Note that if one wishes
to add restriction on the initial and final orientation, as well
as the position of the vehicle, then this can be done by fixing
p1 and p(,_) in addition to po and p, (i.e. my,my—1 — o).

One example of the functions f;; and g; that satisfies the
conditions of the theorem (1) is as follows:

fi-ni(e) =kg(a—L/n) (15)
And 0if o>
_ iyoe=zm
Ji-ny+n(a) —{ ky(ot—n) otherwise (16)

Where n =L/ny/4— % derived from the inequality (5).
Also

gix) =vx a7

It is easy to check that the above definitions of the
functions f;; and g; satisfy the stability theorem conditions.
But as we mentioned earlier there are additional equilibria
for the dynamical system which are not desirable figure
3 shows the convergence of the multi-particle system to
a equilibrium. But apparently the resulting curve does not
satisfy the curvature constraint.

In the following we give an analysis of the net forces
in the equilibrium which explains the failure of the method

An example of the convergence of multi particle system to a equilibrium which does not satisfy the curvature constraints (due to the sharp turn)

for in finding a desirable result. Consider a multi particle
system consist of intermediate points p1, p2,..., p, and fixed
initial and final points po, ps. Figure 4 shows the connectivity
graph between the points, the points are connected iff there
is a force between them. In any equilibrium the net force on
the points is zero but as it has been dedicated in fig. 4 it is
possible that the net force would be zero even though the
forces are not zero (point p3).

2) Discontinuous Forces: In the previous section we tried
to convince the reader that by using continuous forces we
will always have unfavorable equilibria. In this subsection
we use discontinuous forces and by using net force analysis
we show that an equilibrium is stable iff all of the forces
are zero. Since we are using discontinues forces, we need
nonsmooth analysis and stability of nonsmooth systems to
analyse the dynamical system wit discontinuous right-hand
sides but due to space limitation we omit this part and we
refer the interested reader to the references [12]-[14].

Now consider the multi particle dynamical system defined
in (6) and (7) with the same conditions on f;; and g; with
exception that f;; could be discontinues in finite number of
points, now we state the following theorem.

theorem 2 (Stability of discontinuous system): The vec-
tors P = (po,...pn) € Q"' that satisfy (2) and (5) are
asymptotical stable equilibria for the dynamical system (7).
Now we define functions g; and f;; that satisfy the conditions
of the theorem (2) as follows

gi(x) =wx (18)
and
wi if («—L/n)>wi/ks
fiirn (@) = k¢(ot—L/n) otherwise. (19)
—wq if (a—L/n)<—wi/ks
0 ] >
fi-nyirn (@) = { o lg;o(‘x;nn (20)

Where n = L/ny\/4— KL% s from the inequality (5). An

2
n
unfavorable equilibrium is one that the net forces on the
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Fig. 4. The nodes represent the particles and the edges represent interaction
forces between the particles.

particles are equal to zero but some of the forces are not
equal to zero. Please note that all of the hard constrains
(equidistance and curvature) are satisfied iff all of the forces
are equal to zero. In the following theorem we show that with
the forces defined in (19), (20) and with the key assumption
that wp > 2w; and even number of particles, there would
be at most one unfavorable equilibrium which is unstable,
therefore for almost all of the initial conditions the dynamical
system converges to a favorable equilibrium.
theorem 3 (Instability of the unfavorable equilibrium):

Consider a dynamical system of 2n particles with the forces
defined in (19) and (20) also assume that L > ||po — py||
then there is at most one unfavorable equilibrium and and
this equilibrium is unstable.

Proof: In the previous theorem we prove that the
dynamical system is asymptotically stable so the state of the
system converges to a stable equilibrium, in the equilibrium
the net force on each particle is zero but not necessary all of
the forces are zero. There are two type of forces, the forces
that are between consecutive particles V; i1 = fii+1(||pi —
pitill)eiiv1 for enforcing || p; — piy1|| =L/(2n+1) and cur-
vature constraint derived forces Vi_iiy1 = fi—1,i+1(]|pi-1 —
Pi+1||)€i—1,i+1.

We have

Viis1ll S wi <wp/2 20

also

[Vie1i41]l =0 or wa (22)

Now let construct a graph that nodes of the graph represent
the particles and the edges represent the interaction forces
(Fig. 4). Any particle except p; and pj, is connected to 4
other particles (note that pg and py are not moving particles).
At node p; there are 3 forces Vp 1, Vi and V)3, since the
net force is zero therefore

Voa+Vip+Viz=0 (23)

So

Vo1 + Vil = Vi3]l 24

Now we claim that V; 3 = 0 otherwise we have V|3 =w» so

Vo1 +Viall = [[Vis] = w2 (25)

But we have

Vo1 +Viall < Vol +IVigll <2wi <wsy  (26)

Which is a contradiction, therefore V| 3 = 0. Since the edge
Vi3 is eliminated now there are 3 edges connected to node
p3 which are V3, V34 and V35, with the similar argument
one can show that V3 5 =0, similarly V57 =0,...,Vo;_12i11 =
0,...,Vau—1,y = 0. So all of the curvature constraint driven

WePI120.14

forces connecting odd edges are eliminated. Now one can
use the exact same argument this time starting from node
P2n, Since pp, connected to 3 nodes, one could conclude
Vanon—2 =0 and similarly Vo,-22,-4 =0 and V2, 42,6 =
0,---. Now all of the curvature constraint driven forces are
eliminated and the only way that V;;1; # 0 with the net
force equal to zero is that all of the particles are in a line
connecting po and py which is clearly unstable. |
Please note that if L < ||po — py|| there would be just one
equilibrium (which is stable) and which is the configuration
that all of the particles are in a line connecting po and py.
Figure (5) shows an example of a fixed length bounded
curvature trajectory connecting two points generated by 100
particles and the initial conditions are chosen randomly.

B. Multi-Vehicles

In the case of multiple vehicles, the structure of the
dynamical system is exactly the same as in single vehicle
case, with the exemption that, we need to add extra terms to
the forces in order to avoid the collision between vehicles.

Consider two vehicles with speeds v; and v, that travel
distances L; and L,. The corresponding waypoints for the
two vehicles are po,p1,...,pn and qo,q1,...,gm - Collision
between two vehicles can occurs if two vehicles arrive to the
same point simultaneously. Collision happens if for some i, j
the following two conditions are satisfied :

« Simultaneous timing condition:

Ly L,
li——j— <& 27)
ny ny:
o Passing through the same point condition:
lpi = gjll < & (28)

Thus in order to enforce collision free trajectories, we add
a new interaction force between two waypoints p; and g;
whenever i, j satisfy (27). Therefore:

. . Oifa>¢&
fijla) = { w3 otherwise

please note that the interaction force defined in (29) unlike
the previous forces is between two different trajectories. It is
also clear that (29) satisfies the stability theorems conditions.

Likewise the single vehicle case, by adding forces (29),
dynamical system (6) will have extra unwanted equilibria.
Fortunately these equilibria are unstable based on the fol-
lowing theorem.

theorem 4 (Instability of unfavorable equilibria):
Assume that there are V vehicles and the trajectory of each
vehicle is generated by 2n; i = 1...V particles and the forces
are defined as Eq. (19), (20) and (29) with the following
constraints on wi, wp and ws

(29)

2w < wy

2(wi +wp) < ws (30)

and with the assumption that not more than two vehicles
could collide at the same location and time, then all of the
unwanted equilibria are unstable.
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An example of a fixed length bounded curvature trajectory connecting two points generated by 100 particles.

Fig. 6. Example of Multi-vehicle path planning with collision avoidance.

Proof: Fist we prove that in any equilibrium the tra-
jectories will be collision free pathes then one could use the
results from single vehicle case to prove that stable equilibria
are all favorable. Assuming the two vehicles collide at a point
represented by p; and py, there will be at most 6 forces on
the particle p;.

« Collision avoidance force as V;; = wze; x
« Equidistance driven forces as V,_1; = fi—1,e;—1,; and
Viig1 = fiji+1€ii+1
o Curvature forces as Vo = fiit2eiiq2 and Vip; =
ficoiea—1
Since net force is zero therefore

Viti+Viipt +Vi2i+Vii2+Vig =0 (€1))
and
Vic1,i+ Viig1 +Vieoi + Viiga || = [|Vikll = w3 (32)
But
Vic1,i+ Viig1 +Vie2i+ Vi <
[Vie vl + Vit |+ [[Vie2 il + Va2 | (33)

<witwi+wr+wr =2(w; +wy) <ws

Which is contradiction with equality in eq. (32) and V;; =0

Therefore in the equilibrium all trajectories are collision
free and there are no forces between two separate trajectories.
But in theorem (6) we proved that in this case all of the stable
equilibria are favorable. |
Figure 6 depicts an example of multi vehicle path planning
with collision avoidance using 3 vehicles.

C. Coverage Maximization

Assume that each vehicle equipped with a sensor which
has a fixed sensing radios. We would like to generate
trajectories that maximize spatio-temporal coverage while
satisfying hard constraints such as collision avoidance and
specifications on initial and final positions Since the length of
the trajectories are fixed, one way of maximizing the overall
coverage is to minimize the intersection of field of view of
waypoints.

Assume that two way points p; and g; have field of views
with radii 7; and r;, in order to maximize the total coverage
we can minimize the intersection by trying to enforce ||p; —
qjll > ri+rj. we can add following interaction force to the
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Fig. 7.

dynamical system (6).

0 ifoa>ri+r i
Jfijlo) = WO%;T{ otherwise (34)
Adding these new interaction forces to the system may
introduce new undesirable stable formation as well. One can
prove that this can be prevented by setting stiffness wy much
less than wy.
Figure (7) shows an example of coverage maximization
by 3 vehicle. Please note that the generated trajectories are

local optimal solutions.

IV. CONCLUSION

In this paper we presented a path planning algorithm
for time sensitive cooperative surveillance using autonomous
vehicles equipped with sensors. The main challenges were to
generate feasible trajectories while satisfying hard constraint
such as collision avoidance and specifications on initial and
final positions. Our approach is based on approximation
of the trajectories of vehicles using sequence of waypoints
and treating each way point as a moving particle in the
space. We defines interaction forces between the particles
such that the resulting multi-particle system will be stable,
moreover, the trajectories generated by the waypoints in the
equilibria of the multi-particle system will satisfy all of the
hard constraint while generating a suboptimal solution to the
coverage problem.
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