
Verification of temporal properties on hybrid automata by simulation

relations

A. D’Innocenzo♭, A.A. Julius♯, G.J. Pappas♯, M.D. Di Benedetto♭, S. Di Gennaro♭

Abstract— Model checking can be used to verify temporal
properties of hybrid automata. However, model checking is not
decidable in general. We overcome this difficulty by considering
a durational graph abstraction, for which model checking is
decidable. The contribution of this paper is to show that, given
a hybrid automaton and the durational graph abstraction,
there exists a simulation relation between the two systems. This
approach allows checking properties such as safety, but also
timing properties of hybrid automata. We apply our framework
to a relevant case study in the context of air traffic management
(ATM). For an extended version of this paper refer to [15].

I. INTRODUCTION

The role of embedded systems in safety critical systems
has constantly increased in the past few years creating
the need of stronger verification methods than the ones
customarily used by the industry today. Formal verification
has recorded a number of successes in aiding the design of
hybrid/embedded systems [12]. However, as the complexity
of the to-be-verified systems increases, the computation costs
related to the verification procedures become prohibitive.
Reachability verification [7], [16], [18], observability veri-
fication [8], [13], [14], [23] and model checking [5], [19]
for hybrid systems are intensely studied in the literature. A
model checking tool for hybrid systems is HyTech [19]. To
abate the complexity of model checking, abstraction has been
commonly used. Abstraction consists of building a simplified
model with fewer states and/or simpler dynamics that is
equivalent to the original hybrid automaton with respect to
the property of interest, i.e., if the property holds in the
abstraction, it also holds in the original system and vice
versa. System equivalence is usually defined by the notions
of language equivalence and bisimulation [4], [25].

A procedure to translate a hybrid automaton into a rectan-
gular automaton was proposed in [26]. In a recent paper [14]
we proposed a procedure to check observability of a hybrid
automaton using a timed automaton abstraction. The abstract
model belongs to a subclass of timed automata, which is
called durational graph. Timed automata are a special class
of hybrid automata [3], [2], in which the continuous variables
are clocks, increasing with a constant slope. Resets are
restricted to clock resets to 0. Timed automata can generally
be abstracted into finite state systems [4], which makes
model checking decidable. Model checking tools for timed
automata are available, e.g. KRONOS [28], UPPAAL [22].

This work was partially supported by the HYCON Network of Excellence
(c.n. FP6-IST-511368), by MIUR (Project SCEF - PRIN05), and by NSF
Presidential Early CAREER (PECASE, Grant 0132716).

♭ Department of Electrical Engineering and Computer Science, Cen-
ter of Excellence DEWS. University of L’Aquila, Italy. email: (adin-
noce,dibenede,digennar)@ing.univaq.it

♯ Department of Electrical and Systems Engineering. University of
Pennsylvania, USA. email: (agung@seas,pappasg@ee).upenn.edu

The contribution of this paper is to show that, given a
hybrid automaton and the durational graph obtained by the
algorithm that we proposed in [14], there exists a simulation

relation between the two systems. To achieve this, we
naturally embed the hybrid automaton and the durational
graph in transition systems, and show that these systems
satisfy a simulation relation. This implies that the abstraction
inherits the universal fragment of temporal logic properties
of the hybrid automaton, namely properties that must be
satisfied by all executions of the system. The variant of
temporal logic that we use in this paper is CTL (Compu-
tation tree logic [12]) and TCTL (Timed CTL [1]). The
additional discussion we present in this paper is motivated
because temporal properties have empty intersection with
the observability property defined in [14]. In constructing
the timed automaton, we abstract the information about the
continuous dynamics with a clock dynamics that measures
the amount of time spent in each location. Constructing the
guards of the timed automaton involves computation of the
time spent in the location. For simple dynamics, this can
be done analytically [6], [21]. For more complex dynamics,
there are computational tools that can help [9], [10], [11],
[27], [16]. The algorithm proposed here is more general than
the algorithm proposed in [14], since it includes invariant
sets. A further contribution of the paper is to implement and
apply our procedure to verify safety and efficient scheduling
in the context of air traffic management.

The paper is organized as follows. In Section II we
give basic definitions of hybrid automata, timed automata,
transition systems, simulation and bisimulation relation. In
Section III we review the algorithm developed in [14] to
construct a durational graph G given a hybrid automaton
H. In Section IV we prove that our abstraction G inherits
a class of the temporal logic properties (i.e. the universal
fragment) of H. In Section V we apply the theoretical results
on a relevant real ATM case study: how to schedule aircraft
landing. Conclusions and outline for future work follow in
the last section.

II. BASIC DEFINITIONS

Systems that have both discrete and continuous aspects
in their dynamics are called hybrid systems. One prominent
theoretical framework that is used to model hybrid systems is
proposed by Lygeros [24], where the discrete part consists of
a labeled oriented graph, and the continuous part is described
by a dynamical continuous system associated to each discrete
state. The interaction between the continuous and discrete
part is described by invariant, guard, and reset conditions.
We consider here hybrid automata, that are hybrid systems
with autonomous dynamics.

Proceedings of the
46th IEEE Conference on Decision and Control
New Orleans, LA, USA, Dec. 12-14, 2007

ThC04.5

1-4244-1498-9/07/$25.00 ©2007 IEEE. 4039

Definition 1 (Hybrid automaton): A hybrid automaton is
a tuple H = (Q × X, Q0 × X0, E , E, Ω, ω, Inv,G, R) such
that: Q × X is the hybrid state space, where Q is a finite
set of discrete states {q1, q2, · · · , qN}, and X ⊆ R

n is
the continuous state space; Q0 × X0 ⊆ Q × X is the
set of initial discrete and continuous conditions; {Eq}q∈Q

associates to each discrete state the autonomous continuous
time–invariant dynamics Eq : ẋ = fq(x). Given an initial
condition x0, we define the solution at time t according to
fq by x(t) = xfq

(t, x0); E ⊆ Q × Q is a collection of
edges; each edge e ∈ E is an ordered pair of discrete states,
the first component of which is the source and is denoted
by s(e), while the second is the target and is denoted by
t(e); Ω is a space of logic propositions. We associate to
each discrete state q ∈ Q an element of Ω, by the function
ω : Q → Ω. This allows to define properties that characterize
a discrete state of the system by means of a logic proposition,
similarly to the classical framework of Kripke structures [12];
{Invq}q∈Q associates to each discrete state an invariant set
Invq ⊆ X; {Ge}e∈E associates to each edge a guard set
Ge ⊆ Invs(e); {Re}e∈E associates to each edge a reset map

Re : Invs(e) → 2Invt(e) .

Note that a hybrid automaton is generally nondetermin-
istic: the continuous state evolves following deterministic
dynamics, and the discrete state evolution depends only
on the continuous state, according to guards, possibly with
nondeterministic behaviors in the discrete transitions and
reset. Guards are enabling conditions: when the continuous
state hits a guard, a transition might or might not occur.
On the other hand, a transition is forced to occur when the
continuous state exits the invariant set and at least one guard
is enabled. In the following, we denote the set of incoming

edges in q by inc(q) , {e ∈ E : t(e) = q}.

Referring to [24], we recall the definitions of hybrid time
basis and hybrid execution of a hybrid system. A hybrid time

basis τ , {Ik}k≥0 is a finite or infinite sequence of intervals
Ik = [tk, t′k] such that properties stated in [24] hold. The
number of intervals is the cardinality |τ | of the time basis. A
hybrid execution is a triple χ = (τ, q, x), where τ is a hybrid
time basis, and q, x describe the evolution of the discrete and
continuous state by means of functions q : τ → Q piecewise
continuous, and x : τ → X . Functions q, x are defined on
the hybrid time basis τ , take values on the hybrid state space,
and satisfy the continuous and discrete dynamics and their
interactions (invariant, guard and reset). In this paper, we
consider non blocking hybrid automata, i.e. systems such that
all hybrid executions are defined for all time instants. We do
not exclude that many transitions (possibly infinite) might
occur in a finite time interval, i.e. we allow Zeno executions.

We call durational graph a timed automaton [3] charac-
terized by only one clock that is reset to 0 for all edges:

Definition 2 (Durational graph): A durational graph is a
hybrid automaton (Q × X, Q0 × X0, E , E, Ω, ω, Inv,G, R)
such that: X = R+ ∪ {0} is the continuous state space of
the clock variable v; for each q0 ∈ Q0, the initial condition
is given by (q0, 0); for each q ∈ Q, the continuous dynamics
are defined by Eq : v̇ = 1; for each q ∈ Q, the set Invq is a
rectangular set1; for each e ∈ E, the set Ge is a rectangular

1a rectangular set in R
n is any subset that can be defined by a finite

union of cartesian products of intervals.

set and Re(v) = {0}.
By Definition 2, a durational graph is uniquely identified by
a tuple G = (Q,Q0, E, Ω, ω, Inv, G).

We use the framework of transition systems to model
both hybrid automata and durational graphs [25] in the same
mathematical framework. We apply the canonical definition
of simulation relation given for transition systems to relate
the hybrid automaton and the durational graph abstraction.

Definition 3 (Transition system): A (labeled) transition
system with observations is a tuple T = (Q,Q0,Σ, E, Ω, ω)
that consists of a possibly infinite set Q of states, a possibly
infinite set Q0 ⊆ Q of initial states, a possibly infinite
set Σ of labels, a transition relation E ⊆ Q × Σ × Q, a
possibly infinite set Ω of observations and an observation
map ω : Q → Ω.

In what follows, we use the notation q
σ
→ q′ to denote that

(q, σ, q′) ∈ E, where q, q′ ∈ Q and σ ∈ Σ. Let T1 =
(Q1, Q

1
0,Σ1, E1, Ω1, ω1) and T2 = (Q2, Q

2
0, Σ2, E2, Ω2, ω2)

be two labeled transition systems with the same set of
labels (Σ1 = Σ2 = Σ) and the same set of observations
(Ω1 = Ω2 = Ω).

Definition 4 (Simulation relation): A relation Γ ⊆ Q1 ×
Q2 is called a simulation relation of T1 by T2, if for all
(q1, q2) ∈ Γ:

(i) ω1(q1) = ω2(q2),
(ii) for all q1

σ
→ q′1, there exists q2

σ
→ q′2 such that

(q′1, q
′
2) ∈ Γ.

A relation Γ is called a bisimulation when it is both a
simulation of T1 by T2, and a simulation of T2 by T1.

Definition 5 (Simulation): T2 simulates T1 (denoted T1 ¹
T2) if there exists Γ, a simulation relation of T1 by T2,
such that for any q1 ∈ Q1

0, there exists q2 ∈ Q2
0 such that

(q1, q2) ∈ Γ.
If any initial state of T1 can be related to any initial state of
T2 and conversely, then T1 and T2 simulate each other, and
we say that T1 and T2 are bisimilar.

III. TRANSLATING HYBRID TO TIMED AUTOMATA

Since we are interested in verifying temporal properties
of a system, we need an abstract model that embeds time;
for this reason, we use a class of timed automata. We
propose here a slightly modified version (that also considers
the invariant sets) of the algorithm developed in [14], to
construct a durational graph that is an abstraction of a hybrid
automaton. Given a hybrid automaton H as in Definition 1,

we define X0(q0) , {x0 ∈ X0 : (x0, q0) ∈ X0 × Q0} the
set of initial continuous conditions associated to the initial
discrete state q0 ∈ Q0. The non blocking assumption requires

that X0(q0) ⊆ Invq0 . Moreover, we define Range(Re) ,

{x ∈ X : ∃x′ ∈ Ge, x ∈ Re(x
′)} the range of the reset asso-

ciated to edge e ∈ E. The non blocking assumption requires
that ∀q ∈ Q,∀e ∈ inc(q), Range(Re) ⊆ Invq: i.e., the reset
“lands” in the invariant of the target location. Define now a
relation γ ⊆ Q ×

(

Q × (E ∪ Q0)
)

as follows:

γ , {(q, (q, l)) : q ∈ Q and either l ∈ inc(q) or l = q ∈ Q0}

For l ∈ E ∪ Q0, let

ℜl ,

{

X0(q0) if l = q0 ∈ Q0

Range(Re) if l = e ∈ E

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThC04.5

4040

Algorithm 1: Consider H = (Q × X, Q0 ×
X0, E , E, Ω, ω, Inv, G, R). We define a durational graph
G = (Q′, Q′

0, E
′,Ω′, ω′, Inv′, G′) as follows:

1) Q′ , {(q, l) : (q, (q, l)) ∈ γ};

2) Q′
0 , {(q, l) ∈ Q′ : q ∈ Q0, l = q};

3) E′ ,
{(

(q1, l1), (q2, l2)
)

: l2 = (q1, q2) and either

l1 ∈ inc(q1) or l1 = q1 ∈ Q0

}

;
4) Ω′ = Ω, and ∀(q, l) ∈ Q′, ω′((q, l)) = ω(q);
5) ∀q′ = (q, l) ∈ Q′, define:

Inv′
q′ , {t ∈ R+ ∪ {0} : ∃x0 ∈ ℜl, (1)

xfq
(τ, x0) ∈ Invq,∀τ ∈ [0, t]}.

6) ∀e′ =
(

(q1, l1), (q2, l2)
)

∈ E′, define:

G′
e′ , {t ∈ R+ ∪ {0} : ∃x0 ∈ ℜl1 , (2)

xfq1
(t, x0) ∈ Gl2}.

The idea of the algorithm is to split each discrete state
depending on the number of incoming edges, and to define
invariant and guard sets of the durational graph by means of
the dwell time in each discrete state of the hybrid automaton.
The main issue is the computation of the invariant and guard
sets IG = {G′

e′}e′∈E′ , IInv = {Inv′
q′}q′∈Q′ . If the dynamics

fq(x) are linear, the exact computation is possible when
the system has a particular structure [6], [21]. Whenever
the exact computation is not possible, one can compute the
over approximations I∗G, I∗Inv e.g. using the Matlab routine
proposed in [27]. The algorithm is very fast, even for high
dimensional continuous state spaces, but there is no analysis
of the over approximation error. It is also possible to use
the result in [10], which provides a procedure to compute
a sequence of polytopes (a flow pipe) that are over ap-
proximations of the reach sets {Reach[Tk,Tk+1](X0)}k≥0 for
arbitrary small sampling time T . By checking for each k ≥ 0
if the intersection set Reach[Tk,Tk+1](X0)∩XF is empty, it is
possible to determine rectangular time intervals I∗G ⊇ IG and
I∗Inv ⊇ IInv with arbitrary precision. The weak point of this
approach is the increase in the computation time. Another
procedure, similar to [10], is presented in [16], where an
algorithm to compute a sequence of zonotopes2 is proposed.
This algorithm is very fast, because the computation of the
flow pipe and of the intersections with XF is considerably
faster for zonotopes than for polytopes [17]. Moreover, the
algorithm computes the reach set in the presence of a control
input that takes values in a bounded set. Recent results that
can also be used for computing I∗G, I∗Inv are given in [18],
[20]. If the dynamics are nonlinear, we can use the approach
of [10]. In the case study of section V, we will use the
framework developed in [20].

IV. MAIN RESULT

The following remark shows that we can model check a
hybrid automaton H on a conservative abstraction G.

Remark 1: It is well known that simulation relations pre-
serve all properties expressible in the universal fragment of
CTL or TCTL.
In [14] it was proven that G preserves observability. The fol-
lowing remark justifies the additional discussion we present
in this paper.

2A zonotope is a centrally symmetric polytope, defined by the Minkowski
sum of its line segment generators s1, · · · , sm ∈ R

n.

Remark 2: The temporal logics CTL and TCTL have
empty intersection with the observability property as defined
in [14], since they do not allow one to express the equiva-
lence of two output strings.
We prove here that G inherits the universal fragment of
temporal properties of H. To this aim, we consider the
transition systems T H, T G that naturally embed H,G. Then,
we prove that T H ¹ T G according to Definition 5.

Definition 6 (Transition system model of H): Given a
hybrid automaton H, we define a transition system T H as
follows:

• QT H

= QH × XH is the state space: a state of QT H

is a pair (q, x), with q ∈ QH and x ∈ XH;

• QT H

0 = QH
0 × XH

0 is the set of initial states;

• ΣT H

= R+ ∪ {0} is the set of labels (time flow);

• ET H

is the transition relation defined as follows:

1) (q, x)
t
→ (q, x′) for t 6= 0 if:

x′ = xfq
(t, x) ∧ ∀τ ∈ [0, t], xfq

(τ, x) ∈ InvH
q .

(3)

2) (q, x)
t
→ (q′, x′) for t = 0 if:

e = (q, q′) ∈ E ∧ x ∈ GH
e ∧ x′ ∈ RH

e (x). (4)

• ΩT H

= ΩH is the set of observations;

• ωT H

is the observation map, where ωT H

(q, x) =
ωH(q).

Definition 7 (Transition system model of G): Given a du-
rational graph G, we define a transition system T G as
follows:

• QT G

= QG × R+ ∪ {0} is the state space: a state of

QT G

is a pair (q, x), with q ∈ QG and x ∈ R+ ∪ {0};

• QT G

0 = QG
0 × {0} is the set of initial states;

• ΣT G

= R+ ∪ {0} is the set of labels;

• ET G

is the transition relation defined as follows:

1) (q, x)
t
→ (q, x′) for t 6= 0 if:

x′ = x + t ∧ ∀τ ∈ [0, t], x + τ ∈ InvG
q . (5)

2) (q, x)
t
→ (q′, x′) for t = 0 if:

e = (q, q′) ∈ EG ∧ x ∈ GG
e ∧ x′ ∈ RG

e (x). (6)

• ΩT G

= ΩG is the set of observations;

• ωT G

is the observation map, where ωT G

(q, v) = ωG(q).
We recall that Algorithm 1 takes as input a hybrid automaton
H, and produces as output a durational graph G and a relation
γ ⊆ QH × QG . The following theorem states that T G

simulates T H.
Theorem 1: T H ¹ T G .

By Remark 1 it follows that if T G simulates T H, then G
inherits the universal fragment of temporal properties of H.

V. VERIFICATION OF SAFETY AND SCHEDULING

EFFICIENCY IN THE LANDING PROCEDURE

In this section, we analyze an important procedure in the
context of air traffic management: the landing scheduling
procedure. This procedure involves two aircraft (A/C 1 and
A/C 2) incoming from two different air traffic routes A1 and
A2, as shown in Figure 1. A conflict resolution is completely
assigned to the approaching air traffic controller (ATC). For

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThC04.5

4041

D
1

L
1 L

2

R
1

E
DET

1

A/C 1 A/C 2

R

W

Y

E
APP

1

E
LND

1

E
LND

2

E
APP

2

E
RET

1

d-a a-b b

x

y

c

Fig. 1. Landing scheduling scheme.

instance, the two aircraft could arrive in the landing areas
L1 and L2 too close one to each other: in this case, the ATC

usually gives the command to change heading to one of the
two aircraft, say A/C 1, in order to delay its arrival in the
landing area L1. We assume without loss of generality that
the command to change heading is given to A/C 1, and that
the decision is taken when A/C 1 is in the detour zone D1.
The ATC estimates by the current velocity and position mea-
surements of the aircraft, if they could arrive in the landing
area too close. The ATC has access to the measurement from
the radar, and he has to make a quick decision. Typically,
safety is the only considered factor. There is no explicit
consideration for minimizing the inter–arrival time delay.
Furthermore, because of limited time availability, the ATC

makes its decision based on qualitative and rough estimations
of the inter–arrival delay. The reasoning of the ATC in this
conflict resolution corresponds to the construction, on the
basis of the data available from the radar, of a timed model of
the aircraft operations, and to the verification that the inter–
arrival time to the landing area is not too small.

With the aim of helping the ATC to solve the conflict, we
can apply the theoretical results of the previous section on
a model of the landing scheduling procedure. We propose
an optimization of landing traffic scheduling protocol that
satisfies not only safety distance, but also a maximal inter–
arrival delay. First, we formally define a hybrid model H of
the system. The continuous layer is given by the positions
of the aircraft. We propose linear decoupled dynamics for
A/C 1 and A/C 2. The discrete layer is given by the current
operation of each aircraft, e.g. A/C 1 can be approaching to
the landing zone, changing heading towards R1, or landing.
In Figure 1 both A/C 1 and A/C 2 are approaching towards
zones L1 and L2. Once arrived, they start landing on the
runway (RWY) at the origin of the axis. The switching
between discrete states of the aircraft, and the protocol
that is used to decide if A/C 1 has to change its route, is
embedded in the guard and invariant sets. Thus, the conflict
resolution protocol is embedded in the hybrid model H. By
following the procedure proposed in the previous sections,
we construct a durational graph G. By Remark 1, universal
temporal properties expressed in TCTL [1] are preserved by
the abstraction G. The following step is to (model) check

if such a protocol ensures safety, namely the two aircraft
do not arrive in the landing area too close one to each
other. In addition to this, we also check that the inter–arrival
time delay does not exceed a given upper bound. We try
to modulate the position of the detour zone D1 in order to
satisfy both safety and efficient traffic scheduling. Following
the notation of Figure 1, we define a hybrid model H for the
two aircraft system as follows:

A/C 1 Approach

A/C 2 Approach

q1

q2

q3

q4

q5

e6e3

e2

e1

A/C 1 Detour

A/C 2 Approach

A/C 1 Return

A/C 2 Approach

A/C 1 Detour

A/C 2 Landing

A/C 1 Landing

A/C 2 Approach

q6

A/C 1 Return

A/C 2 Landing

q7

A/C 1 Landing

A/C 2 Landinge4

e5 e8

e7

Fig. 2. Discrete layer of H.

Q = {q1, q2, q3, q4, q5, q6, q7}. In q1 A/C 1 and A/C 2 are
both approaching respectively towards L1 and L2. In q2 A/C

1 starts the detour by changing heading towards R1. In q3

A/C 1 is still proceeding towards R1 and A/C 2 is landing. In
q4 A/C 1 is approaching towards L1 after the detour and A/C

2 is still approaching towards L2. In q5 A/C 1 is approaching
towards L1 after the detour and A/C 2 is landing. In q6 A/C

1 is landing and A/C 2 is still approaching towards L1. In
q7 both aircraft are landing, hopefully not simultaneously.

Ω is the set of logic propositions on the set of variables
{φ1, φ2}, where φ1 is true if A/C 1 is in landing mode, and φ2

is true if A/C 2 is in landing mode. The function ω : Q → Ω
associates to each discrete state q ∈ Q a formula in Ω:

ω(q1) = ω(q2) = ω(q4) = ¬φ1 ∧ ¬φ2.

ω(q3) = ω(q5) = ¬φ1 ∧ φ2.

ω(q6) = φ1 ∧ ¬φ2, ω(q7) = φ1 ∧ φ2.

R
7 × R

7 is the continuous state space. The state vari-
able of each aircraft i = 1, 2 given by the vector χi =
(βi, ri, pi, ϕi, ψi, xi, yi), where βi is the side-slip angle, ri

is the yaw rate, pi is the roll rate, ϕi is the roll angle, ψi

is the yaw angle, and (xi, yi) is the aircraft position on the
plan in Figure 1.

{q1} is the initial discrete state, {(0, 0, 0, 0, 1
4π)} and

{(0, 0, 0, 0, 3
4π)} are the initial conditions of the variables

(βi, ri, pi, ϕi, ψi) for i = 1, 2. The sets [−a−α1,−a+α1]×
[−α1,+α1] and [a − α1, a + α1] × [−α1, +α1], α1 > 0,
are the sets of initial conditions of the variables (xi, yi):
these sets model the arrival positions of the two aircraft
introducing non determinism in the hybrid model. When
safety distance is respected, the continuous dynamics E1

and E2 of each aircraft are decoupled. The dynamics of the
variables (βi, ri, pi, ϕi, ψi) are obtained for each aircraft by
a feedback control loop designed to asymptotically pursue a
reference value ψr of the yaw angle, and are characterized
by a LTI system E(ψr) defined by the matrices:

A =





−0.558 −0.997 0.08 0.041 0 0.007
0.598 −0.115 −0.032 0 0 −0.475
−3.05 0.388 −0.465 0 0 0.153

0 0.08 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 −1



B =





0.0073
−0.4750
0.1530

0
0
0





46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThC04.5

4042

with reference input ψr. Thus {E1
q ×E2

q }q∈Q can be defined
by means of the reference yaw angle ψr, that defines the
heading for the aircraft:

E1
q1

= E(
π

4
), E1

q2
= E1

q3
= E(

π

2
),

E1
q4

= E1
q5

= E(0), E1
q6

= E1
q7

= E(−
π

2
),

E2
q1

= E2
q2

= E2
q4

= E2
q6

= E(−
π

4
),

E2
q3

= E2
q5

= E2
q7

= E(−
π

2
).

The dynamics of the variables (xi, yi) are defined by the
nonlinear dynamics ẋi = Vi cos ψi, ẏi = Vi sin ψi. We
assume for simplicity and w.l.o.g. that the norm Vi of the
speed of aircraft i is constant.

E is defined by the directed edges in Figure 2. The
invariant sets defined as follows:

Invq1 = {(χ1, χ2) : x1 < −d + α2, x2 > b}

Invq2 = {(χ1, χ2) : y1 < c, x2 > b}

Invq3
= {(χ1, χ2) : y1 < c, x2 < b}

Invq4
= {(χ1, χ2) : x1 < −b, x2 > b}

Invq5 = {(χ1, χ2) : x1 < −b, x2 < b}

Invq6 = {(χ1, χ2) : x1 > −b, x2 > b}

Invq7 = {(χ1, χ2) : x1 > −b, x2 < b}

The guard sets defined as follows:

Ge1
= {(χ1, χ2) : x1 ≥ −d}, Ge2

= {(χ1, χ2) : x2 ≤ b},

Ge3
= {(χ1, χ2) : y1 ≥ c}, Ge4

= {(χ1, χ2) : y1 ≥ c},

Ge5 = {(χ1, χ2) : x2 ≤ b}, Ge6 = {(χ1, χ2) : x1 ≥ −b},

Ge7 = {(χ1, χ2) : x1 ≥ −b}, Ge8 = {(χ1, χ2) : x2 ≤ b}

with α2 > 0. The reset is defined by the identity function
∀e ∈ E,∀x ∈ Ge, Re(x) = x; α1 is a parameter that can be

q ,q1 1

q ,e2 2 q ,e4 3

q ,e3 2

q ,e6 6

q ,e7 8

q ,e5 5

q ,e5 4

q ,e7 7

Fig. 3. Durational graph G.

used to introduce non determinism in the initial position of
the two aircraft. Similarly, α2 introduces non determinism in
the position where the veer manoeuvre is started by A/C 1,
w.r.t. the desired value d. The same reasoning can be applied
when introducing non determinism in the model to take in
consideration radar measure errors, nondeterministic delay
by the pilot flying in executing a manoeuvre due to commu-
nication delay or human inaccuracy, and nondeterministic
anticipation or delay by the ATC in taking a decision or
giving a command to the pilot.

Using the procedure proposed in Section III, it is possible
to construct from H the durational graph G illustrated in
Figure 3. We have computed the guard sets of G using a
Matlab routine that exploits the methodology proposed in
[20], that can be applied to linear dynamics. To model the
change of heading e.g. from ψr = π

4 to ψr = π
2 (transition

e1 of H) with a LTI model, and since the dynamics of
(xi, yi) are nonlinear, we have implemented in our algorithm
a linearized hybrid automaton where for each discrete state
the value of the variable ψi is such that sin ψi ≃ ψi and
cos ψi ≃ 1 in the neighborhood of the reference heading ψr.
Roughly speaking, we split the veer in a finite sequence of
small changes of heading. We have used in our routine the
following numeric values: a = 100 km, b = 10 km, c = 90
km, V1 = V2 = 400 km/h, α1 = 5 km, α2 = 10 km. The
variable d is the desired position where the detour command
is given to A/C 1 to change the heading to ψr = π

2 . The
set of positions where the veer might start is represented by
zone D1 in Figure 1. Theorem 1 implies that H ¹ G, and
by Remark 1 it follows that universal formulae satisfied by
G are also satisfied by H. The properties we require from
the landing scheduling protocol are the following:

1) Safety: we require that a landing of A/C 1 can only
start after a safety delay tmin since landing of A/C 2

is started.
2) Efficient traffic scheduling: we require that landing

of A/C 1 must start within a time tmax since landing
of A/C 2 is started.

Thus, in order to check if the system H satisfies safety and
efficient traffic scheduling, we can model check on G the
following TCTL formula:

∀ (¬φ1 ∧ ¬φ2 Ut≥0 (¬φ1 ∧ φ2 Utmin≤t≤tmax
φ1 ∧ φ2))

Namely A/C 1 starts landing only after A/C 2 is already
landing, with a delay time in the set [tmin, tmax]. The
verification of this formula requires a TCTL verifier for
timed automata, e.g. KRONOS [28]. In our case, since the
clock of a durational graph is always reset to zero, we have
been able to use deductive reasoning to model check the
formula on G. Let us require that the inter–arrival delay

Fig. 4. Plot of the abstraction algorithm output for aircraft A/C 1, for
d = −70. The blue sets are the over approximations of the aircraft positions
when the guards are hit.

belongs to the time interval [tmin = 60, tmax = 180]s. Since

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThC04.5

4043

Detour zone Inter-arrival time Valuation

d = −70 [53, 155]s possibly unsafe

d = −80 [71, 173]s safe & efficient

d = −90 [88, 190]s possibly inefficient

TABLE I

INTER–ARRIVAL TIMES DEPENDING ON THE DETOUR POSITION d

our abstraction algorithm runs in a few seconds, we have
performed simulations modulating the value of d to yield
the desired properties on the system, and model checked the
formula on the system Gd. As shown in Table I, for d = −70
km the safety constraint is not satisfied, since the minimum
inter-arrival time is 53s < 60s. For d = −90 km the system is
safe but the efficiency specification is not satisfied, since the
maximum inter–arrival time is 190s > 180s. With a detour
zone set at d = −80 km both safety and efficient traffic
scheduling requirements are satisfied, and the inter–arrival
gap is [71, 173]s.

VI. CONCLUSIONS

In this work we proposed a procedure to verify temporal
properties of a hybrid automaton H using a durational graph
G, that is an abstraction of the original system. We showed
that G preserves certain temporal properties of H, namely the
universal TCTL formulae. We applied the procedure to a rel-
evant real case study in the context of air traffic management,
the landing scheduling. Since our current implementation
only generates the abstraction, we did not relate it to the
existing model checking tools for hybrid automata. We plan
to build a tool that implements the abstraction algorithm
and provides as output the standard input file format for
UPPAAL [22], so that model checking can be performed
automatically on the hybrid automaton. Current work also
deals with the definition of a metric for quantifying the
distance between timed trajectories of the original system
and of the abstraction.

REFERENCES

[1] R. Alur, C. Courcoubetis, and D.L. Dill. Model–checking in dense
real–time. Information and Computation, 104(1):2–34, 1993.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138:3–34,
1995.

[3] R. Alur and D.L. Dill. A theory of timed automata. Theoretical

Computer Science, 126:183–235, 1994.

[4] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas. Discrete
abstractions of hybrid systems. Proccedings of the IEEE, 88(2):971–
984, July 2000.

[5] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic ver-
ification of embedded systems. IEEE Transactions on Software

Engineering, 22:181–201, 1996.

[6] H. Anai and V.Weispfenning. Reach set computations using real
quantifier elimination. In M. D. Di Benedetto and A.L. Sangiovanni-
Vincentelli, editors, Hybrid Systems: Computation and Control, vol-
ume 2034 of Lecture Notes in Computer Science, pages 103–117.
Springer Verlag, 2001.

[7] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reach-
ability analysis of piecewise linear dynamical systems. In Hybrid

Systems: Computation and Control, Pittsburgh, USA, Lecture Notes
in Computer Science. Springer Verlag, March 2000.

[8] M. Babaali and G. J. Pappas. Observability of switched linear systems
in continuous time. In M. Morari and L. Thiele, editors, Hybrid

Systems: Computation and Control, volume 3414 of Lecture Notes

in Computer Science, pages 103–117. Springer Verlag, 2005.
[9] A. Bemporad, F. D. Torrisi, and M. Morari. Discrete–time hybrid

modeling and verification of the batch evaporator process benchmark.
European Journal of Control, 7(4):382–399, 2001.

[10] A. Chutinan and B. Krogh. Computing polyhedral approximations to
flow pipes for dynamic systems. In Proceedings of the 37th IEEE

Conference on Decision and Control, Tampa, FL, pages 2089–2094,
December 1998.

[11] A. Chutinan and B.H. Krogh. Computing approximating automata for
a class of linear hybrid systems. In Hybrid Systems V, Lecture Notes

in Computer Science, Springer Verlag, pages 16–37, 1998.
[12] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The

MIT Press, Cambridge, Massachusetts, 2002.
[13] E. De Santis, M. D. Di Benedetto, S. Di Gennaro, A. D’Innocenzo,

and G. Pola. Critical observability of a class of hybrid systems and
application to air traffic management. Book Chapter of Lecture Notes

on Control and Information Sciences, Springer Verlag, 2005.
[14] A. D’Innocenzo, M. D. Di Benedetto, and S. Di Gennaro. Observabil-

ity of hybrid automata by abstraction. In J. Hespanha and A. Tiwari,
editors, Hybrid Systems: Computation and Control, volume 3927 of
Lecture Notes in Computer Science, pages 169–183. Springer Verlag,
2006.

[15] A. D’Innocenzo, A.A. Julius, G.J. Pappas, M.D. Di Benedetto, and
S. Di Gennaro. Verification of temporal properties on hybrid automata
by simulation relations. Technical report, University of L’Aquila, 2007.
www.diel.univaq.it/tr/web/web search tr.php.

[16] A. Girard. Reachability of uncertain linear systems using zonotopes.
In M. Morari and L. Thiele, editors, Hybrid Systems: Computation and

Control, volume 3414 of Lecture Notes in Computer Science, pages
291–305. Springer Verlag, 2005.

[17] L.J. Guibas, An Nguyen, and Li Zhang. Zonotopes as bounding vol-
umes. In Proceedings of the fourteenth annual ACM-SIAM symposium

on Discrete algorithms. Baltimore, Maryland, USA, pages 803–812,
2003.

[18] Zhi Han and B. H. Krogh. Reachability analysis of large–scale
affine systems using low–dimensional polytopes. In J. Hespanha and
A. Tiwari, editors, Hybrid Systems: Computation and Control, volume
3927 of Lecture Notes in Computer Science, pages 287–301. Springer
Verlag, 2006.

[19] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker
for hybrid systems. Software Tools for Technology Transfer, 1:110–
122, 1997.

[20] A.A. Julius, G. Fainekos, M. Anand, I. Lee, and G.J. Pappas. Robust
test generation and coverage for hybrid systems. In Hybrid Systems:

Computation and Control, To appear, Lecture Notes in Computer
Science. Springer Verlag, 2007.

[21] G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic reachability
computations for families of linear vector fields. Journal of Symbolic

Computation, 32(3):231–253, September 2001.
[22] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell.

International Journal on Software Tools for Technology Transfer,
1(1):134–152, December 1997.

[23] J. Lunze. Discrete-event modelling and fault diagnosis of discretely
controlled continuous systems. In Proceedings of the 2nd IFAC

Conference on Analysis and Design of Hybrid Systems (ADHS),

Alghero, Sardinia, Italy, June 7-9 2006.
[24] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability

specications for hybrid systems. Automatica, Special Issue on Hybrid

Systems, 35, 1999.
[25] G.J. Pappas. Bisimilar linear systems. Automatica, 39(12):2035–2047,

December 2003.
[26] O. Stursberg and S. Kowalewsky. Approximating switched continuous

systems by rectangular automata. In Proceedings of the 1999 European

Control Conference, Karlsruhe, Germany, 1999.
[27] H. Yazarel and G. J. Pappas. Geometric programming relaxations

for linear system reachability. In Proceedings of the 2004 American

Control Conference, Boston, MA, June 2004.
[28] S. Yovine. Kronos: A verification tool for real-time systems. Inter-

national Journal of Software Tools for Technology Transfer, Springer-

Verlag, 1(1):123–133, October 1997.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThC04.5

4044

