
Cooperative Coverage using Receding Horizon Control

Ali Ahmadzadeh, Ali Jadbabaie, Vijay Kumar and George J. Pappas

Abstract— We present a path planning algorithm for coop-
erative surveillance using a set of heterogeneous unmanned
vehicles. The paper describes our overall framework and
algorithm for the computation of trajectories that maximize
spatio-temporal coverage while satisfying hard constraints such
as collision avoidance and specifications on initial and final
positions. An Integer Programming (IP)-based strategy for
successfully operating within these constraints is developed.
IP is applied over a receding planning horizon with terminal
cost to reduce the computational effort of the planner and to
incorporate feedback. Simulation and results are presented to
demonstrate the efficacy of the proposed approach.

I. INTRODUCTION

T HE use of Unmanned Aerial Vehicles (UAVs) equipped
with cameras for surveillance is a natural but challeng-

ing application of robotic technology. Unlike ground robots,
aerial platforms have many more operating constraints and
their dynamic response typically dictates the nature of their
role in such an application. [1]-[6].

Consider the problem of designing a path planner for a
set of unmanned vehicles with the following scenario. The
planner receives a request for a plan for a specified subset of
vehicles under its control. The planner also receives an entry
and exit state for each vehicle (3-D location, velocity vector,
and time of arrival). It also receives additional information
such as obstacle or threat locations, no-fly zones, at sensor
availability. The task of the planner is the computation of
trajectories that maximize spatio-temporal coverage while
satisfying hard constraints such as collision avoidance and
specifications on initial and final positions.

This paper address the cooperative motion-planning prob-
lem for a group of heterogeneous vehicles which have
to surveil and generate mosaic maps of their operations
area while respecting boundary conditions. Each vehicle is
modeled as a nonholonomic point mass moving on a two-
dimensional (2-D) plane at a constant speed with a minimum
turning radius. This model is also known as Dubins car in the
literature [7]. There is extensive research on multi-UAV task
scheduling and planning which doesn’t address the coverage
problem. For a review the interested reader can refer to [11],
[12]. One approach to the coverage problem is based on
cellular decomposition. When using a cellular decomposition
either each cell is covered when the vehicle crosses it or the
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Fig. 1. Sensor footprint map of onboard sensors

vehicle has to perform some specific motion pattern (usually
a boustrophedon motion) in order to cover the cell [13].
This method mainly focuses on the single robot coverage
and nonholonomic constraints are not considered.

Most of prior work in the area of coverage concentrated
on sensor network problem [14]-[17].The cooperation of
multiple sensors is often achieved by choosing different
sensors (or sensor modes) for different tasks (targets) at
different times and motion planning is not involved in these
problems. Cortes et al. [18] studied the multi-sensor local-
ization problem in a polygonal environment and developed a
gradient-descent algorithm for optimal coverage and sensing
policies. Each sensor agent is expected to converge to its
optimal location and stay there. Enrigh et al. [19] considered
the problem of visiting stochastically-generated targets in a
planar bounded region with the objective of minimization of
the expected waiting time between the appearance of a target,
and the time it is visited. In [21], [22] the coupling between
flight path and the camera field of view is studied and an
Integer Programming(IP)-based algorithm for time-critical
cooperative surveillance using a set of UAVs is introduced.

II. PROBLEM DEFINITION

The mathematical formulation of the problem for theTIC3

planner include the following components.
1. N heterogeneous autonomous vehicles:These vehicles

work at fixed altitudes and might have conflict when they are
on the same altitude. Vehiclei has constant forward velocity
vi and minimum turning radiusρi and a planar trajectory as
γi(t) = (xi(t),yi(t)).
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Fig. 2. An example with two vehicles

2. Boundary conditions, {γentry
i , tentry

i } and {γexit
i , texit

i },
for i = 1,2, · · · ,N: These conditions mean that the vehiclei
starts the task at positionγentry

i at timeγentry
i , and terminates

the task at positionγexit
i at timeγexit

i . We useTi = texit
i − tentry

i
to denote the time horizon of vehiclei.

3. Coverage area,Ω ⊂ ℜ2: It is a closed and bounded
subset ofℜ2.

4. Non-fly or non-sail zones,O⊂ ℜ2: They are closed
and bounded subsets ofℜ2, which are characterized as the
union of a finite number of polygonal regions.

5. Sensor footprint mapping, Ψ: Each vehicle is
equipped with a device, which will sense the situations on the
ground. The sensing footprint of the device is characterized
by Ψi : γi → 2R2

. Fig. 1
An exact solution for this problem is trajectories

{γ∗1(t), · · · ,γ∗N(t)} for N vehicles such that

{γ∗1(t), · · · ,γ∗N(t)}= arg max
{γ1(t),··· ,γN(t)}

⋃

t

(Ψi(γi(t))∩Ω) (1)

while avoiding non-fly or non-sail zonesO∩ {γ∗i (t)} = /0,
satisfying boundary conditions

γ∗i (tentry
i ) = γentry

i ,γ∗i (γexit
i ) = γexit

i , (2)

and the minimum turning radius constraints, fori =
1,2, · · · ,N. To apply these solutions on practical vehicles,
these admissible trajectories will be converted into a se-
quence of way points for each vehicles. An example of the
problem with two vehicles is shown in Fig. 2, in which entry
and exit states and time are marked as large dots, dashed lines
represent the solution trajectories, and small dots represent
way points on the solution trajectories. Following these
trajectories, vehicles will achieve maximal coverage while
avoiding non-fly or non-sail zones.

If boundary conditions (16) are replaced by

γ∗i (tentry
i ) = γentry

i ,‖γ∗i (to
i )− γexit

i ‖ ≤ αd
i , |to

i − texit
i | ≤ α t

i , (3)

then the solution is called an approximate solution with
spatial toleranceαd = [αd

1 ,αd
2 , · · · ,αd

N] and time tolerance
α t = [α t

1,α
t
2, · · · ,α t

N].
Throughout the paper we use the following notations.

Consider an n-tupleα = (α1, . . . ,αn) of nonnegative integers,
then we define the sum as[α ] = ∑αi and ∂ α

∂xα = ∂ [α]

∂x
α1
1 ···∂xαn

n
.

Let f : ℜn → ℜ. We say thatf is classCk for nonnegative
integerk, if the partial derivatives∂ α

∂xα exist and are contin-
uous for[α ]≤ k. If f : ℜn→ℜm, then f is classCk if each
of the component functionsfi is classCk. Also ‖.‖ denote
Euclidian norm.
For the setV, measureµ(V) is defined as:

µ(V) =
∫

V
χv(x)dx (4)

whereχv(x) is indicator function defined as:

χv(x) =
{

1 x∈V
0 x /∈V

(5)

For the setV ⊂ℜ2, let M(V) be the mass center of the inertia
as:

M(V) =
∫

V
xdx (6)

A planar path or trajectory is a functionγ : [t0, t1]→ ℜ2 as
γi(t) = (xi(t),yi(t)). Signed curvature of the pathγ(t) is κ(t)
and is defined as:

κ(t) = (x(t)′y(t)′′−x(t)′′y(t)′)/‖γ
′
(t)‖3 (7)

A planar trajectoryγi(t) is called flyable by vehicleui if it is
classC2 and the absolute value of the signed curvature of the
trajectory is always less than1/ρi whereρi is the minimum
radius of a flyable circle by UAVui . Since the trajectory
γi(t) of UAV ui is a planar curve with constant speedvi ,
signed curvature functionκi(t) and initial conditionsγi(t0)
and θi(t0) are sufficient to fully specify trajectoryγi(t) as
described in the following theorem adapted from [20].

Theorem 1:Let κ : [t0, t0 + τ]→ [−1/ρ ,1/ρ ] be a piece-
wise continuous curvature function for the planar trajectory
γ(t) with given initial conditionsγ(t0) = (x(t0),y(t0)), θ(t0)
and constant speed‖γ ′i (t)‖ = vi . Then the parameterized
trajectoryγ : [t0, t0 + τ]→ℜ2 can be written as:

γ(t) = (x(t),y(t)) (8)

where
x(t) = v

∫ t

t0
cos(θ(ζ ))dζ +x(t0) (9)

y(t) = v
∫ t

t0
sin(θ(ζ ))dζ +y(t0) (10)

and

θ(ζ ) =
∫ ζ

t0
κ(ξ )dξ +θ(t0) (11)

Also γ(t) is a classC2 and flyable trajectory for a UAV with
constant speedv and initial conditionsγ(t0) and θ(t0) with
minimum turning radiusρ.
This theorem enables us to change the search space from
flyable planar trajectoriesγi(t) i = 1, ..,N to bounded scalar
functionsκi(t) i = 1, ..,N.

Therefore we can restate our objective as generating
curvature functions{κi(t) | |κi(t)| ≤ 1/ρi , i = 1,2, · · · ,N}
for all UAVs in order to get maximum coverage while
satisfying hard constraints such as collision avoidance and
specifications on initial and final positions.



Assume thatθi(t) is the heading of the vehiclei with
respect to they = 0 axis. For each vehiclei at given timet,
the position of vehicleγi(t) and the heading of the vehicle
θi(t) are sufficient to uniquely specify the field of view. The
heading of each vehicleθi(t) can be written as:

θi(t) = arctan(y′i(t)/x′i(t)) (12)

Given any time instantt0, the values ofγi(t0) and γ ′i (t0)
uniquely specify the field of view at timet0. Based on this
we define the state of configuration of the N-vehicle system
as follows.

Definition 1 (State of the system):The state of N-vehicle
system with given trajectories{γ1, ...,γN} at any timet is
defined by aN×4 matrix as:

s(t) =




γ1(t) γ ′1(t)
...

...
γN(t) γ ′N(t)


 =




s1(t)
...

sN(t)


 (13)

Definition 2 (Coverage mapΨ ): At any time t coverage
map is mapping from the configuration space to the setΩ
as follows:

Ψ(s(t)) =
N⋃

i=1

ψi(si(t))
⋂

Ω (14)

Note thatΨ(s(t)) is actually a snapshot of the coverage of
Ω at time t.
Now we can define an alternative way coverage problem as
follows:

{κ∗1(t), · · · ,κ∗N(t)}= arg max
{κ1(t),··· ,κN(t)}

⋃

t

(Ψi(si(t))∩Ω)

(15)
while avoiding non-fly or non-sail zonesO∩ {γ∗i (t)} = /0,
satisfying boundary conditions

γ∗i (tentry
i ) = γentry

i ,γ∗i (γexit
i ) = γexit

i , (16)

The objective of the coverage problem is to find admissible
curvature functionsκi(t) i = 1...N to get maximum coverage
of the regionΩ while satisfying constraints such as collision
avoidance and initial and final positions.

Mathematically, the coverage problem is an infinite-
dimensional non-convex optimization problem because its
search space of all admissible trajectories of the vehicles is
infinite dimensional, and coverage area and non-fly or non-
sail zones might induce non-convex constraints. Computing
an exact solution requires a finite and exact representation
of the search space. Because such a representation is not
available, we will discretize the problem in the next session
to obtain an approximate discrete representation.

The complexity of the approximate discrete representation
is still quite high. Exhaustively search will return the optimal
solution in the representation, but not be able to satisfy the
given time budget. We will use receding horizon algorithms
to find suboptimal solutions.

III. IP FORMULATION BY DISCRETIZATION OF THE

SPACE,TIME AND CURVATURE

In the following, we try to solve using discretization in
the setΩ ∈ℜ2, curvature functionsκi and finally time.

A. Discretization ofΩ and time

We partition the search spaceΩ into regions, using circles
with radiusr. The tessellation of the field to be observed is
based on the geometry of the least capable camera and also
the required resolution.

Let Br(p) represent the ball of radiusr and centerp as

Br(p) = {q∈ℜ2 | ‖p−q‖2 ≤ r} (17)

The collectionC = {Br(p1), . . . ,Br(pn)} is said to coverΩ,
or to be a covering ofΩ if Ω⊆⋃n

i=1Br(pi).
Given a coveringC , the discretizedΩ or Ωd is defined as
the following set:

Ωd = {Br(p) ∈ C | Br(p)
⋂

Ω 6= /0} (18)

There exist methods for finding the minimum number of
disks of radiusr to cover regionΩ in the plane [20],
however the number of the covering doesn’t much effect the
complexity of the coverage algorithm.

Similarly we define the discretized field of viewψd
i (si(t))

as follows:

ψd
i (si(t)) = {Br(p) ∈Ωd | Br(p)⊆ ψi(si(t))} (19)

We also define discretized coverage mapΨd(t) as :

Ψd(s(t)) =
N⋃

i=1

ψd
i (si(t)) (20)

B. Discretization of curvatureκi

Since the range of the functionκi : [t0, t1]→ [−1/ρi ,1/ρi ]
is bounded, we can fairly approximate functionκi(t) with
piecewise constant functionκd

i (t) as:

κd
i : [t0, t1]→ K(ρ) (21)

Where

K(ρ) = {κi | κi =
i

mρ
, i =−m,−m+1, ...,m} (22)

Also we assume that curvature is constant for a time
interval with lengthδ1 . In order to makeκd

i (t) a continuous
function, we assume that the change of curvature between
two different valuesk j to kl is linear in time and takesδ2

sec. The transition betweenk j to kl is possible iff|l− j| ≤ 1.

C. Integer Programming Formulation

This section presents a Integer Programming (IP) formula-
tion for the time critical cooperative coverage problem using
discretized curvature and discretized field of view.

To proceed, assume that time is discretized. At any time
(stage) t, the decision (control)κ(i) = (κd

1 (ti), . . . ,κd
N(ti)) is

defined to be a vector of constant curvatures for N-vehicle
system. Also lets assume that no-fly zones can be represented
as the union of the regionsAkγ < Bk. The coverage problem



can be stated as the following integer programming (IP)
formulation:

argmin{κ(1),κ(2),··· ,κ(s)} [area(Ω−⋃
i,t Ψi(γi(t)))]

γi(t
entry
i ) = γentry

i
‖γi(to

i )− γexit
i ‖ ≤ αd

i
|to

i − texit
i | ≤ α t

i
‖γi(t)− γ j(t)‖> dsa f e

Akγi(t) > Bk

(23)

Where the first three constraints are boundary conditions
and the forth and fifth constraints are collision avoidance
an no-fly zone respectively. Since the size of resulting IP
is very large in the following we try to break down the
size of the IP by solving sequence of smaller size IP’s
using receding horizon control (RHC) approach. Now lets
consider the RHC formulation for (23). Since in RHC
method the planning horizon is usually much smaller than
total mission time, therefore we can’t enforce directly the
final condition constraint|to

i − texit
i | ≤ α t

i in the optimization
constraints. Hence we try to satisfy|to

i − texit
i | ≤ α t

i through
the the terminal cost. Assume that the planning horizons
for the RHC are[iτ,(i + 1)τ] i = m,m+ 1, · · · ,n where
mτ = tentry andnτ = texit, Now the RHC for the time period
[kτ,(k+1)τ)] is given by:

argmin [area(Ω(k−1)−⋃
i ψi(γi(t)))]+

∑i C(γi((k+1)τ),γexit
i ,γexit

i )
γi(kτ) = γexit

i ((k−1)τ)
‖γi(t)− γ j(t)‖> dsa f e

Akγ i(t) > Bk

(24)

Where theΩ(k−1) is the area which has not been covered
yet and we haveΩ(m) = Ω. Also C(γi((k+ 1)τ),γexit

i , texit
i )

is the terminal cost for the vehiclei
1) Selecting the terminal cost:Assume that the for any

state of the vehicles(i) the minimum time trajectory from
s(i) to the goalsexit

i can be approximately computed using
visibility graph and the Dijkstra’s graph shortest path algo-
rithm [25]. Also assume that the min time of traveling is
given byTi(γi(t),γexit

i ). We define the terminal cost function
C(.) as follows:

C(γi(t),γexit
i , texit

i ) = (25)





0 i f (texit
i − (t +Ti(γi(t),γexit

i ))) > tsa f e
1

texit
i −(t+Ti(γi(t),γexit

i ))+ε i f 0≤ texit
i − (t +Ti(γi(t),γexit

i )) < tsa f e

∞ i f (texit
i − (t +Ti(xi(t),γexit

i ))) < 0
(26)

So basically, the cost function looks at the min time collision
free trajectory to the final stateγexit

i and compares it with
the time that is left for the vehicle, if the vehicle has enough
time the cost is set to zero and the main objective is to cover
as much area as it can. As the remaining time shrinks the
priority changes from coverage to just simply going directly
to the target. One sample scenario is shown in figure 3.

inxx )0(

)(nxx f

Planning

Horizon

Min time 

Trajectory

Final

trajectory

)1(x

)2(x

Fig. 3. Sample execution of receding horizon based method

Fig. 4. RHC based solution with 61 min run time and90% coverage

IV. SIMULATIONS

A. Problem scenario

We test the proposed algorithms on the following scenario
in

In the scenario the overage region is a rectangular400×
300 km region (blue rectangle) centered at the origin with a
rectangular34×179 km no fly-sail zone (red rectangle). we
consider a fleet of four heterogeneous vehicles with different
speeds, sensors,task durations, entry and exit states.

• Two UAVs (yellow and cyan) with constant speeds
111 m/sec, each equipped with camera which
has a 15 km radius footprint and task durations
129 min, 165 min respectively. The entry points are
pentry

1 = (153 , −150), pentry
2 = (−159 , 150) and exit

points arepexit
1 = (150, 150), pexit

2 = (−63 , 150).
• One Unmanned Surface Vehicle (USV); color green in

the Fig. ??; with constant speed11 m/sec, equipped
with radar with range of70 km radius and445 min
task duration. The entry and exit points arepentry

3 =
(−100 , −150), pexit

3 = (−200 , 80).
• One Tactical UAV; color magenta in the Fig.??; with

constant speed55m/sec equipped with camera which
has a10 km radius footprint and230min task duration.
The entry and exit points arepentry

4 = (−182 , −150),
pexit

4 = (−114 , 150).



Fig. 5. RHC based solution with 83 sec. run time and83% coverage

B. Computed results

We used the receding horizon algorithm to compute a
solution for the problem in Fig. 4. The solution is close to
optimal (around90%coverage). However, the computational
time is about1 hour, which is far more than the given time
budget. In RHC algorithm we can decrease computation time
by reducing planning horizon and with the price of reduction
in the optimality of the solution. Fig. 5 shows a solution to
the coverage problem with80% coverage and83 seconds
running time.

V. CONCLUSION

In this paper we presented a path planning algorithm for
time sensitive cooperative surveillance using UAVs equipped
with cameras. There are two additional avenues for further
research. First, the results in this paper addressed two-
dimensional sensor footprints and coverage problems. There
is a need to combine data from UGVs and UAVs, or UUVs
and USVs with UAVs which require the extension to three-
dimensional settings. Second, as the number of vehicles
increase, it will become necessary to solve the problem
using decentralized algorithms. This is also an area of great
interest.
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