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Abstract. In this paper, the problem of synthesizing a hybrid controller
for a specification expressed as a temporal logic formula ¢ is considered.
We propose a hierarchical approach which consists of three steps. First,
the plant to be controlled is abstracted to a fully actuated system. Using
the notion of approximate simulation relation, we design a continuous
interface allowing the plant to track the trajectories of its abstraction
with a guaranteed precision ¢. The second step, which is also the main
contribution of this paper, consists in deriving a more robust specifica-
tion ¢’ from the temporal logic formula ¢ such that given a trajectory
satisfying ¢’, any other trajectory remaining within distance J satisfies ¢.
Third, we design a hybrid controller for the abstraction such that all its
trajectories satisfy the robust specification ¢'. Then, the trajectories of
the plant satisfy the original specification. An application to the control
of a second order model of a planar robot in a polygonal environment is
considered.

1 Introduction

Modern engineering challenges involve controlling complex (possibly nonlinear
and/or high order) systems to achieve complicated behaviors. An automated
approach to synthesize controllers that are correct by design is very desirable
since it can save much of the effort required for the verification of the controlled
system. For that purpose, the use of a hierarchical approach is often necessary
since trying to handle at once both the complexities of the dynamics and of
the specification might lead to intractable computations. A hierarchical control
system consists of (at least) two layers. The first layer consists of a coarse (and
simple) model of the plant. A controller is designed so that this abstraction
meets the specification of the problem. The control law is then refined to the
second layer which consists of a detailed model of the plant. Architectures of
hierarchical controllers based on the notion of simulation relations have been
proposed in [1,2]. More recently, it has been claimed that approaches based
on approximate simulation relations [3] would provide more robust control laws



while allowing to consider simpler discrete [4] or continuous [5] abstractions for
control synthesis.

In this paper, we present such a hierarchical approach for the synthesis of
hybrid controllers for specifications expressed as formulas ¢ in the propositional
temporal logic over the reals which was introduced in [6]. Following [5], the sys-
tem is abstracted to a fully actuated system. An interface is designed so that the
system is able to track the trajectories of its abstraction with a given guaranteed
precision d. The control objective ¢ is then modified and replaced by a more ro-
bust specification ¢’. The formula ¢’ is such that given a trajectory satisfying
@', any trajectory remaining within distance § satisfies ¢. This “robustification”
procedure is the central step of our approach and constitutes also the main con-
tribution of the paper. It then remains to design a controller for the abstraction
such that all its trajectories satisfy the robust specification ¢’. This is achieved
by using one of the computational methods that have recently been developed
for the synthesis of hybrid controllers from temporal logic specifications for fully
actuated kinematic models [7] or for systems with affine dynamics with drift [8]
or for general dynamical systems [9]. Finally, lifting the control law using the hi-
erarchical control architecture, the controlled trajectories of the plant satisfy the
original specification ¢. Throughout the paper, an application to the control of a
second order model of a planar robot in a polygonal environment is considered.

2 Problem Description

We consider a continuous time dynamical system

&) = fz(t),u(t)), z(t) eR?, 2(0) € Xog CR", u(t) e U CRP
- {y(t) g(x(t)), y(t) € R (1)

where z(t) is the state of the system, w(t) is the control input and y(t) is the
observed output. The goal of this paper is to construct a hybrid controller that
generates control inputs u(t) for system X' so that for the set of initial states X,
the resulting output y(t) satisfies a formula-specification ¢ in the propositional
temporal logic over the positive real line Ry with the until connective [6]. Let
us remark that we design state feedback controllers (i.e. the controller has full
knowledge of the state x(¢)). Thus, the observed output y(t) is used only to
specify the desired behavior of the plant.

For the high level planning problem, we consider the existence of a number of
regions of interest to the user. Such regions could represent set invariants or sets
that must be reached. Let IT = {mg,71,...,7,} be a finite set of symbols that
label these areas. The denotation [-] of each symbol in IT represents a subset of
R*, i.e. for any 7 € IT it is 7] C R*. Formally, [-] : [T — P(R¥), where P(I")
denotes the powerset of a set I.

In order to make apparent the use of the propositional temporal logic for
the composition of temporal specifications, we first give an informal descrip-
tion of the traditional and temporal operators. In this paper, we refer to this
logic as RTL [10]. The formal syntax and semantics of RTL are presented in
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Fig. 1. The simple environment of Example 1. The four regions of interest 71, w2, 73, 74
appear in gray while the set labeled by 7o in white.

Section 4. RTL formulas are built over a set of atoms, the set II in our case,
using combinations of the traditional and temporal operators. Traditional logic
operators are the conjunction (A), disjunction (V), negation (). Some of the
temporal operators are eventually (<), always (O), until (U) and release (R).
The Temporal Logic of the Reals can describe the usual properties of interest
for control problems, i.e. reachability (Om) and safety: (On or O—m). Beyond
the usual properties, RTL can capture sequences of events and certain infinite
behaviours. For example:

— Reachability while avoiding regions: The formula — (73 V mg V --- V
Tn)UTpy1 expresses the property that eventually 7,41 will be true, and
until [m,41] is reached, we must avoid all unsafe sets [m;], i =1,...,n.

— Sequencing: The requirement that we must visit [m1], [m2] and [m3] in that
order is naturally captured by the formula ¢(mp A O(me A Omry)).

— Coverage: Formula Cmy AOToA- - - AT, reads as the system will eventually
reach [m] and eventually [m2] and ... eventually [r,,], requiring the system
to eventually visit all regions of interest without any particular ordering.

— Recurrence (Liveness): The formula O(Cm A Oma A -+ A Oy, ) Tequires
that the trajectory does whatever the coverage does and, in addition, will
force the system to repeat the desired objective infinitely often.

More complicated specifications can be composed from the basic specifications
using the logic operators. In order to better explain the different steps in our
framework, we consider throughout this paper the following example.

Ezample 1 (Robot Motion Planning). A typical example of a system such as (1)
is a robot which evolves in a planar environment. The state variable z(¢) models
the internal dynamics of the robot whereas only its position y(t) is observed. In
this paper, we will consider a second order model of a planar robot:

@1 (t) = w2(t), z1(t) € R?, 21(0) € X1
T q da(t) =u(t), wa(t) €R? 22(0) =0, u(®)] < p
y(t) =z1(t), y(t) € R?



where || - || is the Euclidean norm. The robot is moving in a convex polygonal
environment m with four areas of interest denoted by 1, 7o, 73, 74 (see Fig. 1).
Initially, the robot is placed somewhere in the region labeled by m (i.e. X109 =
[r1]) and its velocity is equal to zero. The robot must accomplish the following
task : “Stay always in my and visit area mo, then area 73, then area my and,
finally, return to and stay in region m; while avoiding areas 7o and m3,” which
is captured by the RTL formula:

¢ = 0Omp A O(ma A O(m3 A O(mg A (mm2 A =) UOm))).

In this paper, for such spatio-temporal specifications, we provide a computational
solution to the following problem.

Problem 1 (RTL Controller Synthesis). Given a system X, and an RTL formula
@, construct a hybrid controller H for X such that the observed trajectories of
the closed-loop system satisfy the formula ¢.

We propose a hierarchical synthesis approach which consists of three ingre-
dients : tracking control using approximate simulation relations [5], robust sat-
isfaction of RTL formulas and hybrid control for motion planning [7,9]. Firstly,
XY is abstracted to a first order fully actuated system:

D' A(t) = (), 2(t) €RF, 2(0) € Zy CRF, v(t) € V C RF (2)

where Zy = g(Xp). Using the notion of approximate simulation relation, we
evaluate the precision § with which the system X' is able to track the trajectories
of the abstraction X’ and design a continuous tracking controller that we call
interface. Secondly, from the RTL formula ¢ and the precision §, we derive a more
robust formula ¢’ such that if a trajectory z(t) satisfies ¢’, then any trajectory
y(t) remaining within distance ¢ from z(t) satisfies the formula ¢. Thirdly, we
design a hybrid controller H' for the abstraction X', so that the trajectories of
the closed loop system satisfy the formula ¢’. Finally, by putting these three
ingredients together, as shown in Fig. 2, we design a hybrid controller H solving
Problem 1. In the following sections, we detail each step of our approach.

3 Tracking Control using Approximate Simulation

In this section, we present a framework for tracking control with guaranteed error
bounds. It allows to design an interface between the plant X and its abstraction
XY’ so that X' is able to track the trajectories of X’ with a given precision. It
is based on the notion of approximate simulation relation [3]. Whereas exact
simulation relations requires the observations of two systems to be identical, ap-
proximate simulation relations allow them to be different provided their distance
remains bounded by some parameter.

Definition 1 (Simulation Relation). A relation W C R¥ x R™ is an approz-
imate simulation relation of precision & of X' by X if for all (z9,20) € W,
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Fig. 2. Hierarchical architecture of the hybrid controller H.

1. ||lz0 — g(xo)|| <0
2. For all state trajectories z(t) of X' such that z(0) = zo there exists a state
trajectory x(t) of X' such that x(0) = z¢ and satisfying

Vit >0, (2(t),z(t)) € W.

Let us remark that for § = 0, we recover the notion of exact simulation rela-

tion as defined in [11,12]. An interface associated to the approximate simulation
relation W allows to choose the input of X so that the states of X’ and X' remain
in W.
Definition 2 (Interface). A continuous function uy : V. xW — U is an
interface associated to the approzimate simulation relation W, if for all (29, zo) €
W, for all trajectories z(t) of X' associated to input v(t) and such that z(0) = 2o,
the trajectory of X given by

z(t) = f(z(t),uw(v(t), z(t), z(t))), x(0) = zq
satisfies for all t > 0, (2(t),z(t)) € W.

Thus, by interconnecting X' and X’ through the interface uyy as shown on
Fig. 2, X tracks the trajectories of the abstraction X’ with precision 4.

Proposition 1 (Proof in [13]). Let 29 € Xo, 20 = g(xo) € Zy such that
(z0,x0) € W, then for all trajectories z(t) of X' associated to input v(t) and
initial state zp, the observed trajectory y(t) of X given by

{ﬂb(t) = f(z(@®), uw(v(t), 2(t), 2(1))), x(0) = zo
y(t) = g(x(t))

satisfies for allt >0, ||y(t) — z(¢)| < 9.



Let us remark that the choice of the initial state zg of the abstraction X’ is
not independent of the initial state xq of the system X' (29 = g(z0)).

Remark 1. Usual hierarchical control approaches assume that the plant X' is
simulated by its abstraction X’. In this paper, the contrary is assumed. The
abstraction X’ is (approximately) simulated by the plant X: the approximate
simulation relation is used as a tool for tracking controller design.

The construction of approximate simulation relations can be done effectively
using a simulation function [3], that is a positive function bounding the distance
between the observations and non-increasing under the parallel evolution of the
systems.

Definition 3 (Simulation Function). Let V : RF x R" — R be a continuous
and piecewise differentiable function. Let uy : V xRF xR™ — RP be a continuous
function. V is a simulation function of X' by X, and wy is an associated interface

if for all (z,z) € R¥ x R",

V(z,2) > ||z — g(=)|?, 3)
vev <av<(92 2 * avgz x)f(%uv(v,z,:c))) <0 (4)

Then, approximate simulation relations can be defined as level sets of the simu-
lation function.

Theorem 1 (Proof in [13]). Let the relation W C R* x R™ be given by
W ={(z2) | V(z,2) < 6*}.

If for allv € V, for all (z,z) € W, uyp(v,z,2) € U, then W is an approzimate
simulation relation of precision § of X' by X and uyy : V. x W — U given by
uw (v, z,2) = uyp(v, z,x) is an associated interface.

Ezample 2. Let us go back to our example. The system Y modelling the dynam-
ics of the robot is abstracted to a system X’ such as (2) where the set of inputs
is V = {v € R? |jv|| < v} and the set of initial states is Zy = X1 . Let a > 0,
we define the following functions

V(z,2) = max (Q(z, x),4v*) where Q(z,z) = |21 — 2||* + al|z1 — 2 + 222 |%,

uy(v,z,1) = § + =52 (21 — 2) — 2.

First, let us remark that equation (3) clearly holds. If Q(z,z) < 4v2, then it is
clear that equation (4) holds. If Q(z,z) > 402, then

62’ v aml o 8x2 uy = X1 z X9 v

+2a(x1 — 2+ 2x2) - (2 — v + 2uy).



After the substitution of the expression of uy and simplification, we arrive to

% oV %
- - - = — — —z)-v< — -
0z v 0z vt Oxs uy Qz,x) = 2(x1 — 2) -v < =Q(z,2) + 2v|lz1 — 2|

because ||v|| < v. Since |21 — 2]|*> < Q(z, ), we have

Voot s+ iy < —QUew) + 20/Q50) < VA )20 — VA 2)).

%U 0x1 0xo

Since Q(z,x) > 412, equation (4) holds and V is a simulation function of ¥’ by
Y, and uy is an associated interface.

Let us define W = {(z,2)| V(z,2) < 4v2}. Let v € V, (2,2) € W, let us
remark that

~1 1
luv(w, 2,2l = |5 + = = 2) = a1 — 2+ 203)
v |-1+a] 1 /V(z,x)
< -
<3 + 1o \/V(z,x)+2 -
14
<3 1+[1-1/a|+2/Va).

We assume that the velocity bound v of the abstraction X’ has been chosen
small enough so that & (14 |1 —1/al+2/y/a) < p. Then, Theorem 1 applies
and W is an approximate simulation relation of precision 2v of X’ by X and an
associated interface is given by

v —-1—«
UW(’U,Z,I') = E + 4o

(1 — 2) — za.

Let the initial state of the abstraction X’ be chosen so that z(0) = z1(0), then
from Proposition 1, by interconnecting X’ and X' through the interface u,y, the
observed trajectories of system X tracks the trajectories of X’ with precision 2v.

4 RTL as a Controller Specification Language

Temporal logics are useful for reasoning about the occurrence of events with
respect to some time model. In this paper, we advocate the applicability of the
propositional temporal logic over the reals (RTL) [6,10] as a natural formalism
for a controller specification language. RTL has the same temporal connectives
as the Linear Temporal Logic (LTL) [14], but now the underlying time line is
the positive real line instead of the natural numbers. In this section, after a brief
presentation of RTL, we show how we can derive from an RTL specification ¢ a
more robust specification ¢’ such that given a trajectory satisfying ¢’, any other
trajectory remaining within distance § satisfies ¢. The goal of this “robustifica-
tion” is then to design a controller for the abstraction X’ so that it satisfies ¢'.



Then, refining this control law to X' using the interface presented in the previous
section, we can guarantee that the plant satisfies the original specification ¢.

We first introduce the syntax of RTL formulas in Negation Normal Form
(NNF). In NNF, we push the negations inside the subformulas such that the
only allowed negation operators appear in front of atoms.

Definition 4 (RTL Syntax in NNF). For m € II, the set @57 of all well
formed RTL formulas over II in NNF is constructed using the grammar

¢ u=m|om|oVe|ldNg|oUS| PR

As usual, the boolean constants T (true) and L (false) are defined as T =
mV —m and T = m A =7 respectively.

Formally, the semantics of RTL formulas is defined over continuous time
boolean signals. Here, we instantiate the definitions of the semantics over ab-
stractions of the output trajectories of the system Y with respect to II. Let
(y,[']) E ¢ to denote the satisfaction of the RTL formula ¢ over the output
trajectory y(t) starting at time ¢ = 0 with respect to the atom mapping [-]. If all
the output trajectories y(t) of system X' driven by a controller H and associated
to an initial state in X are such that (y, [-]) E ¢, then we write ([X, H], [-]) & ¢
and we say that [X, H| satisfies ¢. In the following, given any function f from
R to some normed space A, we define f|; for t € Ry to be the t time shift of
f with definition f|¢(s) = f(t + s) for s € Ry.

Definition 5 (RTL Semantics). Let y(t) be a function from R, to R* and IT
be the set of atoms. For t,s € Ry, the semantics of any formula ¢ € @7 can be
recursively defined as

=, [']) &7 iff y(0) € [].

= ('] & -7 iff y(0) & [x].

= W, [ E o1V b2 if (y,[[]) E o1 or (v, [[]) E ¢2-

= WD E o1 A2 if (v, []) E ¢1 and (y,[]) & é2.

— (v, [[]) E ¢1Ups if there exists t > 0 such that (yl|i, []) E ¢2 and for all s
with 0 < s <t we have (y|s, []) E é1.

— (y, ['D) E ¢1Rep2 if for all t > 0 it is (y|t, [[]) E o2 or there exists some s
such that 0 < s <t and (yls, [[]) E ¢1.

Note that due to the definition of the negation operator, the duality property
of the logic holds and, thus, by using RTL in NNF we do not loose in expressive
power. The path formula ¢; U¢ps intuitively expresses the property that over the
trajectory y(t), ¢1 is true until ¢o becomes true. Note that here the semantics of
until require that ¢ holds when ¢5 becomes true. Thus, this is a less expressive
version of until than the strict until [10]. Intuitively, the release operator ¢ R
states that ¢ should always hold, a requirement which is released when ¢
becomes true. Furthermore, we can also derive additional temporal operators
such as eventually C¢ = T U¢ and always O¢p = L R¢. The formula <@ indicates
that over the trajectory y(t) the subformula ¢ becomes eventually true, whereas
O¢ indicates that ¢ is always true over y(t).



Initially, an RTL formula ¢ is provided as a controller specification for the
concrete system Y. Since we design hybrid control laws for the subsystem X',
we need to translate the initial RTL specification for X to a modified RTL
specification ¢’ for X’. For this purpose, we introduce a new set of atoms and
a new atom’s mapping. First, similar to [15], we introduce the notion of §-
contraction for sets in order to define our notion of robustness.

Definition 6 (Contraction, Expansion). Given a radius 6 € RyU{+00} and
a point o in a normed space A, the 6-ball centered at « is defined as Bs(a) =
{BeAl|la=p| <6} If I' C A, then Cs(I') = {a € A | Bs(a) C I'} is the
§-contraction* and Bs(I') = {a € A | Bs(a) N I" # 0} is the §-expansion.

Consider now a new set of atomic propositions =y such that 57 = {&, | a =
mor a = - for m € IT}. For a given § € Ry, we define a new map []s : =g —
P(R¥) based on the map [-] as follows:

VEe =g, [€s = {Cé(ﬂ) if € = -

Here, I" denotes the complement of a set I". For clarity of the presentation, we
define a translation algorithm rob : &;; — &=, which takes as input an RTL
formula ¢ in NNF and it returns a formula rob(¢) where the occurrences of
atomic propositions of m and -7 have been replaced by the members &, and &
of =7 respectively.

The following theorem is the connecting link between the specifications sat-
isfied by the abstraction X’ and its concrete system X. Informally, it states that
given § > 0 if we J-expand the sets that must be avoided and §-contract the
sets that must be reached, then we will obtain a J-robust specification. The
latter implies that if a trajectory satisfies the J-robust specification, then any
other trajectory that remains d-close to the initial one will also satisfy the same
non-robust initial specification.

Theorem 2 (Proof in [13]). Consider a formula ¢ € g which is built on a
set of atoms I, a map [-] : I — P(R¥), and a number 6 € R, then for all
functions y(t) and z(t) from Ry to R¥ such that for allt >0, ||z(t) —y(t)| < 6,
the following holds (z,[-]s) E rob(¢) = (y,[]) E ¢.

Two remarks are in order here.

Remark 2. When (z, []s) [~ rob(¢) we cannot conclude that (y,[-]) & ¢. The
only conclusion we can make in this case is that z(¢) is not a d-robust trajectory
in the sense of [16]. Potentially, we can gain more information if we define 3-
valued semantics [17] for the satisfaction relation of (z, [-]s) &= rob(¢), but for
the scope of this paper Theorem 2 is sufficient.

Remark 3. Theorem 2 does not particularly refer to the output trajectories of
systems X and X’. If we consider both functions z and y to be trajectories of
X, then Theorem 2 classifies which trajectories of X’ are d-robust.

4 In cases when the d-contraction of a set must be a polyhedral set, we under-
approximate the d-contraction by a J-offset (see Sect. 6).



5 From RTL to Hybrid Controllers

It then remains to design a hybrid controller H’ for the simpler system X’ such
that its trajectories satisfy an RTL specification ¢', i.e. ([X', H'],[]s) E ¢’ In
previous work, we have proposed two different solutions to this problem [7,9].

The first methodology [7] comprises the following steps. We first create an
observation preserving partition of the state space of the system. By observa-
tion preserving we mean that all the states that belong to a set in the partition
satisfy the same set of labels £ € Zj7. The sets in the partition do not have to
be convex and a particular set of labels can be mapped to more than one set in
the partition. Then, we can abstract the continuous state space to a Finite State
Machine (FSM) where each state corresponds to one set in the partition. Under
the assumption of finite variability [18], i.e. within a finite interval of time there
can exist only a finite number of changes in the atomic propositions, we can solve
the RTL planning problem using Linear Temporal Logic (LTL) planning tech-
niques [19]. The later consists of converting the LTL specification into a Biichi
automaton, taking its product with the FSM and, then, finding a path on the
product automaton that would satisfy the LTL formula [7]. The other important
ingredient of the approach is the existence of simple feedback controllers [20, 21]
which are defined over polygons. These controllers satisfy the property that if
a trajectory in their domain reaches a facet of the polygon, then every other
trajectory in the domain of operation does the same. Using the discrete path
on the FSM, we can guide the composition of the local feedback controllers and
derive a hybrid automaton that generates trajectories that satisfy the initial
RTL specification by construction. Note though that in our final construction,
we have to make sure that no Zeno behavior occurs in order to satisfy the finite
variability assumption.

On the other hand, in [9], we present some preliminary results on the design
of hybrid controllers from RTL specifications by directly operating on RTL for-
mulas. The method consists of 3 main steps. First, the RTL formula is converted
to an abstract hybrid automaton where the dynamics in each discrete location
remain undefined. Then, from each discrete location we extract controller con-
straints in the form of triplets ¢ = {Init, Inv, Goal}, where Init is a set of initial
conditions, Inv is an invariant set and Goal is a goal set. In the final step, we
design controllers that satisfy the constraints ¢ and derive a hybrid automaton
whose trajectories satisfy the RTL specification. The main advantages of the new
approach involve the possibility of using different control design methodologies
for each discrete location of the hybrid automaton and the lack of mandatory
partitioning of the environment. Currently, the theory solves the problem for a
fragment of RTL, but we conjecture that the recent results by Maler et al. [22]
can provide the basis for a solution to the complete RTL.

Both approaches [7, 9] constitute valid solutions to the controller design prob-
lem that we consider in this paper. Nonetheless in the next section, we present
some implementation results for our simple example using the framework pre-
sented in [9]. The choice of [9] over the approach in [7] was made for the follow-
ing reasons. First, because the only modification required to the computational



framework of [9] is just an implementation of the Cs operator. Second, because
approaches like [7, 8] require the finest partition with respect to the set of atoms
Z7. This implies that for each 7 in II, we must create in advance two sets :
a d-contraction Cs([n]) and a 2d-annulus Bs([7]) \ Cs([7]), and then, take all
the appropriate intersections with the contraction and annulus sets of the rest
of the atoms. Finally, with the methodology proposed in [9] we can potentially
design just one local feedback controller for each part of the specification. On
the contrary, the methods in [7,8] would require a larger number of controllers
even for the simple cases.

Given the hybrid controller H’, the following theorem, which is immediate
from Proposition 1 and Theorem 2, states the main result of the paper.

Theorem 3. Let W be an approzimate simulation relation of precision § be-
tween X' and X and uyy be the associated interface. Consider a formula ¢ € $pg
and define ¢’ = rob(¢). Let H' be a controller for X' and H the associated
controller for X obtained by interconnection of the elements as shown on Fig. 2.

Then, ([EI7HI]’ [[]]5) = ¢ implies ([ZvH}’ [H]) F ¢.

6 Implementation and Simulations

In this section, we demonstrate the applicability of our framework by presenting
some numerical results. We have implemented the algorithms presented in [9] in
MATLAB using the polytope library of the Multi-Parametric Toolbox (MPT)
[23]. In the following, we just provide an informal high-level description of our
toolbox. The user inputs to the toolbox are : an RTL formula ¢ and the associated
map [-], the initial conditions xz and the maximum acceleration p of the system
2 as well as the parameter a as described in Example 2 and an integration step
ds. Currently, the set valued function [-] is restricted to map only to convex or
concave polyhedral sets. This is not a fundamental restriction and it was made
only for simplifying the implementation of the operator Cjy.

Using the algorithms in [9], we first derive the controller specifications for
the design of a hybrid controller H' such that ([X', H'],[-]s) | rob(¢). Note
that the J-contraction of a polyhedral set is not always a polyhedral set. In
order to maintain a polyhedral description for all the sets, we under-approximate
the d-contraction by the inward d-offset. Informally, the d-offset of a polyhedral
set is the inward J-displacement of its facets along the corresponding normal
directions. Since the d-offset is an under-approximation of the §-contraction,
Theorem 2 still holds.

For the generation of the local feedback controllers such that they satisfy
a controller specification triplet ¢ (see Sect. 5), we use again a hierarchical ap-
proach. If the set Inv is convex, then we can use just one potential field controller
[21] that converges inside Goal. If on the other hand the set invariant Inv is not
convex, then we perform a convex decomposition on the set Inv and we apply
the path planning methodology of Conner et al. [21]. By hierarchically compos-
ing the resulting controllers, in the sense that a controller that satisfies a triplet
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Fig. 3. Simulation results for v = 1. (a) A trajectory of the kinematic model - The light
gray polygons denote the 2-contraction of the regions while the dark gray polygons the
2-expansion. (b) The corresponding trajectory of the dynamic model.

¢ can itself be a hybrid automaton, we obtain the hybrid controller H' for X".
Finally, the hybrid controller H for X' is obtained from H' by composing with
the interface uyy (see Fig. 2).

In the following, we present some numerical results for the robot motion
planning example that we consider in this paper. In all the simulations, the
parameter « is set to 100 and the initial conditions to zo = [30 20 0 0]7. The
first simulation (Fig. 3) shows the resulting trajectories for X’ and X for v =1
(i.e. the velocity bound for the kinematic model X”). It is easy to see that the
resulting trajectory of X' (Fig. 3.b) satisfies the RTL formula ¢. The total running
time for this example on a Pentium 4 at 2.4GHz with 768MB of RAM is 9 sec
(including the simulation and the plotting of the graphs in Fig. 3).

Next, in Fig. 4 we present simulation results for v = 2.5. Note that there
barely exists a 2v-robust trajectory for the kinematic model with respect to
the RTL specification. Nevertheless, the trajectory of the dynamic model does
satisfy the formula. Also, in Fig. 5.a you can observe that the distance between
the two trajectories z(t) and y(t) is always bounded by the precision 2v = 5
of the approximate simulation relation and that this bound is tight. Finally,
when we increase v to 3, then there does not exist a 6-robust trajectory for the
system X’ (Fig. 5.b). Notice that the modified environment is partitioned into
two disconnected components (the white workspace is separated by the dark gray
regions).

7 Conclusions

We have presented a new approach to the hybrid controller synthesis problem
from temporal logic specifications. Our proposed hierarchical framework is based
on the notion of approximate simulation relations and a new definition of robust-
ness for temporal logic formulas. The hierarchical synthesis approach comprises
three basic steps : (i) tracking control using approximate simulation relations [5],
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Fig. 4. Simulation results for v = 2.5. (a) Kinematic model. (b) Dynamic model.
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Fig. 5. (a) Distance between trajectories z(¢) and y(t) when v = 2.5. (b) The modified
environment when v = 3. Medium gray : original regions, dark gray : 6-expanded
regions, light gray : 6-contracted regions, white : 6-contracted workspace 7.

(ii) robust satisfaction of RTL formulas and (iii) hybrid control for motion plan-
ning [7,9]. We strongly believe that a hierarchical approach can provide a viable
solution to a large class of control problems. Future work will concentrate on
developing interfaces for other types of systems (i.e. for the unicycle) and appli-
cations of the framework to control problems.
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