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Abstract— Pursuit-evasion games in complex envi-
ronments have a rich but disconnected history. Con-
tinuous or differential pursuit-evasion games focus on
optimal control methods, and rely on very intense
computations in order to provide locally optimal con-
trols. Discrete pursuit-evasion games on graphs are
algorithmically much more appealing, but completely
ignore the physical dynamics of the players, result-
ing in possibly infeasible motions. In this paper, we
present a provable and algorithmically feasible solution
for visibility-based pursuit-evasion games in simply-
connected environments, for players with dynamic con-
straints. This is achieved by combining two recent but
distant results.

I. INTRODUCTION

In pursuit-evasion games, a pursuer tries to capture
an evader who, in turn, actively tries to avoid cap-
ture. Designing pursuit strategies is a fundamental
challenge in robotics that has many applications.
For example, in the well-known homicidal chauffeur
game, a driver wants to collide with a pedestrian and
the goal is to determine conditions under which he
can (not) do so. Among the numerous applications of
this game are missile guidance, collision avoidance
and air traffic control (cf. [4]).

Early work on pursuit evasion games focused on
simple environments [11]. However, many robotics
applications (e.g. surveillance) leads to formulations
of pursuit-evasion games that take place in complex
environments [24].

Historically, there have been two approaches for
studying pursuit evasion games. On one hand, there
are continuous games that explicitly model the phys-
ical motion and constraints of the players [11], [16],
[4]. Even though this is a mature area, optimality
results are typically local, and searching for optimal
control inputs rely on very expensive numerical so-
lutions of Hamilton-Jacobi-Isaacs partial differential

equations. In complicated environments with many
players, this approach faces serious scalability chal-
lenges.

On the other hand, algorithmic approaches for
purely discrete games come equipped with theoretical
results which give global guarantees. These games
are either played in a purely discrete environment
such as a graph [2], [18], [17], [1], [7], [2], [13],
or in a continuous environment without any motion
constraints [9], [21], [23], [15], [22], [20], [14],
[12]. These models of the players abstract away the
physical dynamics and constraints of motion. This
may result in purely discrete strategies which are
dynamically infeasible.

In this paper, we initiate a study that attempts
to combine discrete and continuous approaches. We
focus on the visibility-based pursuit-evasion game
introduced in [23], [9], but for players with physical
dynamics. In this game, the goal is to locate an
unpredictable and adversarial evader hiding inside a
polygonal environment. Recently, it has been shown
that [12] there exists a randomized strategy for a
single pursuer to locate the evader in any simply-
connected environment – even if the evader is arbi-
trarily faster than the pursuer, knows the position of
the pursuer at all times, and actively avoids capture.
This randomized strategy is based on triangulations
of environment, and hence is compatible with the
environment where the game is played. However,
the discrete strategy may not be compatible with the
dynamic model of the pursuer. This may result in
winning (discrete) strategies with infeasible physical
(continuous) implementations.

Refining strategies from the discrete to the contin-
uous world has received much attention in the hybrid
systems community [3]. In robotics, connecting dis-
crete path planning strategies to automatic generation
of control laws is an important research problem [8].
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In this paper, we utilize very recent results [5],
[10] that will guarantee that the discrete strategy of
the pursuer will be feasibly executed by the dynamic
model of the pursuer. Under suitable conditions, a
feedback controller is constructed for each triangle,
steering the pursuer between adjacent triangles. The
randomized strategy between triangles will result in a
hybrid controller for the pursuer, where the switching
among the triangle-dependent controllers will be or-
chestrated by the randomized pursuit-evasion strategy.
The combination of the two results gives rise to a
stochastic hybrid controller for the pursuer that can
capture the evader with probability arbitrarily close
to one. This is one of the few results in the literature
for pursuit-evasion games in complex environments
which give global guarantees while ensuring that the
generated motions are feasible.

The paper is organized as follows: In Section II,
we present a formal definition of the visibility based
pursuit-evasion game. An overview of the discrete
strategy based on the triangulation graph of the envi-
ronment is presented in Section III. Next, in Section
IV, we show how control inputs for implementing
the discrete pursuit strategy can be generated. We
conclude the paper with simulations (Section V) and
an overview of our results (Section VI).

II. PROBLEM FORMULATION

A. Environment Description

Let P be the polygon that represents the environ-
ment where the game is played. Throughout the paper,
we will use P to denote both the boundary and the
interior of the environment. Unless stated otherwise,
n denotes the number of vertices ofP . We say two
pointsx, y ∈ P canseeeach other if the line segment
xy lies entirely inP .

A polygon is simply-connectedif it contains no
holes, i.e. any simple closed curve inside the polygon
can be shrunk to a point. All the polygons considered
in this paper are simply-connected. Thetriangulation
of a polygon is a decomposition of the polygon
into triangles by a maximal set of non-intersecting
diagonals. The dual of a triangulation is a graph
whose vertices correspond to the triangles. There is
an edge between two vertices if the corresponding
triangles share a side. See Figure 2 for an illustration.
It is well known that the triangulation of a simply-
connected polygon has exactlyn−2 triangles wheren
is the number of vertices of the polygon. In addition,
the dual of the triangulation of a simply-connected
polygon contains no cycles, it is a tree [19].

B. Game Formulation

In this section, we formally define the visibility-
based pursuit evasion game. There are two players,
a pursuer and an evader. The motion of the pursuer
is subject to the following planar fully-actuated kine-
matics:

ẋ = u, x ∈ P, u ∈ U (1)

wherex ∈ P ⊂ IR2, and the controlu is bounded
to a polyhedral subsetU of IR2. Here, P denotes
the polygon where the game is played. In this pa-
per, we present results for single integrators on the
plane. In the full version of the paper, we present
generalizations to more complicated, even nonlinear,
dynamics [6].

In this game, the evader is much more powerful
than the pursuer. In fact it can be modeled as the pur-
suer above, but with no constraints onu. It can thus
be arbitrarily faster than the pursuer. Furthermore, it
knows the position of the pursuer at all times.

The game takes place in a simply-connected poly-
gon P . The pursuer’s initial position is an arbitrary
point insideP and is known to the evader. However,
the pursuer does not know the initial position of the
evader.

When the game starts, the pursuer starts searching
for the evader. The pursuer wins the game if in finite
time it can see, or locate the evader. The evader wins
the game if it can avoid being seen forever.

It is worth mentioning that we make no assump-
tions about the strategy of the evader who actively
avoids being seen. As mentioned before, the evader
knows the position of the pursuer at all times and it
can adaptively design a strategy based on the current
position of the pursuer.

The question is then, can we design a pursuer
strategy so that the evader will eventually be located
no matter which strategy it follows?

III. T HE PURSUER STRATEGY FOR LOCATING THE

EVADER

In [9] it has been shown that there are simply-
connected environments such that if the pursuer is
restricted to deterministic strategies, there are poly-
gons with n vertices such thatO(log n) pursuers
are required to locate the evader. However, a single
pursuer can locate the evader inanysimply-connected
environment with probability arbitrarily close to one
– using a randomized strategy [12]. In this section, we
give an overview of the randomized pursuit-strategy
for a robot with no motion constraints.



Given polygonP , the pursuer first triangulates the
polygon. Letd(u, v) denote the minimum travel time
from vertexu to vertexv. We definediam(P ) as the
maximum amount of time it takes to travel between
any two vertices of the polygon, i.e.diam(P ) =
maxu,v∈P d(u, v). The pursuer’s strategy is divided
into rounds of length at mostdiam(P ). Let T be
the dual triangulation tree rooted at the triangle that
contains the pursuer’s initial location at the beginning
of a round. For any trianglet let t1, .., tk, k ≤ 3 be
the children oft. We use the notationT (t) to denote
the subtree ofT rooted at the trianglet. Figure 1 is
provided for quick reference to the notation used in
this section.

The pursuer’s strategy relies on the following ob-
servation: Suppose the pursuer is inside trianglet and
the evader is located inside a triangle contained in
T (tj) for somej. Then, while the pursuer is located
at t, the evader can not enter any triangle contained
in T (ti), i 6= j without being seen by the pursuer.
This is because the trianglet is a separator for the
subtreesT (ti). Moreover, this property is preserved
if the pursuer moves to the triangletj .

t

t1 t2 t3

l(t1) l(t2) l(t3)

T (t1)

Fig. 1. Each vertex of the tree corresponds to a triangle in the
triangulation tree. When located att, the pursuer picks trianglet1
with probability l(t1)/

`
l(t1)+ l(t2)+ l(t3)

´
wherel(ti) denotes

the number of leaves of the subtree rooted atti.

Therefore, had the pursuer known the subtree that
contains the evader, he could gradually move towards
it while preventing the evader to move from one
subtree to another. This process guarantees that the
pursuer can enter the triangle the evader is located
in and this clearly implies that the evader would
be located. Of course, the pursuer does not know
where the evader is. This is where we will utilize
randomization. The pursuer will guess the subtree that
contains the evader according to the following rule:

Let l(t) denote the number of leaves of the subtree
T (t). Suppose the pursuer is located in trianglet and
let t1, .., tk be the children oft (see Figure 1). Let
L =

∑k
i=1 l(ti). With probability l(ti)

L , the pursuer

picks the childti and moves there. After arriving at
ti, the pursuer randomly picks one of the children
of ti using the same weighted guessing strategy. The
round is over whenever the pursuer arrives at a leaf
of T .

It has been shown [12] that the probability of find-
ing the evader in each round is at least1

n . Therefore,
if the pursuer repeats this strategy forn log n rounds,
the probability of capturing the evader will be at least
1− 1

n . This probability can be made arbitrarily close
to 1 by increasing the number of rounds.

The following theorem summarizes this result.
Theorem 1 ([12]): In any simply connected envi-

ronmentP , against any evader strategy, the expected
time to locate the evader with a single pursuer is at
mostn · diam(P ) wheren is the number of vertices
anddiam(P ) is the diameter of the polygon.

The high-level strategy for finding the evader is
presented in Table I.

LocateTheEvader(T : a triangulation of the environment)
while the evader is not found

t← current triangle of the pursuer
T ← T rooted att
repeat

C ← {ti : ti is a child of t}
tnext ← randomly chosen triangle fromC where

ti is chosen with probability l(ti)P
j l(tj)

move fromt to tnext

t← tnext

until t is a leaf triangle

TABLE I

THE PURSUER’ S STRATEGY FOR LOCATING THE EVADER. THE

NOTATION l(t) DENOTES THE NUMBER OF LEAVES OF THE

SUBTREE ROOTED ATt (WITH RESPECT TO THE

TRIANGULATION TREE T , SEEFIGURE 1).

To be able to implement the algorithm presented in
Table I, we must generate control inputs that take the
pursuer from the current trianglet to the next triangle
tnext. We address this problem in the next section.

IV. M OTION PLANNING IN TRIANGULATED

ENVIRONMENTS

The goal of this section is to plan motions for
the pursuers that on one hand implement the discrete
strategy of moving from one triangle to another, but
on the other are compatible with the pursuer dynamics
and input constraints.

Consider triangleS2 from the triangulation ofP ,
the input polygon.1 Consider three affinely indepen-

1We use the notationS2 to emphasize the fact that the triangles
are simplicies inIR2.



dent pointsv1, v2, v3 in P ⊂ IR2. The triangleS2 with
verticesv1, v2, v3 can be expressed as the convex hull
of v1, v2, v3:

S2 = {x ∈ IR2 |x =
3∑

i=1

λivi,
3∑

i=1

λi = 1, λi ≥ 0}
(2)

For i ∈ {1, 2, 3}, the convex hull of{v1, v2, v3} \
{vi} is a facet ofS2 and is denoted byFi. Let ni

denote the corresponding unit outer normal vector.
Consider the following control system

ẋ = u, x ∈ S2 (3)

where the controlu is bounded to a polyhedral subset
U of IR2. We are interested in determining constrained
linear feedback control laws

u = k(x) = Ax + b ∈ U, (4)

whereA ∈ IR2×2 andb ∈ IR2, with the property that
all the initial states inS2 are driven out ofS2 through
a desired facet in finite time.

The solution to this problem has been recently
shown in [10], [5] for the general case of an n-
dimensional simplex.

Lemma 2:The affine function (4) is uniquely de-
termined by its valuesk(vi) = gi, i = 1, 2, 3 at the
vertices ofS2. Moreover, the restriction ofk to S2 is
a convex combination of its values at the vertices and
is given by:

k(x) = GV −1

[
x
1

]
, x ∈ S2 (5)

where
G = [ g1 g2 g3 ] (6)

and

V =
[

v1 v2 v3

1 1 1

]
(7)

are2 × 3 and3 × 3 real matrices.
Remark 1:The restriction of an affine functionk

to a facetFi of S2 (Fi itself is a ”triangle” inIR1, i.e.,
a line segment) is affine and for anyx ∈ Fi, k(x) is a
convex combination of the values ofk at the vertices
of Fi.

Proposition 3: There exists an affine feedback law
(4) driving all initial states in the simplexS2 through
the facetFi in finite time if and only if the following
sets are nonempty:

Ui = U
⋂

{g ∈ IR2|nT
j g ≤ 0,

j = 1, 2, 3, j 6= i and nT
i g > 0},

Uj = U
⋂

{g ∈ IR2|nT
i g > 0 and

nT
k g ≤ 0 for all k = 1, 2, 3, k 6= j, k 6= i}

for all j = 1, 2, 3, j 6= i.
If one of the sets from Proposition 3 is empty,

then there is no affine feedback law inS2 satisfying
the corresponding property. However, ifU contains
a neighborhood of the origin, then all the sets from
Proposition 3 are guaranteed non-empty. If they are
all nonempty, then any choice ofgi ∈ Ui, i = 1, 2, 3
will give a valid affine vector field by formula (5).
Indeed, for everyx ∈ S2, we know thatk(x) is a
convex combination ofg1, g2, g3 ∈ U . Hence,k(x)
is contained in the convex hull ofg1, g2, g3, which
is the smallest convex set containingg1, g2, g3, and
therefore included inU . So the vector field is bounded
everywhere in the simplex as required, and achieves
the desired goal of steering the pursuer from one
triangle to another (adjacent) triangle.

Using Proposition 3 in each of the triangular re-
gions, we can derive necessary and sufficient con-
ditions for the existence of affine vector fields (re-
stricted to the polyhedral setU ) driving all initial
states through a separating facet in finite time.

Note that, if we choose the same velocity values at
the vertices corresponding to the common facet of two
adjacent triangles, the continuity of the vector field
is guaranteed everywhere. Indeed, the vector fields
in two adjacent triangles coincide on the separating
facet, since their restrictions to the separating facet,
which is a lower dimensional simplex, are uniquely
determined by the values at the corresponding ver-
tices. Sample trajectories for adjacent triangles are
shown in Figure 2.

Remark 2: Integrating the results of the previous
two sections can be naturally captured in the language
of hybrid systems [3]. The triangulation of the envi-
ronmentP results in a finite partition of the state
space. In every element (triangle) of the partition,
the pursuer is evolving using dynamics given in
Equation 3 under the influence of affine, feedback
controller of Equation 4 that guarantee physical
motion between adjacent triangles. The switching
occurs when the pursuer reaches the facet of adjacent
triangles. The probabilities of the discrete transitions
obey the guessing rules obtained in Section III.

V. SIMULATIONS

In Figure 2, we present sample trajectories gen-
erated for a point robot (the pursuer). The velocity
of the pursuer is subject to the polyhedral bounds
U = [−1, 1] × [−1, 1]. The environment where the
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Fig. 2. TOP: A polygonal environment, its triangulation and the dual of the triangulationMIDDLE-BOTTOM ROWS: Actual
trajectories generated for four different rounds of the game. Each round corresponds to a trip from one leaf to another. Even though
the rounds start with identical initial conditions, due to the randomized nature of the strategy, different trajectories are generated.



game takes place, its triangulation and the dual graph
of the triangulation is shown in the top figure. Actual
trajectories generated for four different rounds of
the game are presented in the rest of the figures.
Each round corresponds to a trip from one leaf to
another. During the round, the pursuer picks one
of the children of his current triangle randomly as
described in Section III.

VI. CONCLUSION

In this paper, we have studied the problem of
generating feasible trajectories for a pursuer who tries
to locate an adversarial, unpredictable evader in a
simply-connected polygon. Our approach starts from
a discrete, randomized pursuit strategy based on a
triangulation of the environment. We then generate
feasible trajectories that obey motion constraints of
the pursuer’s model. The overall strategy yields a
stochastic hybrid controller for the pursuer which
guarantees that, with probability arbitrarily close to
one, the pursuer will locate the evader regardless of its
strategy. This is one of the few results in the literature
for pursuit-evasion games in complex environments
which give global guarantees while ensuring that the
generated motions are feasible.

One of our future research directions is to study
the visibility-based pursuit evasion game in multiply-
connected environments. Note that since the evader
knows the position of the pursuer at all times, we
can not locate the evader in such an environment
using a single pursuer. Other research directions in-
clude pursuit-evasion games in higher dimensions as
well as more ambitious notions of capture such as
intercepting the evader.
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