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Abstract. This paper describes the implementation of a decentralized architectuae-fo
tonomous teams of aerial and ground vehicles engaged in activepfiercéVe provide a
theoretical framework based on an established approach to the undedysor fusion prob-
lem [3]. This provides transparent integration of information from legfeneous sources.
The approach is extended to include an information-theoretic utility me#isatreaptures the
task objective and robot inter-dependencies. A distributed solutionanésrh is employed
to determinanformation maximizindrajectories and assignments subject to the constraints
of individual vehicle and sensor sub-systems. This architecturelem#ie benefit of the
complementary aerial and ground based vehicle and sensor capatlibesealized. The
approach is applied to missions involving searching for and tracking mudfiplend targets.
Experimental results for vehicles equipped with cameras are presdittese illustrate the
impact of the team configuration on overall system performance.

1 Introduction

Aerial and ground vehicles exhibit complementary captédiand characteristics as
robotic sensor platforms. Fixed wing aircraft offer broaddiof view and rapid cov-
erage of search areas. However, minimum limits on operaiispeed and altitude,
combined with attitude uncertainty, place a lower limit bait ability to resolve and
localize ground features. Ground vehicles on the other fudiieal high resolution
sensing over relatively short ranges with the disadvantdgdow coverage. This
paper presents a decentralized architecture and solugtmoaiology for seamlessly
realizing the collaborative potential of air and groundatsh Experimental results
demonstrate rapid localization of ground features altevgathe requirement for a
time consuming extensive search by ground vehicles.

This paper is organized as follows. Following a review oatetl work, Section
3 details the technical approach taken and the systemectlnieé. The experimental
setup and hardware along with sensor modelling and coetriotiplementation for
a collaborative feature localization task are describe8ention 4. Experimental
results are presented and discussed in Section 5 followedrgiuding remarks.
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2 Related Work

This work builds on previous endeavors in decentralized flegion [5,4] and active

sensor networks [3]. The established architecture and adetbgy is used here.
Approaches to active sensing that implement alternatigéegy architectures and
techniques for estimation and control include [6,11,8)e Tke of aerial and ground
based sensor platforms is closely related to other effoesploit the complementary
capabilities of air and ground robots. Examples of suchsitives include the DARPA

PerceptOR program [7] and Fly Spy project [10]. While excapm results have

been obtained with advanced airborne sensors such aslasdakcanning [9], the
combined use of air and ground active sensing offers higiiuten awareness from
relatively low cost visual sensors.

3 System Architecture and Approach

The approach taken builds on established methods in detieatt data fusion
(DDF): the information form of the Kalman filter. This mettadgy has previ-
ous been applied to localization of ground features by heeiasor platforms [5].
Ground targets are modeled as point features with correlpgposition estimated
by decentralized information filter implementation. Thederlying equations are
presented briefly. See [4] for a full derivation.

Consider a system described by the discrete time state aethaltion processes

x(k) =F(k)x(k — 1)+ G(k)w(k), z(k)=h(k,x(k))+v(k) (1)

where the process noise(k) and observation noise(k) are uncorrelated white
sequencesv ~ N(0,Q) andv ~ N(0,R). The information filter is obtained
by replacing the representation of the state estintaéad covarianc@® with the
information statey and Fisher informatiofY'. Notation(i | j) indicates a value at
time+¢, conditional on observation information obtained up tegjmThe information
state and information matrix are defined as

N D e LA
y(l) =P x| 5), Y(@ilj)=P'(i]j). (2)
The information vector and matrix contributions assodatéth an observation are
i(k) = HT ()R (k) (z(k) —h(x(k | k—1)) + H(k)x(k | k — 1),

A

I(k) = H' (k)R (k)H(k). 3)

whereHT (-) is the JacobiaiVh(-). With these definitions, the information filter
can be summarized in two stages as:
Prediction:

Y(k|k—1)= [F(&)Y 2 (k—1|k—1D)FT(k) +Q(k)] ",
gk k-1 =YE| k- DFE)Y '(k—1]k—-1)yk—-1k—1). (4)
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Estimation:

Y(k | k) =Y (k| k—1)+3 1 Lik),

k[ k) =3k | k—1) + 7 5(k). )
wherel,; (k) andi; (k) are the information matrix and information state contiitus
of the sensors = 1,..., N. The posterior state estimate may be obtained from

X(k | k) =Y k| k)y(k | k). (6)

The additive structure of the estimation Equation 5 resulh remarkably simple
decentralized architecture. As in [3], a control layer ilemented above the
DDF framework. Figure 1 details the structure of an activesgey node. Mutual
information gain is chosen as a control objective in ordegenerate robot sensing
trajectories that seek to maximize the reduction of estrmatertainty. This utility
measure is depicted in Figure 2.
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Fig. 1. Active sensing node structure.
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Fig. 2. Ground vehicle mutual informa-
tion gain utility measure

Instances of the active sensing node may be composed to forotive teams
of networked robotic sensors. This is the basis of the abrtaken to active ground
feature localization by collaborative aerial and groundots. All air and ground
vehicles execute an instance of the DDF node detailed inr€igjuiThe search area
specified by system operator is divided into search patterihe executed by the
available aerial vehicles. Upon sighting potential grofeatures, associated new
filters are pushed onto the network of DDF nodes. This exabprmyides cues to the
ground vehicles actively seeking to reduce the estimatertaiaty. Ground vehicles
see these uncertain features influencing their utility diedrésulting trajectories.

4 Experimental Setup

This section describes the elements involved in the colkth@ air-ground fea-
ture localization experiments. The robot platforms, featacalization filter, sensor
modeling and control implementation are detailed.
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4.1 Robot Platforms

The approach detailed in Section 3 has been implementeceaetial and ground
robot test-beds shown in Figure 3. The Ground vehicles arenarercial 4WD

Fig. 3. Fixed wing UAVs (top) and ground robot platforms (bottom).

model truck modified and augmented with an on-board compstereo firewire

camera, GPS and inertial sensors as described in [2]. Tied eehicles are quarter
scale Piper Cub model aircraft equipped with the Piccologildt by Cloud Cap

Technology (see [1] for further details). In addition to femsors within the autopilot,
the air vehicles carry a sensor pod containing a high rdsoldirewire camera,

inertial sensors and a 10Hz GPS receiver. A spread-specadim modem is used
for Communications between air vehicles and the operate btation. The ground
vehicles and base station communicate through an Ad-Hod 8b62etwork.

4.2 Feature Localization Filter

The ground features are modeled at two dimensional statigra@ints in a plane
at known altitude represented by Gaussian random variablese is no process
dynamicsF (k) = Io«o and no process nois@(k) = 0. Each filter node
maintains a list of active and potential features. Detect®obased on extracting
indistinguishable colored features from camera imagesata dssociation process
using Chi-square testing is performed on incoming featlrseovations. A new
potential filter is created for observations that fail to oegxisting filters. Potential
filters that receive a set number of associated observasimnpromoted to active
status and propagated throughout the DDF network.
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4.3 Sensor Modeling and Platform Capabilities

Projective geometry is used to determine the observeditocat ground features
from measurements obtained using the camera installagiomsn in figure 4. The
projection matrixP for each camera is obtained from pre-determined intrinaic p
rameters and current estimates of the camera rotation ansldtion.

X u
Z Fixed Wing UAV
Camera Pod v =P

Fig. 4.Modelling aerial and ground based vision sensors.

@)

N < X

Ground features are considered to be at a common knowndatifuEquation
7 is solved to determine the location of feature observatiothis globalXY plane
from the measurementsandv in the camera coordinates. Estimates of the camera
measurement noise and attitude uncertainty are propathatedyh this relationship
and degraded by the platform position uncertainty to detenan approximate
feature observation covariance.

Fusion of GPS, inertial and encoder measurements allowgrthend vehicles
to determine their position with greater certainty than #dieeial platforms using
GPS alone. A summary of the system capabilities for the airground vehicles
is presented in Table 4.3. This illustrates the complenmgragtributes of these
sensor platforms. Airborne sensors can cover large arehsgliatances to make a
small number of relatively uncertain observations. Whigm#icantly more accurate,
ground platforms travel slowly and offer limited field of we

Clodbuster UGVFixed Wing UAV|
Sensor Height 0.3m 65m
Sensor Range 5m 50m
Observation Uncertainty 0.2~ 0.5m 6~ 8m
Vehicle Velocity 0.5~ 1m/s 15m/s

Table 1. Summary of sensor and vehicle capabilities

4.4 UGV Controller Implementation

A controller is implemented on the ground vehicles to geteesansing trajectories
that actively reduce the uncertainty in feature estimatesimple potential field

control scheme is obtained by considering zero look-ahagtter than planning
actions over time. The instantaneous mutual informatida far the estimation

process is

I(t) = %% log | Y(t) | = %trace (Y—l(t)Y(t)) @)
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whereY is the block diagonal information matrix correspondingivecfeatures
with uncertainty above a desired threshold. For the pracestel consideredy (¢)

is equal to the sensor observation informatlgt) in Equation 3. Given that this
observation information depends on the system configurétimugh the nonlinear
observation model, Equation 8 relates the sensor systeewsta- {x,y,¢}’ to a
potential field equal to the instantaneous rate of changeattife uncertainty. The
gradient of this field can be evaluated in terms of the curéstier information and
the partial derivatives of the observation informationtwigspect toc, by

Vg I(t) = %trace (Y*l(t)vxgl(t)). 9)

Analytic expressions are available for the models coneidiéere. Control actions
can be scheduled according to the direction and magnitutteedbcal gradient. A

simple control solution is implemented by driving at a fixedocity while heading

in the direction of steepest gradiefit(t)

V,Z(t)
*(t) = arct Y : 10
Y*(t) = arc an(VII(t)) (20)
With constraints imposed on the vehicle turn rate and sefieddrof view, this
controller may resultin the robot circling a feature whiteable to make observations.
To resolve this, the controller is disengaged when the drpefeature location is
within the turn constraint and outside the field of view asstrated in Figure 5.
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Fig. 5. Handling ground vehicle sensing field of view and control constraints.

5 Results

Results are presented for an experimental investigaticm afllaborative feature
localization scenario. Three rectangular orange feateaeh measuring 1x11.4
meters were placed in a 5200 meter search area. Figure 6 details the search
trajectory generated for the aerial vehicle to cover théman multiple passes. The
elapsed time for each pass was approximately 100 secondsjuesce of images
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Fig. 6. Example single UAV search pattern at the Bridge-
port Airport, New Jersey test site.

captured from an altitude of 65 meters is shown in Figure & fBature estimates
are made available to the ground vehicles seamlessly théugDDF network.

Figure 8 illustrates the initial feature uncertainty ane ttajectory taken by the
ground vehicle to refine the quality of these estimates. iRetanapshots of the
active sensing process are shown in Figure 9. These indivateroposed control
scheme successfully positioning the ground vehicle toaakantage of the on-board
sensor characteristics.

It is important to note the performance benefit obtainedughocollaboration.
Assuming independent measurements, in excess of fifty péaiseut eighty minutes
flighttime) are required by the UAV to achieve this featurneate certainty. It would
take in excess of half an hour for the ground vehicle with #peed and sensing
range to cover the designated search area and achieve abigtbpity of detecting
the features. The collaborative approach using aerial tmuastive ground sensing
completes this task in under 10 minutes. A performance leredllin excess of the
individual system capabilities.

6 Future Work

The architecture presented could be applied to teams ofipteujround and air
vehicles without change. However, the simple controlleplemented here is not
expected to achieve the full potential of multi UGV teamseTapplication of
predictive cooperative control strategies promises taesidthis concern. More
sophisticated estimation, detection and associatiomsebehould also be consid-
ered. This work investigated tasking ground vehicles frarascprovided by aerial
robots executing predetermined fixed search trajectofietively controlling the
UAV sensing trajectories will be the subject of future resba
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Altitude = 65m

Roll and Yaw uncertainty = 5deg

Observation Confidence

\ el
\ 5
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Fig. 7. Aerial images of the test site captured during a typical UAV flyover at &hens
altitude. Three orange ground feature are visible. The confidenceeetifsociated with a
feature observation is indicated in the lastimage. This represents th@uoodgd uncertainty
due to errors in UAV attitude, UAV position and camera calibration.

7 Conclusion

This paper presented a consistent architecture and appfoaenabling proactive
collaboration among aerial and ground based sensor piaforhis was applied
to a ground feature search and localization problem. Expartal results indicate
significant performance benefits obtained through combéirethd ground sensing.
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