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Abstract— We consider the problem of leader selection in
a team of interconnected agents, modeled as higher-order
integrators. The leader selection problem aims to determine
the minimum number of agents, i.e., the leaders, that are
required to receive an external input to ensure a control-
theoretical property. The remaining agents, i.e., the followers,
update their states based only on local information gathered
from the other agents they interact with. In this paper, given the
communication topology, our goal is to design distributed pro-
tocols that determine the minimum number of leaders and the
communication protocol to ensure a desirable property, without
any knowledge about the global structure of the network.
The main contributions consist of determining the solution to
this problem when the controllability and stabilizability are
sought. In addition, we extend these results to the case where
the communication topology switches over time. Finally, we
illustrate the main results by providing a simulation example.

I. INTRODUCTION

Last decade has unleashed the potential of multi-agent

systems in the context of engineering applications. These

agents are equipped with local communication capabilities

that enable them to interface with each other. In fact, with

simple local rules, these can solve complex problems that

pertain to distributed control and coordination, flocking,

rendezvous and formation [1], [2].

The local rules, or communication protocols, often aim

to establish control theoretical properties such as control-
lability [3], or consensus [4], [5]. These communication

protocols have been explored in two distinct scenarios [2]:

(i) the leader-follower, where the leaders are the agents that

receive an external signal, whereas the followers are the

remaining agents that only consider local information, i.e.,

coming from other agents they interact with; and (ii) the

leaderless, where no exogenous information to the agents

is considered. Despite the vast literature on the topic, this

has mainly focused on centralized analysis and design of

communication protocols, which are distributed in nature.

Therefore, if we are ever going to release the full potential

of the multi-agent networks, the following three largely

unsolved questions need to be addressed:

(i) How does an agent decide if it should be a leader?

(ii) What is the communication protocol it should use?

(iii) Which control strategy should a leader adopt?
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Leader-selection problems address the first question, see,

for instance, [6], [7], [8], [9], [10], [11] and references

therein. Most of these are solved in a centralized manner,

or, when distributively, under restrictive assumptions such as

the communication between agents forms a connected graph

and/or is known by all agents in the network [12], [13].

The second question is often studied using eigenvalues and

eigenvectors of the system matrix, which requires equally

restrictive premises, see for instance [3], [14]. Finally, to

devise a control law that steers the agents into a target state

one often requires knowledge of the overall dynamics of the

agents, or the structure of the network [15], which is not

achievable in completely distributed scenarios.

In fact, it is easy to agree that in distributed scenarios

the three questions need to be answered only considering

locally exchanged information between the agents. Notwith-

standing, only recently [9] a distributed solution to the above

three questions was attained in the case where the agents

possess a scalar state, with discrete-time dynamics and the

communication topology is fixed over time. To the best of the

authors’ knowledge, this is the first paper that deals with the

distributed leader selection problem in the context of multi-

dimensional state dynamics and switching network topology,

without any global knowledge of the system structure.

The main contributions are threefold: (i) we determine the

minimum number of leaders such that the overall system is

controllable; (ii) we study the stabilizability-to-input problem

and provide convergence guarantees; (iii) we consider the

scenario where the communication topology is changing over

time.

The rest of the this paper is organized as follows. In

Section II, we formally state the problems addressed in this

paper. Section III provides some preliminary concepts and

results. In Section IV, we present the main technical results,

then, in Section V, we discuss the limitations of the proposed

solution. Subsequently, we provide a simulation example in

Section VI. Conclusions and discussion for further research

are presented in Section VII.

II. PROBLEM STATEMENT

Consider n interconnected agents, which are modeled as

m-th order integrators with the following linear dynamics:

ẋi (t) =

⎡
⎢⎢⎢⎣

0 1 0 · · · 0
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎦xi (t) +

⎡
⎢⎢⎢⎣

0
...

0
1

⎤
⎥⎥⎥⎦ui (t) , (1)
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where xi (t) ∈ R
m is the state of each agent i ∈ V =

{1, . . . , n}, and ui (t) ∈ R its input. We note that under simi-

larity transformations, this integrator model can represent any

controllable linear system with one input. Thus, the results

of this paper also hold for more general controllable linear

systems. The interconnection of the agents is represented by

a communication graph D = (V, E), where a directed edge

(i, j) ∈ E indicates that agent i is able to transmit infor-

mation to agent j. We denote the set of all agents that can

directly transmit to agent i by N−
i = {j ∈ V : (j, i) ∈ E},

which we refer to as the in-neighbors of agent i. Each agent

knows its own state, which implies that (i, i) ∈ E , and,

consequently, i ∈ N−
i . We analogously define the set of

out-neighbors N+
i = {j ∈ V : (i, j) ∈ E}.

Each agent i transmits to its out-neighbors a scalar zi given

by a linear combination of its state, i.e.,

zi (t) = cᵀxi (t) , (2)

for some constant c ∈ R
m, which is known to all agents

offline. Meanwhile, each agent i receives the incoming zj
from its in-neighbors j ∈ N−

i and applies the following

control on its state:

ui (t) = −Kixi (t) +
∑

j∈N−i

wijzj (t) + bivi (t) , (3)

where Ki ∈ R
1×m is a gain row vector acting on its own

state. The constants wij are nonnegative weights that the

agents design in order to integrate their neighbors’ informa-

tion. We refer to the collection of all weights in matrix form

W = [wij ], as communication protocol. A weight wij can

be positive only if agent j is an in-neighbor of agent i; in

other words, if (j, i) �∈ E then wij = 0. Subsequently, we

consider the realization graph

D̂ =
(
V, Ê

)
, Ê = {(i, j) ∈ E : wji > 0 or i = j} , (4)

which is induced by the strictly positive weights on the

edges of the communication graph with self-loops included.

We define the design protocol to be P = P (D) =
{W, c,Ki, i = 1, . . . , n}.

The signal vi ∈ R models additional actuation capabilities,

or equivalently an exogenous signal to the agents, that can

be used to drive the network to a specific goal. Only a subset

of the agents, the leaders, use this signal. We denote this set

of leaders by J ⊂ V . If agent i is a leader, i.e. i ∈ J ,

then bi = 1 and, as a consequence, the input vi is used. All

the other agents i ∈ V \ J are called followers and they

do not use the additional input, i.e. bi = 0. In general, we

assume that all agents can potentially have access to vi, but

it costs resources to do so. For instance, a robot should use a

long-range receptor or GPS to access the input. Hence, this

motivates our pursuit of the minimum number of leaders.

With this choice of inputs, the whole network is a linear

system that depends on the design protocol P as well as the

set of leaders J . Thus, we can rewrite the overall dynamics

of the network in matrix form as follows:

ẋ (t) = A (P )x (t) +B (J ) v (t) , (5)

where x (t) =
[
xᵀ
1 (t) · · · xᵀ

n (t)
]ᵀ ∈ R

nm is the

overall state vector and v (t) =
[
v1 · · · vn

]ᵀ ∈ R
n

is the vector of external inputs. We omit the analytical

expressions of A (P ) , B (J ), which are not needed in the

subsequent analysis.

The first problem addressed in this paper is the minimiza-
tion of the number of leaders while ensuring controllablity of

system (5), in a fully distributed manner. Formally, given D,

we want to determine, in a distributed fashion, the protocol

P ∗ and the set of leaders J ∗ such that:

(P ∗,J ∗) = arg min
P, J

|J | (6)

s.t. (A (P ) , B (J )) is controllable,

where the pair (A (P ) , B (J )) describes system (5).

In practice, we just require the agents of the network

to be stabilized to a desired point xd (consensus); even if

controllability is attained, it is not clear how the leaders

should select their inputs to perform more general tasks with-

out knowing the global structure/dynamics of the network.

Therefore, the second problem we address in this paper is the

stabilizability-to-input problem. Our goal is to distributedly

select the minimum number of leaders such that all agents

can be stabilized to xd.

Another challenge in the leader selection problem is to

address the varying communication topology, possibly due

to transmission failures or changes in the communication

capabilities of the different agents. We capture this effect

with a switching communication graph Dσ(t), where σ :
R

+ → N is the switching signal. The overall dynamics are

modeled as follows:

ẋ (t) = A
(
Pσ(t)

)
x (t) +B

(
Jσ(t)

)
v (t) . (7)

Therefore, the third problem we address is that of de-

termining strategies that allow the agents to redefine the

design protocol to accommodate the communication topol-

ogy changes, while ensuring that either controllability or

stabilizability-to-input hold.

Throughout the paper, we assume that the agents have

a synchronized clock. To solve conflicts, we assume that

the agents are enumerated, with the number i of the i-th
agent being unique. We assume that at most one edge of the

communication graph can change each time, and the design

protocol is determined between two consecutive changes in

the communication topology.

III. PRELIMINARIES AND TERMINOLOGY

First, we introduce the following graph theoretic notions.

A directed path is a sequence of directed edges where the

end-vertex of one edge is the start-vertex of the other. If

(j, i) ∈ E then j is called a parent of i. In addition, j is an

ancestor of i and i is a descendant of j, if there exists a path

from j to i. The distance from j to i is given by the number

of edges in a shortest path from j to i. The distance lJi (or

li when clear from the context) from a set J to vertex i is

the minimum possible distance from j ∈ J to i. A cycle is

a path with the same the end and start-vertices.
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A digraph D is said to be strongly connected if there exists

a directed path between any two vertices. A subgraph DS

of D is a digraph whose vertex and edge sets are subsets

of those of D. A strongly connected component (SCC) is a

maximal subgraph (i.e., there is no other subgraph containing

it and satisfying a given property) DS = (VS , ES) of D such

that for every u, v ∈ VS there exists a path from u to v
and from v to u. We can create a directed acyclic graph
(DAG) by visualizing each SCC as a virtual vertex, in which

a directed edge between two virtual vertices (SCCs) exists if
and only if there exists a directed edge between the vertices

from the corresponding SCCs in the original digraph D =
(V, E). A directed tree T = (V, E) is a directed acyclic

graph that is rooted in a vertex without incoming edges on

it, and where there exists exactly one incoming edge in each

of the remaining vertices. A directed spanning forest of a

digraph D = (V, E) is a disjoint union of directed trees

Ti = (Vi, Ei), with i = 1, . . . , n, for some n ∈ N, such that

∪i=1,...,nVi = V . In the case n = 1, the directed spanning

forest is called directed spanning tree. At last, the SCCs in

the DAG may be further categorized as follows.

Definition 1 ([16]): An SCC is said to be linked if it has

at least one incoming (respectively, outgoing) edge from

(respectively, to) another SCC. In particular, an SCC is

non-top linked (n-SCC) if it has no incoming edge to its

vertices from the vertices in another SCC. �
Second, we review some results from structural systems

theory [17] and the notion of structural controllability.

Definition 2 ([17]): (Structural controllability) Let (Ā, B̄)
denote the sparsity (or structural pattern) of the pair (A,B) ∈
R

n×n×R
n×p describing a linear time-invariant system, with

Ā ∈ {0, �}n×n and B̄ ∈ {0, �}n×p, where 0 corresponds

to zero entries and � represents an arbitrary parameter. The

pair (A,B), or equivalently (Ā, B̄), is said to be structurally

controllable if there exists a controllable pair (A,B), with

zero entries in the same entries as (Ā, B̄). �
In general, a stronger characterization of structural control-

lability holds. For a structurally controllable pair (Ā, B̄), al-

most all numerical realizations (A,B) are controllable [18].

Given (Ā (P ) , B̄ (J )), we can define the following di-

graphs: (i) the state graph of (5), denoted by G(Ā) =
(X,EX), where the state variables of the system are

the labels of the vertices of the graph described by

X = {xik, i ∈ {1, . . . , n} , k ∈ {1, . . . ,m}}, and the

edges between the state vertices are given by EX ={
(xik, xjl) : Ām(j−1)+l,m(i−1)+k (P ) �= 0

}
; (ii) The sys-

tem graph, denoted by G(Ā, B̄) = (X ∪ V,EX ∪ EV ),
which is induced by the pair

(
Ā (P ) , B̄ (J )

)
, where

we add vertices V = {v1, . . . , vm} to the state graph

corresponding to the inputs, and the edge set EV ={
(vi, xjl) : B̄m(j−1)+l,i (J ) �= 0

}
.

To find the conditions under which system (5) is struc-

turally controllable, we will need the following result.

Corollary 1 ([16]): Let D(Ā) be a state digraph spanned

by a disjoint union of cycles. Then, the pair (Ā, B̄) is

structurally controllable if and only if every n-SCC of D(Ā)
has an incoming edge from an input vertex in D(Ā, B̄). �

IV. MAIN RESULTS

In this section, we present the solution to the problems

stated in Section II. For the fixed topology case, the agents

distributedly select the realization graph to be a directed

spanning forest of the communication graph, with the disjoint

trees having the leaders as roots–see Section IV-A. In par-

ticular, they keep one tree (and thus, one leader) for each n-

SCC of the communication graph. In Section IV-B, we prove

that this selection ensures controllability with the minimum

number of leaders, while in Section IV-C, we show that this

is also true for the stabilizability-to-input problem. Then, in

Section IV-D, we introduce reconfiguration strategies that

enable the maintenance of the directed spanning tree forma-

tion and, thus, the maintenance of both controllability and

stabilizability-to-input when the communication topology

changes over time.

A. Distributed protocols

In this subsection, we present the distributed process,

which leads to the selection of the directed spanning forest

of the communication graph. The material of this subsection

is adapted from [9]. We break the process in two separate

algorithms. First, the agents select one leader per each n-

SCC of the communication graph (see Algorithm 1). Second,

given the selected leaders, the remaining agents select to

follow only the parent closest to a leader, thus, forming a

spanning forest (see Algorithm 2).

More specifically, in Algorithm 1, the agents verify in a

distributed way if they belong to an n-SCC. Next, if they

actually belong to an n-SCC, they decide which one agent

will become the leader. At first, each agent i learns the list

of its ancestors Li. Next, a min-consensus protocol is run,

where the initial state of each agent is Ni = |Li|. From [9],

we know that the min-consensus problem with yi [0] = Ni

is achieved only in the n-SCCs of the communication graph.

Ergo, the final value of the min-consensus remains Ni if and

only if agent i lies in a n-SCC. Meanwhile, if an agent lies in

an n-SCC, it compares its unique id with those in the list of

its ancestors. If it has the smallest id, it becomes the leader

of the n-SCC.

ALGORITHM 1: Selection of leaders J
1. Initialize L0

i = {i};
For k = 1, . . . , n
2. Receive new lists from the in-neighbors Lk−1

j ;

3. Update the list: Lk
i =

⋃
j∈N−i

Lk−1
j ;

4. Transmit Lk
i ;

endFor
5. Set Li = Ln

i ; yi[0] = |L|i;
For k = 1, . . . , n
6. yi[k + 1] = min

j∈N̄−i
yj [k];

endFor
7. If yi[n] == |Li| and i == argminLi, then i is a leader.

Next, in Algorithm 2, the followers consider the incoming

transmission from only one parent pi. In particular, we
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make them choose the parent that minimizes the distance

li from the leader set J returned by Algorithm 1. All

remaining transmissions are neglected by the agents. Thus,

the realization graph takes the form of a directed spanning

forest, where the disjoint trees have the leaders as roots.

ALGORITHM 2: Spanning forest creation given J of

Algorithm 1

Let li[k] denote the distance from J to i at time k. Let pi
denote the parent of follower i.

1. Initialize li[0] = 0 for the leader agents i ∈ J and
li[k] = ∞ for the followers.

For k = 1, . . . , n
2. Receive lj [k] from the in-neighbors j ∈ N−

i ;
3. Compute l∗i = min

j∈N−i
{lj [k]};

4. If l∗i + 1 < li[k], then li[k] = l∗i + 1;
pi = argmin{lj [k] : j ∈ N−

i };
5. Transmit li[k];
endFor
6. If i is a leader set wij = 0, ∀j ∈ N−

i ;
7. If follower set wij = 0, ∀j ∈ N−

i �= pi and wipi = 1.

The above algorithms only determine the leaders J and

the weights W . To ensure controllability or stabilizability-

to-input, the agents have still to design c in (2) as well as

the gains Ki in (3) as described in the following subsections.

We note that both algorithms have complexity O
(
n2

)
[9].

B. Controllability – Fixed Communication Topology

In this subsection, we present the solution to the first

problem stated in (6) (see Theorem 1). We prove that by

employing Algorithm 1 and Algorithm 2 (see Section IV-A)

and by selecting c in (2) and gains Ki in (3), controllability

is achieved with the minimum number of leaders.

In particular, we select

cᵀ =
[
1 0 . . . 0

]
, (8)

i.e. every agent transmits only its position zi = xi1. Then,

it is sufficient for all agents to design the gains Ki, such

that the eigenvalues of the internal dynamics (1) and (3), are

distinct among agents. One feasible selection is as follows:

m∑
j=1

Kijs
j−1 + sm = (s+ i)

m
, (9)

where i is the number of the i-th agent, assumed to be unique.

Now we can state the main result for controllability.

Theorem 1: Let J ∗ and W ∗ be the outputs of Al-

gorithm 1 and Algorithm 2, respectively. Let P ∗ ={
W ∗,

[
1 0 . . . 0

]
,K∗

i

}
with K∗

i as in (9). Then,

(P ∗,J ∗) is a solution to Problem (6). �
To show Theorem 1, we first prove some intermediate

results. First, based on Corollary 1, we show that a necessary

and sufficient condition to ensure structural controllablity is

to actuate at least one (exactly one included) leader in every

n-SCC of the communication graph. Thus, if we actuate

exactly one leader per n-SCC (as Algorithm 1 does), we

obtain structural controllability with the minimum number

of leaders, i.e. we solve the following problem:

min
J

|J | (10)

s.t. (A (P ) , B (J )) is structurally controllable

This is proved in the following lemma.

Lemma 1: The multi-agent network dynamics described

in (5) is structurally controllable if and only if every n-SCC

of the communication graph has at least one leader. Hence,

Algorithm 1 returns a solution to (10) �
Although structural controllability guarantees controllabil-

ity for almost all realizations of the design protocol P , there

is still some possibility that the system will be uncontrollable.

Thus, we have to carefully select P . We show that given the

optimal solution J ∗ of problem (10), we can choose W ∗ as

in Algorithm 2 and c, Ki as in (8), (9) to actually guarantee

controllability.

Lemma 2: Given the collection of leaders J ∗ provided by

Algorithm 1, c as in (8), gains Ki as in (9), and weights wij

as in Algorithm 2, then system (5) is controllable. �
Therefore, the minimum number of leaders in problem (6)

is exactly the number of n-SCCs.

C. Stabilizability-to-Input – Fixed Communication Topology

Next, we address the problem of determining in a dis-

tributed fashion the minimum number of leaders and the

design protocol such that the system (5) is stabilizable-to-

input. In Theorem 1, we obtained a controllable system, yet

in order to define a control law, each leader would require

global knowledge on A (P ) or its structure. In practice this

is not feasible in a distributed setting and, therefore, we relax

our requirements to stabilizability-to-input.

The agents still have to run Algorithm 1 and Algorithm

2 (section IV-A) to determine the leaders and the realization

graph. However, the selection of Ki and zi = cᵀxi in (2), (3)

is different from the controllability problem. We will leverage

the results from [19], so the agents transmit the following

linear combination of the state:

zi = cᵀxi, i ∈ V, (11)

where cj =
(
m−1
j−1

)
, j = 1, . . . ,m are binomial coefficients.

The followers select Ki such that

ẋim = − (zi − zpi
)− φi, i ∈ V \ J ∗ (12)

where φi =
∑m

j=2

(
m−1
j−2

)
xij . Meanwhile, the leaders select

Ki and external input vi such that

ẋim = − (zi − zd)− φi, i ∈ J ∗, (13)

where zd = xd is the desired position.

Theorem 2: Let wij be constructed as in Algorithm 2,

given the leader indices J ∗ from Algorithm 1. In addition, let

the signals zi and vectors Ki be such that (11), (12) and (13)

hold. Then, |J ∗| is the minimum number of leaders, such

that the system (5) is stabilizable-to-input, i.e., all agents

converge to state
[
xd 0 . . . 0

]ᵀ
. �
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D. Controllability and Stabilizability-to-Input – Extension to
Switching Communication Topology

Now, we extend the solution to the problem addressed in

Sections IV-B-IV-C to the case where possible communi-

cation failures can occur, or, generally, the communication

graph varies over time. These changes are described by the

switching signal σ (t) as described in (7). Upon a switching,

it is sufficient for the agents to reconfigure themselves to

maintain the spanning forest hierarchy, keeping exactly one

leader per n-SCC of the communication graph. In conse-

quence, the system remains controllable at each mode and

the switching system (7) is controllable [20].
For the stabilization problem, we need an extra technical

assumption. For more details one can refer to [21]. The sim-

ulations in Section VI show that in practice this assumption

might not be necessary.
Assumption 1: Let the switching times be tk, k ∈ N. We

assume that τk = tk − tk+1 ∈ Y (T ), where T ⊂ R+,

|T | < ∞ is some finite set of positive numbers and Y (T ) is

the (infinite) set generated by T , closed under addition and

positive integer multiplication. �
Under Assumption 1, maintaining the spanning forest hierar-

chy ensures stabilizability-to-input, by invoking Theorem 1

of [19]. Hence, all the agents converge to the desired position

xd. These are summarized in the following result.
Theorem 3: Suppose Jσ(t) is such that every n-SCC of

the communication graph has exactly one leader and that the

realization graph D̂ is a spanning forest, with trees rooted

in the leaders. Then, with zi = xi1, and Ki as in (9),

the system (7) is controllable. Moreover, under Assump-

tion 1, with zi as in (11) and Ki as in (12), (13), the

system (7) is stabilizable-to-input, i.e., all agents converge

to
[
xd 0 . . . 0

]ᵀ
. �

Next, we describe the reconfiguration protocols that the

agents need to run to ensure that the conditions of Theo-

rem 3 hold. Towards this goal, notice that Algorithm 1 and

Algorithm 2 were executed before, so that the corresponding

information is available to the agents. Only two events can

make the communication graph change:(a) edge removal; and

(b) edge insertion. The reconfiguration protocols consist of

two stages. First, there is a flooding stage, where the affected

agent floods all its descendants with information describing

the event. During this stage the agents might also execute

some actions is sequential order, i.e. some initial update of

their ancestor lists. Second, all descendants synchronize and

re-execute some steps of Algorithms 1, 2 depending on the

event’s status. This stage is executed synchronously. We list

all the possible cases.
Edge removal: Suppose edge (j, i) is deleted from the

communication graph. Then, agent i removes the list of

agent j: Lnew
i = Li \ Lj and initiates the flooding stage,

by sending a deletion signal to its out-neighbors as well as

the list to be deleted. Any agent k that receives the deletion

signal, performs the deletion and resends the signal to its

out-neighbors as well as the list to be deleted. Therefore,

in at most n time steps, all the agents k ∈ Vi have deleted

Lj from their list of ancestors Lk, where Vi is the set of

descendants of agent i. If agent j is the parent of agent

i that the latter is following, i.e., pi = j, then during the

flooding stage agent i sends also a repeat signal. This repeat

signal makes the receiving agents k ∈ Vi aware that they

should re-run all steps of Algorithm 1 and Algorithm 2 in

the second stage. Algorithm 1 is re-run to verify whether a

new n-SCC is formed and whether a new leader should be

selected. In addition, agents k ∈ Vi re-run Algorithm 2 to

select the minimum distance parents (see–Fig. 1). If pi �= j,

then the descendants k ∈ Vi only need to restart the first

steps 1-5 of Algorithm 1, to update their lists. The reason

is that the lists might still be incomplete; there may still be

alternative paths from agents in Lj to agents in Vi.

Fig. 1. This figure depicts the reconfiguration, i.e., the redefinition of the
design protocol, after an edge is removed (marked by the cross) from the
communication graph. The arrows denote the communications used in the
realization graph, the dashed arrows represent those information actively
neglected by the agents, and the leaders and followers are depicted by red
and grey vertices, respectively. Only repeat cases are shown.

Fig. 2. This figure depicts the reconfiguration, i.e., the redefinition of the
design protocol, after an edge is added (depicted by a solid-dark arrow) to
the communication graph. The arrows denote the communications used in
the realization graph, the dashed arrows represent those information actively
neglected by the agents, and the leaders and followers are depicted by red
and grey vertices, respectively. More specifically, two scenarios are depicted:
(a) shows the ceasing of leadership case; and (b) shows the refollow case,
see text for details.

Edge insertion: Suppose edge (j, i) is added to the com-

munication graph. Then, agent i adds the list of agent j to

its own Lnew
i = Li ∪ Lj and initiates the flooding stage

by sending an update signal to its out-neighbors. Any agent

k ∈ Vi that receives an update signal, updates its list and

retransmits the signal along with Lj to its out-neighbors. In

at most n steps, all the agents Vi update their ancestor list.

Now, there are two cases that require additional action. In

any other case, no additional action is needed.

(i) agent i belonged to an n-SCC and i �∈ Lj (see Fig.

2a). Then, this means that the n-SCC became a top-linked

SCC. The leader in this previously n-SCC should cease its

leadership. Thus, during the flooding stage the affected agent

sends an additional termination signal to its descendants.

The agent that was the leader in the original n-SCC, will
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in due course receive the termination signal and cease the

leadership. After the flooding stage, the descendants repeat

the steps of Algorithm 2 to follow the parents that lead to

the shortest path to a leader.

(ii) if l∗j + 1 < l∗i (see Fig. 2b). Then agent i selects j as

its new parent pnewi = j, updates its distance l∗,newi = l∗j +1
and sends a refollow signal to its descendants during the

flooding stage. Each agent k ∈ Vi that receives the refollow
signal, compares the in-neighbors’ distances and reselects its

parent, as in steps 2-7 of Algorithm 2.

Notice that the reconfiguration protocols are only run

locally, i.e. only by the descendants Vi of the affected agent

i. The remaining agents V \ Vi are unaffected by the edge

change and the reconfiguration actions.

Remark 1: The triggering of the reconfiguration actions is

event-based; they start running only when an edge fails or

is created, i.e., when the incoming signal is lost or when an

agent receives from a new agent, respectively. The flooding

stage is executed sequentially in the network. However, the

subsequent actions require the agents to start steps of the

Algorithm 1 or Algorithm 2 in a synchronized way. One

way to synchronize the agents k ∈ Vi is to force each one to

wait n− lik time steps after it executes the flooding action,

where lik is the distance from i to k. �
Remark 2: The case where agents leave or join the net-

work can be dealt with using the proposed strategy. For

example, when an agent i leaves, all its out-neighbors can

start the correction protocol at the same time. This is similar

to agent i losing its connection with j = pi. The only

difference is that the list to be deleted is Li. If agent i joins

the network, then it can send an insert signal along with the

repeat signal. The repeat signal is needed to make sure the

list of ancestors of the joining agent is correctly updated. �

V. DISCUSSION OF RESULTS

We note that controllability might not be guaranteed in the

stabilizability-to-input problem and vice-versa. Although the

directed spanning forest hierarchy of the realization graph

(induced by the outputs of Algorithm 1 and Algorithm 2)

is exactly the same, the constant vector c and the gains Ki

are different in the design protocols associated with the two

problems. However, in a practical scenario, the agents could

have both designs available, selecting between controllability

and stabilization without changing the leaders.

Notice that the protocols, i.e. Algorithm 1, require the

agents to start execution at the same time. This is why

we need them to have perfectly synchronized clocks, which

might be challenging to achieve in practice. Another problem

in distributed networks with directed communication links

is that the transmitter may not know when the receiver will

need its state. Hence, in our scenario, all agents i ∈ V should

periodically transmit their lists Li and distances li, resulting

in increased communication bandwidth.

Finally, the condition that the communication graph should

have a leader in each n-SCC at each time might actually be

conservative in the case of switching topologies. A switching

system can be controllable even if it is not controllable at

Fig. 3. This figure depicts the network switches between three modes.
The transitions are such that only one edge changes at each time. The solid
arrows denote the communications used in the realization graph, the dashed
arrows represent those information actively neglected by the agents, and the
leaders and followers are depicted by red and grey vertices, respectively.
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Fig. 4. The position and acceleration over time for the 5 agents interaction
as described in Fig. (3). Notice that all agents’ positions converge to xd = 1.

every mode. Similarly, stabilizability-to-input can be guar-

anteed even if the communication graph is not spanned

by a forest every time (see [19]). Thus, the optimality of

the number of leaders may not hold for some switching

sequences. Still, the proposed strategy is robust, since it

works for every possible switching sequence.

VI. SIMULATION

We consider a scenario of five agents as shown in Fig. 3,

where communication with agent 5 changes over time. More

specifically, three communication topology modes will occur:

(i) it can transmit to agent 1; (ii) it is isolated from the rest

of the network; and (iii) it is only receiving from agent 1.

We model the time interval between two switchings as a

uniform random variable with unit variance and mean value

0.6 sec. When the system is in mode (ii), it switches to

mode (i) with probability 1
2 and to mode (iii) also with

probability 1
2 . As discussed in Section IV-D, the agents

reconfigure themselves, maintaining the directed spanning

forest hierarchy in every mode. In particular, we consider the

stabilizability-to-input problem, where the reference xd = 1
is provided to the leaders. The agents have initial positions[
7 −6 12 −2 −4

]ᵀ
and zero initial velocities and

accelerations. They converge to the desired position, while

the velocity and acceleration converge to zero (see Fig. 4).
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VII. CONCLUSION AND FUTURE RESEARCH

By maintaining a spanning forest hierarchy with trees

rooted in the leaders, we can achieve both controllability

and stabilizability-to-input with the minimum number of

leaders. This holds for a static networks of multi-dimensional

integrators. The results can be extended to the case of

switching networks if we employ reconfiguration strategies

that preserve this spanning forest hierarchy. However, our

conditions for the results in the switching system case may

be conservative, so it would be interesting to explore how

could we relax them. Finally, it would be interesting to apply

the protocols to a team of robotic agents, to explore how we

could deal with the increased synchronization requirements.

APPENDIX

Proof of Lemma 1: From the internal dynamics (1) we

deduce that
{(

xim, xi(m−1)

)
, . . . , (xi2, xi1)

}
⊂ EX , i = 1, . . . , n (14)

From the communication protocol (3), all states xik are

connected to xim through Ki. Moreover, if agents (i, j) are

connected in the communication graph then through wji all

states xik are connected to xjm. Thus,

{(xik, xjm) , k = 1, . . . ,m} ⊂ EX if (i, j) ∈ E . (15)

Finally, if an agent i is a leader then (vi, xim) ∈ EV . This

is illustrated in Fig. 5.

Fig. 5. A directed edge between two agents in the communication graph
(left) and in the system graph (right). All the agents have self loops in the
communication graph, but we hide them for simplicity. The red agent i is
a leader. Thus the edge (vi, xim) exists. Notice that agent j has incoming
links from all the states of agent i. This is due to the scalar zi, which is a
linear combination of the states of agent i.

Notice that each agent has a cycle covering all its states,

which we denote by Ci = {xim → . . . xi1 → xim} (see–

Fig. 5). Hence, the state graph of (5) can be covered by the

disjoint union of cycles Ci. From Corollary 1, it is necessary

and sufficient to actuate one state in each n-SCC of the state

graph, associated with system (5).

From (14), (15), it follows that every n-SCC of the

state graph is in a one-to-one relationship to an n-SCC in

the communication graph. Thus, there is also a one-to-one

relationship between the n-SCCs in the communication graph

and n-SCCs in the state graph. Moreover, selecting a leader

j is equivalent to actuating xjm by (3). Thus, selecting a

leader j in an n-SCC the communication graph is equivalent

to actuating xjm in an n-SCC of the state graph. Hence, the

proof of the first part follows from Corollary 1.

To prove the second part, we invoke Theorem 1 in [9],

which proves that Algorithm 1 returns exactly one leader

per n-SCC of the communication graph. �
Proof of Lemma 2: From the proof of Theorem 2 in [9],

we get that Algorithm 2 produces a realization graph, which

is a directed spanning forest of the communication graph,

with the trees rooted in the leaders (self-loops included).

Thus, the matrix A (P ∗) is block upper-triangular up to a

permutation. The only elements which do not belong to the

diagonal blocks are those corresponding to edges (xpi1, xim)
for i ∈ V \J . The diagonal blocks, related to the self-loops,

are in the canonical controllable form, and their eigenvalues

are determined by the characteristic polynomial (9). Since

the eigenvalues of the agents are distinct, controllability of

system (5) follows by invoking the Popov-Hataus-Belovich

(PHB) criterion [22].

Since the eigenvalues of the agents are unique, for fixed λ,

matrix λI−A (P ∗) can lose at most one column rank. Since

each block is in controllable canonical form, this is true even

if within one block we have repeated eigenvalues as in (9).

The loss of rank occurs at the columns of the agent, for which

λ is an eigenvalue, i.e. at agent k. The remaining columns

of A have full rank. Consider the path from agent k to the

respective leader j ∈ J in the realization graph, i.e. the path

k, pk, ppk
, . . . , j. Denote by (λI−A (P ∗))k→j , the columns

of λI − A (P ∗) that correspond to the agents in this path.

Notice that the matrix
[
(λI−A (P ∗))k→j −B (J ∗)

]
has full column rank as its super-diagonal consists of −1 ele-

ments. Thus, the whole matrix
[
λI−A (P ∗) −B (J ∗)

]
has full column rank and the PHB criterion holds.

To visualize the above argument, assume that m = 3,

n = 2 agent 1 is a follower and p1 = 2 is a leader. Then the

matrix
[
λI−A (P ∗) −B (J ∗)

]
has the form:

⎡
⎢⎢⎢⎢⎢⎢⎣

λ −1 0 0 0 0 0
0 λ −1 0 0 0 0
� � �+ λ −1 0 0 0
0 0 0 λ −1 0 0
0 0 0 0 λ −1 0
0 0 0 � � �+ λ −1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The only element outside of the two diagonal blocks is the

−1 corresponding to edge (xpi1, xim). Hence, the super-

diagonal consists only of −1 elements. This implies that the

rank of the above matrix is always 6. �
Proof of Theorem 1: Feasibility follows by construction

and Lemma 2. Optimality follows by Lemma 1, where |J ∗|
leaders are required to ensure structural controllability, which

is a necessary condition for controllability. �
Proof of Theorem 2: Looking at the equation of each

leader we observe that it behaves like a follower, following

a virtual static agent, say an agent with id 0, with state

x0 (t) =
[
xd 0 . . . 0

]ᵀ
and no incoming connections.

In additon, Algorithm 2 produces a realization graph, which

is a directed spanning forest rooted in the leaders J ∗ [9].

Hence, the realization graph augmented with the virtual static
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agent is a leaderless directed spanning tree for all t ≥ 0 and

we can apply Theorem 1 in [19]. All agents, including the

agent 0, achieve consensus at a state
[
ξ 0 . . . 0

]ᵀ
,

for some constant ξ. Since agent 0 has no incoming link and

it is static, ξ = xd.

The number of leaders is still the minimum possible in

the stabilizability-to-input problem, since if an n-SCC of

the communication graph does not have a leader, then the

communication graph augmented with the static agent does

not have a spanning tree for all t ≥ 0. Thus, by invoking the

converse of Theorem 1 in [19], it follows that having one

leader per n-SCC is a necessary condition. �
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