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Abstract— In this paper, we address the constrained design
of continuous-time linear dynamics to improve system con-
trol performance, which can be measured as a function of
the controllability Gramian. In contrast with the problem
of deployment of actuation capabilities to achieve a specified
control performance, we seek to change the dynamics of linear
systems while considering the deployed actuation mechanisms.
Specifically, we consider spectral properties of the ‘infinite’
controllability Gramian as control performance metrics, and
apply constrained (i.e., bounded) perturbations in the system’s
parameters while respecting its structure. We show that two
different (yet related) re-design problems for control enhance-
ment can be cast as bilinear or linear matrix equality problems.
Lastly, we propose different strategies to obtain the solution of
these problems, and assess their performance in the context of
multi-agent networks in the leader-follower setup.

I. INTRODUCTION

Due to the fast growth of components involved in networked

dynamical systems, it is crucial to better understand how

local dynamical interactions impact the overall system’s

dynamics and its properties. In particular, the notion of

controllability plays a key role, since it assesses the ca-

pability of steering the system’s state towards a desirable

goal. Therefore, the last decade has witnessed a renewed

interest in determining which actuation capabilities need

to be deployed, e.g., which states need to be actuated, to

ensure controllability of dynamical system while achieving

some controllability performance. Often, this performance is

assessed as a function of the controllability Gramian of the

system, which implicitly depends on the system’s dynamics

and its actuation capabilities [1]–[11].

Nonetheless, in some scenarios it is not possible to change

the actuation capabilities of the networked dynamical system.

Therefore, one alternative consists of perturbing the system’s

autonomous dynamics to improve control performance. Al-

though this might not always be possible due to physical con-

straints, we can envision scenarios where this is feasible. For

example, in power systems, we can change the inductance

of the transmission lines [12]; in multi-agents networks, the

dynamics resulting from the interaction between agents can

usually be represented by linear update rules that can be

designed according to an objective [13].
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In the present work, we seek to re-weight network inter-

dependencies to ensure higher control performance of the

overall network with respect to its actuation capabilities.

For instance, in multi-agent networks, each agent receives

the state of neighboring agents and weights it with its

state. In addition, in leader-follower configurations, there is

a subset of the agents which are equipped with actuation

capabilities, corresponding to the incorporation of an external

signal that regulates the overall network, i.e., the leaders.

Thus, the goal in this case is to re-design the weights

that agents use, and thus, specify their dynamics such that

controllability properties are maximized with respect to the

actuation capabilities of the followers.

In the past years, the focus has been on determining the

actuation capabilities required to improve control perfor-

mance [1]–[11]. Also, there is a considerable amount of re-

search on understanding how the network topology properties

impact the control performance [14]–[20]. Recently, in [21],

[22], the authors explore the minimum energy required by

the inputs to transfer the state from the origin to a desired

state, in the context of discrete-time bilinear networks. In

fact, a reason why the authors focus on discrete-time is

that, in continuous-time bilinear networks, there is no direct

relationship between energy and Gramian-like metrics, and

the controllability Gramian requires an integrability condi-

tion that imposes bounded actuation. In contrast with that

study, we consider continuous-time linear networks, i.e., we

do not address bilinear networks, since the network dynamics

in our case does not depend on the input. To the best of

our knowledge, the closest work to the one proposed in this

paper is [23], [24], where the authors propose the notion of

observability radius, which measures how much the entries of

the dynamics can be perturbed such that the system becomes

unobservable.

The rest of the paper is outlined as follows. In Section II,

we formalize two problems related to different controllability

metrics. In Section III, we provide a detailed description

of the proposed methods to address them. In Section IV,

we report our computational experiments and corresponding

results. In Section V, we conclude an enumerate some

possibilities of future work.

II. PROBLEM FORMULATION

Consider the (possibly) large-scale network dynamics de-

scribed by

ẋ(t) = A(G)x(t) +Bu(t), (1)

where x(t) ∈ R
n denotes the state, and u(t) ∈ R

p is the

input signal. The dynamics A(G) ∈ R
n×n is induced by a
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directed interdependency graph G = (V, E) given by a set

of nodes V = {1, . . . , n} and a set of edges E ⊆ V × V ,

where [A(G)]ij ∈ R if the edge (j, i) ∈ E , and [A(G)]ij = 0
if (j, i) ∈ Ec. Also, the input matrix B ∈ R

n×m is such that

[B]ik �= 0 if the external input signal k is available to state i,
and [B]ik = 0 otherwise.

It is often the case that we want to steer the overall state of

the network to a target state by designing an input control

law u(t) for t ∈ [0, tf ], where t0 = 0 and tf are the

initial and final times, respectively. Further, let (without loss

of generality) x0 = 0 be the initial state and xf be the

desired state at the final time. If any xf ∈ R
n is attainable,

then the system (1) is controllable, which we refer to as

(A(G), B) being controllable. Furthermore, it is known that

the minimum control energy [25] to steer the system to xf

incurs a total energy given by∫ tf

0

‖u(τ)‖2dτ = xᵀ
f

[
W

tf
c (G)

]−1

xf ,

where W
tf
c (G) is the controllability Gramian, which can be

computed as a function of (A(G), B). In order to assert

controllability, we can rely on the Lyapunov test for con-

trollability [25]. Then, the ‘infinite’ controllability Gramian

W∞
c ≡ W∞

c (G) =
∫∞
0

eA(G)τBBᵀeA(G)ᵀτdτ is positive

definite if and only if (A(G), B) is controllable. Further-

more, W∞
c can be used as a numerically stable sub-optimal

approximation of the minimum energy control law, which is

often implemented in practical scenarios. Specifically, W∞
c

can be computed as the unique solution to the following

Lyapunov equation:

A(G)W∞
c +W∞

c A(G)ᵀ +BBᵀ = 0,

i.e., as a function of (A(G), B). Consequently, due to

implementation considerations [26], we will rely on the

‘infinite’ Gramian to assess the energy consumption by

the controllers in the long-run, not considering explicitly

the transient behavior [27]. Because W∞
c is positive def-

inite when (A(G), B) is controllable, it can be described

as W∞
c = V diag(λ1, . . . , λn)V

ᵀ, V = [v1| . . . |vn],
where {(λi, vi)}ni=1 are eigenvalue-eigenvector pairs asso-

ciated with W∞
c . Subsequently, we refer to vi as the i-th

eigenvector, i.e., an eigenvector associated with eigenvalue

λi. Furthermore, we assume that 0 < λ1 ≤ . . . ≤ λn, where

λmin = λ1 and λmax = λn are referred to as the minimum

and maximum eigenvalues, respectively. Therefore, it follows

that the total energy incurred by the minimum energy control

in a specific final state xf = cvi is c2λ−1
i , where c ∈ R.

In the worst case, the most energy-consuming states are those

in the direction of v1, i.e., the eigenvector associated with

the minimum eigenvalue of W∞
c (G). As a consequence, to

mitigate the limitations imposed in this case, we propose a

scenario where we re-design the corresponding dynamics,

while satisfying the interdependency graph constraints. Sub-

sequently, equation (1) becomes as follows:

ẋ(t) = [A(G) + Δ(G)]x(t) +Bu(t), (2)

where [Δ(G)]ij ∈ [ιij , μij ] ⊂ R for (j, i) ∈ E , and

[Δ(G)]ij = 0 otherwise. Simply speaking, we perform a

finite additive structural perturbation on the dynamics to

ensure desirable control properties measured by spectral

properties of the ‘infinite’ controllability Gramian.

Considering (2), in this paper we are interested in the

following two problems:

P1 (Worst-case controllability) Given the interdependency

graph G and (A(G), B) controllable, find Δ(G), with

[Δ(G)]ij ∈ [ιij , μij ] ⊂ R for (j, i) ∈ E and [Δ(G)]ij = 0
otherwise, such that (A(G) + Δ(G), B) is controllable and

max
Δ(G),W∞

c ∈S+

λmin(W
∞
c )

s.t. (A(G) + Δ(G))W∞
c +W∞

c (A(G) + Δ(G))ᵀ
+BBᵀ = 0.

It is worth noticing that in the aforementioned problem,

the objective does not impose constraints on the different

controllability modes, i.e., the improvement of performance

might be achieved at the expense of a change in the eigen-

structure of the ‘infinite’ controllability Gramian. Subse-

quently, this might impact the performance of the network

dynamics while heading for a specific state configuration. In

other words, it might be desirable to improve the efficiency

in the control towards a specific linear combination of states

instead of others; thus, establishing a controllability profile.

Therefore, the second problem that we address is as follows:

P2 (Controllability Profile) Given the interdependency

graph G and (A(G), B) controllable, as well as a con-

trollability profile {(λi, vi)}ni=1 describing the eigenvalue-

eigenvector pairs of a desirable positive definite ‘infinite’

controllability Gramian W∞
c =

∑n
i=1 λiviv

ᵀ
i , find Δ(G),

with [Δ(G)]ij ∈ [ιij , μij ] ⊂ R for (j, i) ∈ E and [Δ(G)]ij =
0 otherwise, such that

(A(G) + Δ(G))W∞
c +W∞

c (A(G) + Δ(G))ᵀ +BBᵀ = 0.

III. CONSTRAINED DESIGN OF NETWORK DYNAMICS

FOR CONTROL ENHANCEMENT

In this section, we address problems P1 and P2 by proposing

computational methods for their solution. First, we notice

that problem P1 presents a source of non-convexity due to

the bilinear products occurring in the Lyapunov equation,

which can be described as a bilinear matrix equality (BME).

Unfortunately, this class of problems is, in general, NP-

hard [28]. Nonetheless, we show that this particular equality

is equivalently attained when a related rank optimization

problem is solvable. Consequently, problem P1 can be ad-

dressed by sequentially solving associated convex optimiza-

tion relaxations, as it is stated in Theorem 1. Next, we show

that by constraining the control profile as in problem P2, the

computation of its solution is simplified and can be solved

as a linear matrix equality, which makes it suitable for large-

scale design applications. However, it is worth noticing that,

in defining such a fixed control profile, the space of feasible
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structural perturbations in P2 becomes comparatively more

restricted than the one in P1, where the variables W∞
c and

Δ(G) are jointly optimized.

First, we let A ≡ A(G) and notice that the structural

perturbation Δ ≡ Δ(G) and the ‘infinite’ controllability

Gramian W∞
c ∈ S

n
+ are related by the Lyapunov equation

(A+Δ)W∞
c +W∞

c (A+Δ)ᵀ +BBT = 0, (3)

which involves a sum of a bilinear terms in Δ and W∞
c . In

particular, let the matrices M ∈ R
n×2n, N ∈ R

2n×n, and

Q ∈ R
n×n be such that

M ≡ M(Δ,W∞
c ) :=

[
A+Δ W∞

c

]
,

N ≡ N(Δ,W∞
c ) :=

[
W∞

c A+Δ
]ᵀ

,

and Q := −BBᵀ. Then, we have that (3) can be rewritten

as the BME
MN = Q, (4)

which is also satisfied when

rank(Q−MN) = 0. (5)

Next, following a similar strategy to [29], we consider the

structured matrix Z ∈ R
3n×3n, defined as

Z =

[
Q+XY +MY +XN M +X

N + Y I2n

]
, (6)

which is parameterized by the matrices X ∈ R
n×2n and Y ∈

R
2n×n. This matrix will allow us to restate the constraint

imposed by (5) as a rank minimization problem. In particular,

we note that when X = −M and Y = −N we have

Z =

[
Q−MN 0

0 I2n

]
; (7)

hence, in this case rank(Z) = 2n + rank(Q − MN).
Therefore, the minimum value achieved by latter is attained

when rank(Q − MN) = 0, which, in turn, implies (4).

Furthermore, the matrix Z presents an affine dependency on

Δ and W∞
c (through the matrices M and N ), which we

emphasize by noting that Z can be decomposed as

Z(Δ,W∞
c ;X,Y ) = Z0(X,Y ) + Z1(Δ;X,Y )

+ Z2(W
∞
c ;X,Y ),

having X and Y as the parameters in (6).

Now, we notice that, by fixing X and Y , the rank min-

imization problem in Z(Δ,W∞
c ;X,Y ) can be further re-

laxed to a convex problem. Specifically, we consider the

convex envelope of the rank function, which is given by

the nuclear norm, denoted by ‖Z(Δ,W∞
c ;X,Y )‖∗, and

whose minimization can be formulated as an SDP [30].

This allows us to accomodate additional semidefinite and

affine constraints arising from the objective and constraints

appearing in problem P1. The affine constraints encapsulate

the maximum allowed structural pertubation, whereas the

objective in P1 can reformulated as an SDP constraint. More

precisely, for P1 we have that

max
W∞

c ∈Sn+

λmin(W
∞
c ) ⇔

max
δ∈R,W∞

c ∈Sn+

δ

s.t. W∞
c − δIn 
 0.

Besides, a fixed δ = λ̄ is feasible for P1 if there exist Δ and

W∞
c such that both (4) and the following set of constraints

holds

W∞
c − λ̄In 
 0 (8)

ιij ≤ [Δ]ij ≤ μij , (j, i) ∈ E (9)

[Δ]ij = 0, (j, i) ∈ Ec. (10)

Subsequently, we propose to rely on solving consec-

utive convex programs such that we determine a se-

quence {Δ(k),W∞
c

(k)}k (or, equivalently, {M (k), N (k)}k)

converging to a pair jointly satisfying constraints (4), (8),

(9) and (10). Thus, we propose a sequence of convex

optimization problems that are described as follows. Given

a pair (X,Y ) and a target λ̄, find a solution to

min
Δ∈Rn×n,W∞

c ∈Sn+

‖Z(Δ,W∞
c ;X,Y )‖∗ (C1(X,Y, λ̄))

s.t. (8), (9), (10),

where the objective in C1(X,Y, λ̄) seeks to enforce con-
straint (4). Also, following the above reasoning, the following
result holds.

Theorem 1: The solution to P1 is given by the solution to
C1(X,Y, λ̄) for the maximum value λ̄, as well as some X
and Y , such that MN = Q. �
Remark 1: Given that the ‘infinite’ controllability Gramian
is positive definite, it follows that the eigenvalues are posi-
tive, real, and ordered. Therefore, we can iteratively increase
the value λ̄ until a maximum feasible is reached. ◦
In summary, we propose to solve feasibility problems as-

sociated with P1 for increasing values of λ̄, by invok-

ing the procedure described in Algorithm 1, consisting of

solving consecutive convex relaxations C1(X,Y, λ̄). Further-

more, we start by considering the initial points X(1) =
− [

A W∞
c

]
, and Y (1) = − [

W∞
c A

]ᵀ
, corresponding

to Δ = 0, and W∞
c as a solution to AW∞

c + W∞
c AT =

−BBᵀ. The numerical stopping condition is given by the

relative residual of the bilinear inequality constraint, i.e.,∥∥M (k)N (k) −Q
∥∥
∗ /‖Q‖∗ < ε 
 1.

Algorithm 1 Feasibility sequence for P1

given X(1), Y (1), λ̄
1: while

∥∥M (k)N (k) −Q
∥∥
∗ /‖Q‖∗ > ε do

2: solve C1(X(k), Y (k), λ̄)
3: let X(k+1) = −M (k), Y (k+1) = −N (k)

4: end while

We now consider problem P2, which is distinct from

P1 in that we also prescribe a specific control profile.

More precisely, given a control profile described in terms

4195



of eigenvalue-eigenvector pairs {(λ̄i, v̄i)}ni=1, we can con-

struct a desirable positive definite ‘infinite’ controllability

Gramian W̄∞
c =

∑n
i=1 λ̄iv̄iv̄

ᵀ
i . Therefore, we seek to find

constrained perturbations Δ(G), with [Δ(G)]ij ∈ [ιij , μij ] ⊂
R for (j, i) ∈ E and [Δ(G)]ij = 0 such that Lyapunov

equation (3) is satisfied.

To solve P2, because W̄∞
c is fixed, we can reformulate the

Lyapunov equation (3) as a linear matrix equation. To do so,

we first rewrite (3) as

−(AW̄∞
c + W̄∞

c Aᵀ +BBᵀ) = ΔW̄∞
c + W̄∞

c Δᵀ.

Applying the vectorization operator on both sides, we obtain

b0 := −vec(AW̄∞
c + W̄∞

c Aᵀ +BBᵀ)

= vec(ΔW̄∞
c + W̄∞

c Δᵀ),

and, using the identity vec(LY R) = (Rᵀ ⊗ L)vec(Y ), we

obtain

b0 =(W̄∞
c ⊗ In)vec(Δ) + (In ⊗ W̄∞

c )vec(Δᵀ)

=
[
(W̄∞

c ⊗ In) + (In ⊗ W̄∞
c )Tn,n

]
vec(Δ)

=:M0vec(Δ),

where Tn,n is an n2 × n2 sparse orthogonal permutation

matrix (also known as the vectorized transpose matrix [31]).

Consequently, the problem of finding perturbations Δ ful-

filling a desired controllability profile can be stated as the

following feasibilty problem

find Δ ∈ R
n×n (C2(W̄∞

c ))

s.t. M0vec(Δ) = b0

ιij ≤ [Δ]ij ≤ μij , (j, i) ∈ E
[Δ]ij = 0, (j, i) ∈ Ec. (11)

It is worth noticing that, contrarily to the solution proposed

for P1, the solution to P2 is cast as a linear matrix equation

that can be attained by using efficient off-the-shelf algo-

rithms. Also, we notice that the matrix M0 ∈ R
n2×n2

is

not full rank, which arises from the possible low-rankness of

W∞
c , as well as from the restriction in the degress of freedom

imposed by its symmetry. In case W∞
c has full rank n, the

rank of M0 is n
2 (n + 1) ≤ n2, whereas, in the general

case, when rank(W∞
c ) = k, we have that rank(M0) =

kn − k
2 (k − 1), which is obtained by counting degrees

of freedom. Therefore, we observe that the solution Δ to

C2(W̄∞
c ) for a fixed W̄∞

c is not necessarily unique.

IV. ENHANCING CONTROLLABILITY IN MULTI-AGENT

NETWORKS

We now illustrate the applicability of the proposed frame-

work in the context of multi-agent networks. Specifically,

we first describe a multi-agent network and its dynamics, as

well as the configuration of leaders in the network. Then, we

address problems P1 and P2 in the context of the proposed

multi-agent network.

Fig. 1. Multi-agent network considered in problems P1 and P2, with
agents 2 and 3 selected as leaders.

Multi-agent network

We consider a multi-agent network composed by n = 5
agents, whose communication capabilities are described by

the interdependency graph G = (V, E), which is depicted

in Figure 1. Additionally, for each (j, i) ∈ E , we generate

a weight wij according to a standard uniform distribution

wij ∼ [0, 1], which we associate with the element [Ã]ji of

an initial random system dynamic matrix Ã(G) ∈ R
n×n.

Correspondingly, for (j, i) ∈ Ec, we set [Ã]ji = 0. An

asymptotically stable matrix A(G) ∈ R
n×n is then generated

by taking Ã and applying a shift in the real part of its eigen-

values ξi(A), i = 1 . . . , n, �(ξ1(A)) ≤ . . . ≤ �(ξn(A)).
More specifically, we let δn = �(ξn(Ã)), and set A =
Ã − (δ0 + δn)In, such that �(ξn(A)) = −δ0. We choose

δ0 = 1.00× 10−3, which produces the following matrix

A =

[−1.393 0.559 0 0 0
0.732 −0.781 0.581 0.071 0.374

0 0.034 −0.987 0.658 0
0.575 0 0.976 −1.393 0
0.442 0.778 0.569 0 −1.372

]
.

Besides, we consider agents 2 and 3 to be leaders, i.e., the

input matrix can be described as follows

B = [ 0 0 1 0 0
0 1 0 0 0 ]

ᵀ
.

Further, given the pair (A,B), the eigendecomposition of the

Gramian matrix W∞
c (A,B) (obtained as the solution of the

Lyapunov equation (3)), whose elements are {(λi, vi)}ni=1,

are as follows

λ1 λ2 λ3 λ4 λ5

3.08× 10−5 0.031 0.131 0.635 633.666

v1 v2 v3 v4 v5
0.798 0.442 −0.260 −0.146 0.282
−0.009 −0.150 0.637 −0.276 0.704
−0.001 0.322 0.250 0.893 0.192
0.307 −0.797 −0.320 0.323 0.251
−0.519 0.209 −0.601 −0.030 0.570

We note specifically the values λ1 = 3.08× 10−5 and λn =
633.666.

Next, we find the structural perturbation Δ(G) required

to attain desirable goals to enhance the controllability of

the initial multi-agent network (A(G), B), as captured by

problems P1 and P2.
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Enhancement of worst-case controllability

Given the spectral characteristics of the Gramian matrix asso-

ciated with the initial multi-agent network (A,B), we would

like to find a constrained structural perturbation ΔP1
(G)

such that the minimum eigenvalue of the Gramiam matrix

associated with perturbed system A(G)+ΔP1(G) satisfies a

minimum target value λ̄ = 0.100. Recall that the sparsity of

the structural perturbation ΔP1
is restricted to the interdepen-

dency graph G, i.e. [ΔP1
]ij = 0, (j, i) ∈ Ec. Additionally,

the upper and lower limits for the structural perturbation

are uniformly set to ιij = −1.00 and μij = 1.00, for

i, j = 1, . . . , n.

To determine the structural perturbation necessary to attain

the controllability target value for λ̄, we resort to Algo-

rithm 1, associated with a sequence of convex problems C1.

The stopping criterion is met when the relative residual of

the bilinear equality ‖M (k)N (k) − Q‖∗/‖Q‖∗ < ε with

ε = 1.00× 10−6.

In Figure 2, we display the result of the execution of

Algorithm 1 in terms of the relative residual of the bilinear

equality, along with the sequence of values obtained for

log10(λ
(k)
1 /λ̄), where λ

(k)
1 is the minimum eigenvalue of

W∞
c (A + ΔP1

(G), B) at each iteration k of Algorithm 1.

The resulting structural pertubation ΔP1
is as follows

ΔP1
=

[ 1.00 −0.400 0 0 0
−1.00 0.435 0.172 0.165 −0.174

0 0 0.301 −0.184 0
−0.447 0 0.040 0.469 0
−1.00 0 −0.544 0 0.675

]
.

We emphasize the fullfilment of the sparsity constraints, as

well as the active contraints [ΔP1 ]ij = ιij and [ΔP1 ]ij = μij

highlighted in bold. Lastly, the resulting eigendecomposition

of W∞
c , calculated from (A+ΔP1

, B) is as follows

λ1 λ2 λ3 λ4 λ5

0.100 0.100 0.308 1.191 633.666

v1 v2 v3 v4 v5
−0.427 −0.475 0.660 0.278 0.282
−0.191 −0.276 −0.626 0.006 0.704
0.407 −0.365 0.245 −0.777 0.192
−0.554 0.619 0.175 −0.464 0.251
0.555 0.426 0.286 0.322 0.570

where it can be seen that the target value λ1 = λ̄ = 0.100
has been reached. Besides, we remark that the minimum

eigenvalue increased by a factor of 3.24 × 103. Finally, as

mentioned in Remark 1, one can iteratively increase the value

λ̄ to obtain the solution to P1.

Controllability profile design

We now seek to find constrained perturbations ΔP2
achieving

three different predefined controllability profiles associated

with the previous subsections, which we index by (a), (b)

and (c).

Controllability profile (a), described by {(λ̄i, v̄i)}ni=1,

is defined in terms of the eigenvalues and eigenvec-

tors {(
¯
λi,

¯
vi)}ni=1 of the Gramian of the initial multi-

agent network W∞
c (A,B), along with a minumum target

iterations k
20 40 60 80 100

‖M
(k
) N

(k
) −

Q
‖ ∗

‖Q
‖ ∗

0

0.1

0.2

0.3

iterations k
20 40 60 80 100

lo
g
10

λ
(k
)

1 λ̄

-6

-4

-2

0

Fig. 2. Sequence of values of the relative residual of the bilinear

equality constraint ‖M(k)N(k)−Q‖∗/‖Q‖∗ (top) and and log10(λ
(k)
1 /λ̄)

(bottom), obtained from Algorithm 1 for problem P1.

eigenvalue λ0. More precisely, the target profile (a) is defined

as follows: we set λ̄i =
¯
λi if

¯
λi ≥ λ0, and λ̄i = λ0

otherwise. Correspondingly, we set all target eigenvectors

equal to those from the initial multi-agent network, i.e.,

v̄i =
¯
vi, i = 1, . . . , n. Given this profile {(λ̄i, v̄i)}ni=1,

we solve problem C2(W̄∞
c ) to find a structural perturbar-

tion ΔP2a
. In doing so, we observe that when the upper

and lower bounds on the structural pertubations are enforced

(i.e., ιij = − 1.00 and μij = 1.00), problem P2a results

infeasible. As a verification, if these constraints are relaxed,

i.e., we let ιij = −10.00 and μij = 10.00, then the relaxed

problem P̂2a becomes feasible, producing the structural

perturbarions ΔP̂2a
as follows

ΔP̂2a
=

[ 0.807 −0.324 0 0 0
−1.053 −0.192 −0.538 0.788 0.593

0 −0.117 −0.155 0.446 0
−0.678 0 −0.764 1.346 0
−1.629 −0.105 −0.242 0 1.018

]
.

Next, in profile (b), we keep the same set of target eigenval-

ues as considered in profile (a), but generate a random set

of orthogonal eigenvectors. The target eigenvectors {v̄i}ni=1

are obtained as the columns of an orthogonal matrix Q =
[v̄1| . . . |v̄n] obtained from performing a QR decomposition

on a random matrix X ∈ R
n×n, where each entry of X

is drawn from a standard uniform distribution, i.e., [X]ij ∼
[0, 1]. As a result, similarly to what was obtained for pro-

file (a), when the upper and lower bounds on the structural

pertubations are enforced (i.e., ιij = −1.00 and μij = 1.00),

we observed that P2b resulted infeasible. In addition, when

these constraints are relaxed, i.e, we let ιij = −10.00 and

μij = 10.00, the relaxed problem P̂2b becomes feasible,

producing the structural perturbarions ΔP̂2b
as follows

ΔP̂2b
=

[ 1.937 −0.392 0 0 0
−2.549 −3.271 −0.780 −1.285 1.116

0 −0.499 −2.475 0.742 0
1.152 0 −1.912 1.424 0
−3.251 −1.519 −1.150 0 1.070

]
.

Finally, in profile (c), we feed the controllability profile

resulting from the solution of P1, i.e., {(λi, vi)}ni=1 from

W∞
c (A +ΔP1

). As expected, solving C2(W̄∞
c ) produces a
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feasible structural perturbation ΔP2c
, as given by

ΔP̂2c
=

[ 0.99 −0.395 0 0 0
−0.684 0.713 0 0.332 −0.694

0 0.048 0.469 −0.495 0
−0.411 0 0.188 0.316 0
−0.956 0.236 −0.630 0 0.396

]
.

It is worth mentioning that the obtained solution ΔP2c
differs

from the structural perturbation ΔP1 , which is expected due

to the nonuniqueness of solutions.

V. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we addressed the constrained design of

continuous-time linear system dynamics to improve their

control performance, measured as a function of the asso-

ciated controllability Gramian. Specifically, we considered

spectral properties of the ‘infinite’ controllability Gramian,

and showed that worst-case performance problem can be

cast as an optimization problem with bilinear matrix equality

constraints. In contrast, the problem of achieving a specific

control profile can be formulated as a linear matrix equality.

Because the former problem is computationally intractable,

we proposed to address it by resorting to a sequence of

convex programs encoding parameterized feasibility prob-

lems. We then validated our approach in the context of

multi-agent networks. Future research will focus on posing

and addressing similar constrained design problems in the

discrete-time domain, and on exploring distributed imple-

mentation of these algorithms in the context of decentralized

networked systems.
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