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Abstract— We introduce the problem of protecting the
privacy of time-varying sensitive data using differential privacy.
Contrary to prior work that considers fixed private data, we
wish to design a privacy-preserving mechanism that, at each
time and given the observations so far, keeps the current state
of a dynamical system private. Our work protects dynamical
systems from being tracked by an adversary by providing
differentially private guarantees.

Specifically, we propose a mechanism which adds artificial
noise to (i) the input of the system and (ii) the measurements
which are then published. In particular, two scenarios are
considered: for a scalar dynamical system under ε–differential
privacy, we derive a mechanism that, at each time, publishes the
most accurate approximation of the current state while preser-
ving privacy. Next, for a general linear system under (ε, δ)–
differential privacy, we propose a Gaussian–based privacy–
preserving mechanism with a quadratic cost.

I. INTRODUCTION

The use of individuals’ sensitive data is critical for se-

veral systems such as collaborative recommendation systems,

social interaction, and social welfare maximization. This

sensitive data can either be fixed over time, such as the date

of birth and the health record of an individual, or can vary

over time, such as a user’s current position and the state of a

plant. In every case, the use of sensitive data raises privacy

concerns.

In particular, for time–varying sensitive data, preserving

the privacy of the current value of the private state of

a dynamical system arises in settings including network–

controlled systems and sensor networks [1]. In such settings,

we need to block an inference attack on the sensitive data at

the current time and not necessarily the whole trajectory.

Specifically, at each time step and given the responses
published so far, we need to defend against an adversary
that attempts to infer the current value of private data, i.e.
the current state of the system.

Typically, privacy concerns are mitigated by mecha-

nisms that perturb data or add noise such that an ad-

versary who observes the published output cannot extract

sensitive information. Proposed frameworks that preserve

the privacy of sensitive data include: (i) an information–

theoretical approach [2], where the privacy is quantified by

the mutual information between the published output and

the private data, (ii) a game–theoretic approach e.g. [3],
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where the adversary plays a game with the mechanism, and

(iii) differential privacy which uses a statistical approach to

provide privacy guarantees against a general and powerful

adversary. In this paper, we use differential privacy for its

general adversary model, concreteness of privacy guarantees,

and increased popularity. According to differential privacy

as introduced in [4] and surveyed in [5], artificial noise is

injected to the responses before they are published such that

an adversary that observes the these responses cannot con-

fidently discern variations of the private data. The proposed

privacy–preserving mechanisms in the literature approximate

a variety of functions such as the mean, the median, graph–

theoretic quantities, optimization problems, and filtering. As

explained next in more detail, these works propose a privacy–

preserving version of a function that maps a given private

input (e.g. a database, a vector, a signal, a graph) to a

response (e.g. a scalar value, another signal, sequences of

exchanged messages) and, thus, provide a single privacy

guarantee.

Specifically, existing work in differential privacy assumes

that the private data is given and fixed in time and proposes

privacy–mechanisms for a wide spectrum of applications that

range from database counting functions [6] and statistics of

populations [7], to distributed optimization problems [8], [9],

and filtering by [10]. For example, [10] considers a signal

as a private data and constructs private approximations of

a desired filter. In particular, although the private data is

time–varying (it is a whole signal), the privacy guarantees

protect the signal as a whole and, thus, the problem reduces

to a static one where filtering is viewed as a function

acting on signal spaces. Similarly, [11] proposes a privacy–

preserving proxy to the consensus algorithm, where the

private data is the agents’ initial states and the output is all

exchanged messages. Again, despite the consensus dynamics,

the privacy guarantee is static; the proposed mechanism is

a privacy–preserving map from the private initial states to

the sequences of messages. In all of these works, the private

data is assumed to be an external input to the mechanism

and cannot be perturbed per se. As an implication, in

dynamical phenomena, these works provide only “static”

privacy guarantees, i.e. the mechanism that maps private data

to the responses is differentially privacy. In practice, however,

privacy needs may vary over time in one or more of the

following aspects: (i) the private data itself may change over

time, (ii) additional responses may be published, or (iii) the

strength of privacy may be either revised at a later time.

More concretely, consider an individual using a location–

based service and, thus, reporting her GPS location. Such an

individual may wish to protect her current location, while not

2017 IEEE 56th Annual Conference on Decision and Control (CDC)
December 12-15, 2017, Melbourne, Australia

978-1-5090-2873-3/17/$31.00 ©2017 IEEE 1118



worrying about revealing her past locations. From a different

point of view, an adversary may wish to track the state of

a dynamical system and decide when to deploy an attack.

In each case, we need to provide privacy guarantees that

explicitly protect the current state of the system. Motivated

by such applications, this work introduces time–varying

privacy guarantees; at each time, the mechanism publishes

additional information and the private data evolves. Then,

we wish to design a privacy–preserving mechanism such

that an adversary who observes the so–far responses of the

mechanism cannot confidently infer the current private data.

Our work deviates from the literature by considering

time–varying differentially private guarantees. For an under-

lying dynamical system, we formulate and solve the problem

of designing a mechanism that provides the following privacy

guarantees. At each time step, an adversary that has observed

the outputs of the mechanism so far cannot confidently infer

the current state of the system. The time–varying sense of

a privacy statement stems from the fact that the mechanism

publishes new outputs with every step, thus, offering to the

adversary additional knowledge. Moreover, the private data

that needs to be protected is the current state which changes

over time. On a technical note, we also allow the privacy

level, i.e. the strength of the privacy guarantees, at each

time step to vary as well; either increase or decrease at

each time step. Our contributions are both conceptual and

technical. Conceptually, we extend differential privacy for

the case where the private is not a fixed quantity. Also, the

proposed mechanism overcomes the problem of “depletion of
privacy budget” by changing the private data itself and, thus,

allows for infinite horizons while maintaining meaningful

privacy guarantees and accuracy of the responses. Additi-

onally, contrary to existing privacy–preserving mechanisms

that inject noise only in the published responses, our mecha-

nism consists of two noise sources: aside from corrupting

the published responses with noise, the mechanism perturbs

the private data itself. Regarding our technical contributions,

we design a Gaussian–based privacy–preserving mechanism

for a linear system that provides (ε, δ)–differential privacy.

Additionally, for scalar system under a ε–differential privacy,

we provide an efficient privacy–preserving mechanism that,

at each time, publishes the most accurate but private approxi-

mation of the current state. Both mechanisms consist of two

parts: the sensor part which misreports the current private

data by publishing only noisy versions of it and is typically

used in differential privacy literature, and the controller part

which injects noise to the system and corrupts the private

data itself.

The paper is structured as follows. Section II briefly revi-

sits the notion differential privacy, formulates the problem of

designing a dynamically private mechanism that protects the

current state of a dynamical system, and provides a technical

comparison to existing work. Section III-A considers the

case of a linear system under (ε, δ)–differential privacy

while Section III-B proposes a Laplace–based mechanism

for a linear scalar system under ε–differential privacy. We

conclude this work with Section IV which discusses future

directions.

II. PROBLEM FORMULATION

In this section, we introduce the problem of designing

mechanisms that provide differentially private guarantees for

time–varying private data. After motivating and informally

formulating the general problem in Subsection II-A, Sub-

section II-B provides a brief reviews of the framework of

differential privacy, and Subsection II-C derives a concrete

formulation for linear systems.

A. Time–varying Private Data
As a motivating example, we consider a swarm of mobile

agents collaboratively monitoring a quantity of interest —e.g.

a target’s position or a temperature field— and publishing an

estimate of this quantity. Additionally, the agents themselves

do not want to be tracked and, thus, have privacy needs for

their current state —e.g. an adversary may try to localize

and attack them. Since the agents’ positions may be inferred

from the published responses, we wish to design a privacy–

preserving mechanism that publishes accurate information

while guaranteeing the agents’ privacy. Another example,

considers a vehicle traveling on a highway segment and re-

porting its position for traffic–monitoring purposes. However,

due to privacy concerns, the vehicle does not wish to be

accurately localized on the highway at any time.
A key observation, to be exploited later, is that if the

privacy requirements cannot be satisfied by solely perturbing

the published responses, the agent noisily perturbs its private

data. This observation deviates from the assumptions in

the differential privacy literature where the private data are

assumed given and fixed over time and the mechanism

cannot tamper with them. In practice, although some private

data such as health records cannot be altered, in several

scenarios, private data including sensor locations, leadership

tokens, and a dynamical system’s state can be updated by a

mechanism.
We will introduce our problem in its general form and,

later, we will focus on linear instances of it. Formally, we

consider a dynamical system with state xt and open–loop

dynamics xt+1 = f(xt, ut). For each time t ∈ {1, . . . , T},

we wish to publish the observations yt = g(xt). However,

due to privacy concerns, at time t, we wish to protect the

privacy of the current state xt by appropriately injecting

noise. Importantly, the privacy constraints are time–varying;

the data that needs to remain private is not always the

same but it evolves with time. Moreover, the adversary’s

knowledge changes as additional observations are published

and, thus, past noisy observations potentially can harm the

privacy of the current private data. To this end, we wish to

design a privacy–preserving mechanism such that, at time t,
the mechanism that maps the current state xt to the so–far

published observations {ys : s ∈ 1 : t} is εt–differentially

private. The sequence of privacy levels [εt]
T
t=1 is assumed

to be given.
Contrary to existing privacy–preserving mechanisms that

only perturb the published responses, the approach proposed
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Fig. 1: We wish to design a privacy–preserving mechanism (H,G)
such that, at time t and given the published observations {ŷi}ti=1,
the current state xt is εt–differentially private.

in this paper considers mechanisms that inject noise both in

the sensor and the controller, as depicted in Figure 1.

i. Sensor noise: instead of the exact measurement yt,
the mechanism only publishes noisy versions of it

ŷt ∼ G(xt); for example, ŷt = yt + Vt, where Vt is

suitable privacy-preserving noise. Intuitively, noise Vt

protects the current state xt from an adversary that

knows the current observation ŷt. This type of noise is

similar to the noise added by existing privacy–preserving

mechanisms.

ii. Controller noise: the mechanism injects noise to the

input of the system, ut ∼ H(u
(0)
t ), where H is a suit-

able privacy-preserving mechanism; for example ut =

u
(0)
t +Wt, where u

(0)
t is an external control input —for

simplicity we assume u(0) ≡ 0— and Wt is appropriate

noise. In words, if past observations ŷ1, . . . , ŷt−1 can

be used to accurately infer the next state xt, then, the

injected noise perturbs the system’s state itself to enforce

privacy.

Regarding performance of the system, we wish to mini-

mize the amount of injected noise; increased sensor noise Vt

renders the measurements ŷt uninformative, whereas incre-

ased noise Wt changes the control input from the nominal

one and, thus, degrades the performance of the plant.

B. Differential Privacy

Differential privacy, which was introduced in [12] and

surveyed in [5], provides concrete privacy guarantees whe-

never private data is accessed. Specifically, artificial noise

is injected such that a curious adversary that observes the

output of a mechanism cannot confidently infer the initial

private data. Differential privacy is defined as in Definition 1.

Definition 1 (Differential Privacy). Let ε > 0 be a privacy
level, U be the space of private data, and A ⊆ U × U be
an adjacency relation. The mechanism Q : U → Δ(Y) is
ε-differentially private if:

P(Q(u) ∈ S) ≤ eε P(Q(u′) ∈ S) + δ,

for all S ⊆ Y and all adjacent inputs (u, u′) ∈ A.

The case of δ = 0 is referred to as ε–differential pri-
vacy, whereas, the general case is termed (ε, δ)–differential
privacy. Moreover, differential privacy is resilient to post-

processing which allows the use of the Laplace and Gaussian

mechanisms in constructing privacy-preserving mechanisms.

Theorem 2 (Laplace/Gaussian Mechanism). Consider the
mechanism Q : U → Δ(Rn) that adds noise to the result of
query q : U → R

n:

Q(u) = q(u) + V.

Then,
• Laplace mechanism: for n = 1, if V ∼ Lap

(
‖Δq‖1

ε

)
,

the mechanism Q is ε–differentially private;
• Gaussian mechanism: if V ∼ N

(
0,
‖Δq‖22
κ2(ε,δ)

)
, the

mechanism Q is (ε, δ)–differentially private;
where ‖Δq‖1 = max(u,u′)∈A ‖q(u) − q(u′)‖1, ‖Δq‖2 =
max(u,u′)∈A ‖q(u)−q(u′)‖2, Lap is the Laplace distribution,
N is the normal distribution, κ(ε, δ) = 2ε

K+
√
K2+2ε

, and
K = Q−1(δ), where Q is the tail probability of the normal
distribution.

As mentioned earlier, literature provides an impressive

line of differentially private mechanisms. In these settings,

the private data u is assumed to be a given input and

cannot be altered by the mechanism. In such settings, noise

in injected whenever a response y is published, such that

privacy is preserved. Although the response is noisy and,

thus, inaccurate, the private data remains unchanged. Instead,

in our problem, we wish to protect the current state of

a dynamical system where the mechanism can change the

private data itself besides publishing responses corrupted

with noise.

C. Differentially Private State
Finally, we concretely formulate the problem of desig-

ning a mechanism that, at each time, guarantees the privacy

of the current state of a dynamical system. In this work, we

consider linear dynamical systems

xt+1 = At xt +Bt ut,

yt = Ct xt

Given a nominal input u
(0)
t , we wish to design a privacy-

preserving mechanism (H,G) that sets ut = H(u
(0)
t ) and

ŷt = G(yt) as depicted in Figure 1. Specfically, this mecha-

nism is formulated in Problem 1.

Problem 1. Given a sequence of privacy levels [(εt, δt)]
T
t=1,

design a mechanism (H,G) such that
• Privacy: at time t, state xt is (εt, δt)-private, i.e.

P(ŷ1, . . . , ŷt|xt) ≤ eεt P(ŷ1, . . . , ŷt|x′t) + δt,

for adjacent (xt, x
′
t) ∈ A;

• Performance: the amount of injected noise is minimized

1

T

T∑
t=1

E [C1(0, ut)] + E [C2(yt, ŷt)] ,
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where we assume that u(0)
t = 0 and C1 and C2 are cost

functions that penalize excessive noise.

In the rest of the paper, we provide privacy–preserving

mechanisms for two instances of Problem 1: (i) a linear

system with a finite horizon under (ε, δ)–privacy, where we

prove that protecting the least–squares estimator suffices to

provide differential privacy and (ii) a scalar system under ε–
privacy, which models scenarios such as a car driving on a

highway segment. Additionally, our results allow for time–

varying privacy levels, i.e. for given sequences of (εt, δt), we

require (εt, δt)–privacy at time time t.

III. LINEAR SYSTEMS WITH PRIVATE STATE

We now solve two instances of Problem 1. Subsection III-

A considers a linear system under (ε, δ)–differentially private

guarantees and, next, shows that our technique allows for

time–varying privacy levels. Subsection III-B considers a

scalar linear time–varying system under ε–differential pri-

vacy and provides a simple privacy–preserving mechanism

that allows infinite horizon.

A. Linear System under (ε, δ)–Differential Privacy

We now design a Gaussian–based privacy–preserving

mechanism that solves Problem 1 for a linear system in

an LQG–like setting. Specifically, we consider the following

linear, for simplicity time invariant, system.

xt+1 = Axt +B ut, and yt = C xt. (1)

We assume that the system parameters A, B, and C are

publicly known, that the system starts at t = 0, but the first

observation published is y1, and that (ε, δ) is a given privacy

level. Our results remain applicable for time–varying privacy

levels, i.e. a given sequence [(εt, δt)
T
t=1 of privacy levels,

where T is a time horizon. Finally, we consider the adjacency

relation (xt, x
′
t) ∈ A ⇔ ‖xt − x′t‖2 ≤ 1 and the quadratic

cost

CT =
1

T

[
T−1∑
t=0

E (ut − u(0))T R (ut − u(0))+

T∑
t=1

E (ŷt − yt)
T Q (ŷt − yt)

]
,

where we assume R 
 0 and Q 
 0 are positive semi–

definite matrices that penalize control and output noise,

respectively. Additionally, we assume that the nominal input

u
(0)
t is publicly known and, thus, we can ignore it by

assuming u
(0)
t = 0. Since the input signal may be computed

based on public information or be inferred by past executions

of the system, we cannot argue about the privacy of the

nominal input. Thus, following the dogma of differential

privacy for a powerful adversary, we assume that this signal

is publicly known.

In order to design a mechanism that, at time t, guarantees

(ε, δ)–privacy of the current state xt with respect to the adja-

cency relation A, we design a privacy–preserving mechanism

of the form

ut = u
(0)
t +Wt = Wt, and ŷ = yt + Vt. (2)

Then, Problem 1 is stated as in Problem 2.

Problem 2. Design the stochastic processes [Wt]
T
t=1 and

[Vt]
T
t=1 such that the privacy–preserving mechanism that

inputs ut = Wt and publishes ŷt = yt + Vt satisfies the
following properties.

• At time t, the current state xt is (ε, δ)–differentially
private.

• The quadratic cost CT is minimized; i.e. the processes
W and V are not unnecessarily noisy.

For this problem, we consider only zero–mean Gaussian–

based privacy–preserving mechanisms of the form shown in

Equation (2). Specifically, we design the covariance matrix⎛
⎝ Et

Wt

Vt+1

⎞
⎠ ∼ N

⎛
⎝0,

⎡
⎣Σt 0 Xt

0 Wt Yt

XT
t YT

t Zt

⎤
⎦
⎞
⎠ , (3)

where Et = x̂t − xt and x̂t is the least–squares estimator of

xt, given the responses {ŷi}ti=1.

In the structure of the correlation matrix in Equation (3),

we allow for correlation between the input and the output

noise. However, we chose not to allow for any correlation

between the input noise and the error of the least–squares

estimator. These properties are similar to the mechanism

presented in Subsection III-B for a scalar system under ε–
differential privacy.

The covariance matrix in Equation (3) is derived from

the following convex optimization problem.

minimize
{Σt,Wt,Zt,Xt,Yt}Tt=1

T−1∑
t=0

[
tr(RWt) + tr(QZt)

]

s.t.

⎡
⎣Σt 0 Xt

0 Wt Yt

XT
t YT

t Zt

⎤
⎦ 
 0,

[
Mt −Σt+1 Nt +MtC

T

∗ CMtC
T + Zt + sym(C Nt)

]

 0

Σt 
 κ−2(ε, δ) I, ∀t,
(4)

where matrices Mt and Nt are linear functions of the

variables defined in the proof of Theorem 3. The first

constraint requires that the covariance block–matrix is well-

defined, whereas the second constraint recursively couples

the covariance matrices across different times. Lastly, the

third inequality enforces the privacy constraint.

The following result proves that, for a feasible solution of

program in Equation (4), the current state xt is (ε, δ)–private.

Theorem 3. Consider the linear system (1) with ut = Wt

and ŷt = yt + Vt as defined in (2) and a privacy level
[(ε, δ)]Tt=1. If the covariance matrix satisfies the constraints
of the optimization problem in (4), then, at time t and given
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the observations [ŷi]
t
i=1, the current state xt of the system

is (ε, δ)–differentially private.

The proof of this result is included in the Appendix.

The derivation of the result follows the steps of Kalman

estimation, in particular, as in [14] and, then, invoking

the Gaussian mechanism from differential privacy. However,

here we allow for correlation between the control noise, the

sensor noise, and the estimation error and, thus, the exact

expression is different. Specifically, we guarantee (ε, δ)–
differential privacy for xt at time t, if the least–squares

estimator x̂t can be written in the form of a Gaussian

mechanism

x̂t = xt + Et,

where Var(Et) ≥ κ2(ε, δ) I .

The following result provides sufficient conditions for the

feasibility of the optimization problem.

Proposition 4. If the matrix [A;B] has full row rank, then,
the problem in Equation 4 is feasible.

Sampling for the privacy–preserving noises [Wt]
T−1
t=0 and

[Vt]
T
t=1 can be done as follows.

• The sensor part initializes the Kalman estimator by

choosing E0 ∼ N (0,Σ0).
• At each time t, the controller part draws Wt ∼

N (0,Wt).
• At time t, the sensor part measures the state xt+1, infers

Wt and Et, draws Vt+1 conditioned on Wt and Et, and

publishes the response ŷt+1 = C xt+1 + Vt+1.

Finally, we highlight that our technique allows for dif-

ferent privacy levels at each time step t, which captures the

scenario where the privacy of part of the trajectory needs

to be better protected. Specifically, given a sequence of

privacy levels [(εt, δt)]
T
t=1, we can replace the last constraint

in Equation (4) with the time–dependent expression

Σt 
 κ−2(εt, δt) I, ∀t ∈ {1, . . . , T}.

B. Scalar System under ε–Differential Privacy

In this section, we consider a scalar system and ε–
differential privacy and we provide a simple Laplace–based

privacy–preserving mechanism that, at time t, protects the

current state xt with a privacy level εt. Specifically, we

consider a noiseless scalar system with state xt ∈ R and

publicly known dynamics

xt+1 = at xt + ut and yt = xt, (5)

a sequence of privacy levels [εt]
T
t=1, where T ∈ N ∪ {∞} is

a, possibly infinite, time horizon, and the adjacency relation

A defined as

(xt, x
′
t) ∈ A ⇔ |xt − x′t| ≤ 1.

At time t, the value of εt captures the strength of the privacy

guarantees. Importantly, we do not make any assumptions

on the monotonicity of the sequence of privacy levels and,

thus, we allow for both privacy relaxation and tightening

over time. For constant private data xt = x, ∀t, the problem

of relaxing privacy (increasing sequences of εt) has been

explored in earlier work [13] but in the case of fixed private

data, whereas, privacy tightening is conceptually impossible;

once a response is published it is impossible to recall it. In

our setting, we overcome this limitation by allowing for the

privacy–preserving mechanism to noisily change the private

data itself. Specifically, given the system in Equation (5), we

consider a mechanism of the form

ut = Wt and ŷt = yt + Vt,

where [Wt]
T
t=1 and [Vt]

T
t=1 are appropriate privacy–

preserving stochastic processes. As mentioned earlier, the

input noise Wt changed the private data and, thus, at time

t + 1, we need to protect the new private data at xt + Wt.

Contrary to Wt which becomes part of the private data,

the output noise Vt is logistic; essentially the mechanism

misreports its state. Regarding accuracy, we consider a cost

that penalizes inaccurate published data

CT =
1

T

T∑
t=1

E (ŷt − yt)
2 =

1

T

T∑
t=1

EV 2
t .

Then, Problem 1 takes the more specific form of Pro-

blem 3.

Problem 3. Design the stochastic processes [Wt]
T
t=1 and

[Vt]
T
t=1 such that

• for each time t and given the current state xt, the
mechanism that publishes {ŷi}ti=1 is εt–differentially
private; and

• the published responses ŷt accurately approximate the
desired output xt; i.e. minimizes the cost CT .

Theorem 5 solves Problem 3 and hints to an efficient

algorithm that draws a sample from the stochastic processes

Wt and Vt. In order to state Theorem 5, we define the

following probability densities, where ε2 ≥ ε1 > 0:

�ε1(v) =
ε1
2
e−ε1 |v|,

�ε2|ε1(v2; v1) =

[(
ε1
ε2

)2

δ(v1 − v2) +

(
1−

(
ε1
ε2

)2
)

�ε1(v1 − v2)

]
�ε2(v2)

�ε1(v1)
,

�ε1|ε2(v) =
(
ε1
ε2

)2

δ(v) +

(
1−

(
ε1
ε2

)2
)
�ε1(v),

where δ(·) is Dirac’s delta function. We refer the reader to

earlier work [13] on the properties of these distributions. The

proof of the following theorem, which proposes a mechanism

and proves its privacy guarantees, can be found in the

Appendix.

Theorem 5. Given the sequence of privacy levels [εt]
T
t=1,

define the processes [Wt]
T
t=1 and [Vt]

T
t=1 such that V1 ∼ �ε1

and, for t ≥ 2,
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• if εt > |at| εt+1, set

Wt ∼ �εt+1| εt
|at|

and Vt+1 = at Vt −Wt;

• if εt ≤ |at| εt+1, set

Wt = 0 and Vt+1|at Vt ∼ �εt+1| εt
|at|

.

Then,
• at time t and given the responses {ŷi}ti=1, the current

state xt is εt–private.
• the cost CT is minimized; i.e. CT = 1

T

∑T
t=1

2
ε2t

.

The proof of this result can be found in the Appendix.

Theorem 5 suggests a practical online algorithm. Specifically,

at time t, the samples Wt and Vt+1 depend only on the

current level εt and the next one εt+1. Additionally, the con-

troller and sensor part of the privacy–preserving mechanism

do not need to communicate —the sensor part can infer the

noises the controller injects. At each time step, Theorem 5

performs one of the following actions.

• If the current privacy level is tighter than the next

one (εt ≤ |at| εt+1), then, the sensor performs gradual

release of private data according to [13], and there is

no need to inject any noise to the system.

• If the current privacy level is looser than the next one

(εt > |at| εt+1), then, the released information ŷt can

be used to infer the next state xt+1 and, thus, violating

the privacy guarantees. Theorem 5 enforces privacy by

injecting noise and driving the next state of the system

xt away from the predicted one at ŷt.

At each time, Theorem 5 publishes accurate responses

ŷt of the current state yt = xt. Specifically, any other proxy

with smaller expected squared error E(ŷt−yt)
2 would violate

the privacy constraints. Nonetheless, the algorithm does not

penalize the use of input noise and, therefore, minimizes

the quadratic cost CT which penalizes inaccurate responses.

However, the cost CT does not penalize the noise Wt added

to the private data.

Moreover, Theorem 5 is amenable to an infinite horizon

setting since, intuitively, the privacy budget is regenerated by

the input noise Wt.

IV. DISCUSSION AND FUTURE WORK

In this work, we introduced the idea of time–varying

differentially private guarantees. Specifically, we focused on

protecting the privacy of the current state of dynamical

system. After formulating the general problem, we consi-

dered two cases, a scalar time-varying system and a linear

system, and proposed two privacy-preserving mechanisms.

These mechanisms deviated from the ones proposed in the

literature of differential privacy in that they include both a

controller part which drives the private data and a sensor

part which publishes the responses. Besides the technical

contributions, the mechanisms proposed here conceptually

differ from existing ones in differential privacy in that they

consist of two parts. The controller part randomly shifts the

private time over time while the sensor part resembles the
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Fig. 2: Theorem 5 can be understood in terms of the stochastic
process introduced in [13]. At each time step, we either perform
gradual release of private data (denoted by red) and publish a more
accurate reponse, or we tighten the privacy by perturbing the private
data itself (denoted by blue).

existing privacy-preserving mechanisms. In particular, our

mechanisms circumvent the problem of “depleted privacy
budget”, where after long enough time, either the privacy

guarantees cease to exist or the responses become unboun-

dedly noisy. Future work includes extending the techniques

and provide privacy guarantees for current state in nonlinear

scenarios.
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APPENDIX

Here, we provide proofs for the two main theorems

presented in this work.

Proof of Theorem 3. We will prove the theorem by assu-

ming that the mechanism initially publishes a noisy version

x̂0 of the initial state x0, where

x̂0 = x0 + E0,

where E0 is artificial noise and we are going to prove the

privacy guarantees for such a mechanism that publishes x̂0

and, then, sequentially, ŷt. The post–processing theorem sta-

tes that the privacy guarantees carry over for the mechanism

that does not publish the initial response x̂0.

At time t, given the initial estimator x̂0 and the publis-

hed responses [ŷi]
t
i=1, we denote with x̂t the least–squares

estimator of the current state xt. For any time t, it suffices

to prove that the mechanism that, given xt as a private

data, publishes the least–squares estimator x̂t is (εt, δt)-
differentially private. Indeed, given xt, the (randomized)

function that maps the estimator to the published responses

x̂t → (x̂0, ŷ1, . . . , ŷt)

is a post–processing that is independent of the privacy–

preserving mechanism that maps the private state to its least–

squares estimator

xt → x̂t.

At time t + 1, for a fixed xt+1, the least–squares estimator

x̂t+1 is derived as a linear combination of the last estimator

x̂t = xt + Et and the last published response ŷt+1 =
C xt+1 + Vt+1. Specifically, letting

Mt = AΣt A
T +BWt B

T and

Nt = BYt −AXt.

the least–squares estimator x̂t+1 is computed to be

x̂t+1 = xt+1 +K Vt+1 + (I −KC) (AEt −BWt),

where K = (Mt C
T +Nt) (CMt C

T +Zt+ sym(C Nt))
−1

and sym(A) = A + AT . The covariance of the estimation

error Et+1 = x̂t+1 − xt+1 is then

Σt+1 = Mt − (Mt C
T +Nt)

T(
CMtC

T + sym(C Nt) + Zt

)−1
(Mt C

T +Nt).

Next, we relax this equality as follows. The direction of the

inequality can be interpreted as the mechanism publishing a

more accurate least–squares estimator than the one computed

from x̂t and ŷt. Later, we will demand that this “tighter”

estimator meets our privacy requirements.

Σt+1 � Mt − (Mt C
T +Nt)

T(
CMtC

T + sym(C Nt) + Zt

)−1
(Mt C

T +Nt)

We apply Schur complement to retrieve the second inequality

in the constraints of (4). We complete the proof by invoking

the Gaussian mechanism and requiring

Σt+1 
 κ−2(εt, δt) I.

Proof of Proposition 4. In order to prove feasibility, we need

to prove that, for a proper choice of the decision variables,

Σt has full rank. Then, we can scale any such solution in

order to satisfy the privacy constraint. For Zt arbitrarily large,

i.e. Zt → ∞, the second constraint, as stated in the form of

Equation reduces to

Σt � AΣt A
T +BWt B

T .

It suffices to prove that the right hand side of the in-

equality is full rank. Indeed, let v ∈ R
n be such that

vT
(
AΣt A

T +BWt B
T
)
v = 0. Then, vT AΣ

1
2
t = 0 and

vT BW
1
2
t = 0 and, thus, vT A = 0 and vT B = 0. Since

[A;B] has rank n, this implies that v = 0 and this completes

the proof.

Proof of Theorem 5. For simplicity, we assume that at �= 0.

First, we observe that E(ŷt − yt)
2 = EV 2

t ≥ 2
ε2t

due to

the optimality of the Laplace mechanism [15], [16]. On the

other hand, we use induction on t and prove that Vt ∼ �εt .

For t = 1, it holds that V1 ∼ �ε1 . For t+1, we consider two

cases.

• If εt > |at| εt+1, since Vt ∼ �εt and Wt ∼ �εt+1| εt
|at|

and

are independent, it follows that Vt+1 = at Vt − Wt ∼
�εt+1 .

• If εt ≤ |at| εt+1, then, by integrating out Vt we get that

Vt+1 ∼ �εt+1
.

Therefore, the minimum cost is achieved and this proves the

second part of Theorem 5.

Next, we prove the privacy guarantees using induction on

t. We abuse notation by using the symbol P for probability

densities and re-use the same symbol for the random variable

and its value Specifically, we prove that, at time t and given

the current state xt, the likelihood probability of the past

responses is of the form

P(ŷ1, . . . , ŷt) = �εt(ŷt − xt)h(ŷ1, . . . , ŷt), (6)

for some function h. Note that the density in Equation (6)

does not depend on past states {xi}i<t. For t = 1 and given

x1, it holds

P(ŷ1 = z1) = P(V1 = z1 − x1) = �ε1(z1 − x1).

For t+ 1, we consider two cases.

• If εt > |at| εt+1, we condition on the Wt and from the
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induction hypothesis we get, given xt+1

P(ŷ1, . . . , ŷt|Wt = w)

= �εt

(
ŷt − xt+1 − w

at

)
h(ŷ1, . . . , ŷt).

Since ŷt+1 = at ŷt, we compute

P(ŷ1, . . . , ŷt+1)

=

∫
R

P(ŷ1, . . . , ŷt|Wt = w)P(Wt = w) dw

= �εt+1
(ŷt+1 − xt+1)h1(ŷ1, . . . , ŷt+1),

for a function h2.

• If εt ≤ |at| εt+1, given xt+1

P(ŷ1, . . . , ŷt) = �εt

(
ŷt − xt+1

at

)
h(ŷ1, . . . , ŷt).

Then, given xt+1

P(ŷ1, . . . , ŷt+1)

= P(ŷ1, . . . , ŷt)P(ŷt+1|ŷt)
= P(ŷ1, . . . , ŷt)

P

(
Vt+1 = ŷt+1 − xt+1|Vt = ŷt − xt+1

at

)
= �εt+1

(ŷt+1 − xt+1)h2(ŷ1, . . . , ŷt+1),

for a function h2.

We finish the proof by noting that the log–likelihood function

of the responses is εt-Lipschitz in xt∣∣∣∣ d

dxt
lnP(ŷ1, . . . , ŷt)

∣∣∣∣ = εt.
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