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Abstract—This paper considers the switched linear system
for a series of control systems that are closed over a wireless
channel that is unknown and non-stationary. The goal is to find
power allocation policies that minimize a long term quadratic
cost of all state variables by closing the loop sufficiently often
while satisfying a budget constraint. The problem is formulated
through duality as a stochastic optimization problem. Because
the channel distribution is not know, and empirical risk is solved
to approximate the problem. As the channel varies over time, the
empirical risk minimization must be continuously approximated.
The second order Newton’s method is presented as an effective
approach to find approximated allocation policies over as the
channel varies because of its quadratic convergence and the
closeness of consecutive solutions. Under certain conditions on
the sampling size and rate of channel variation, we establish
a control performance suboptimality for each time epoch and
subsequently demonstrate long term stability of the states. We
additionally provide a numerical experiment that illustrates the
theoretical results.
Index Terms—wireless control system, resource allocation,

second order method, non-stationary channel

I. INTRODUCTION

The recent advances in Internet-of-Things has provided

further motivation for intelligent design of wireless control

systems. In particular, it is of interest in studying or design-

ing the communication parameters in relation to the control

performance or stability of the system. Such analyses include

relating the stability of the plant to the packet drop rate of

the channel, [1], [2] and channel capacity [3], [4]. Another

area of interest is designing communication resource alloca-

tion policies to optimize control performance in, e.g., power

allocation over fading channels [5], [6], or in event-triggered

control [7], [8]. All of these approaches, however, require the

wireless channel itself to be adequately modeled.

This second area of optimizing control performance through

design of communication parameters can still nonetheless

be studied without a model through successive sampling of

the channel. Existing works use sampling-based optimization

methods to optimize performance in both wireless control

systems [9], [10] and general wireless systems [11]. These

approaches however must assume that the wireless channel

is stationary. In this work, we design a sampling-based op-

timization that can quickly find optimal operating points in

non-stationary, or time varying, channels. This is done by

exploiting both the quadratic convergence of second order

optimization methods as well as the approximation error

incurred through replacing a model with channel samples.

The authors previously studied the dual suboptimality of such

an approach in [12], [13], and here study its performance

on the switched linear system common in wireless systems

by characterizing the control performance and establishing

stability. We focus in particular of switched linear system

model for communications, also studied in, e.g., [9], [14], [15].

The goal of this paper is to design resource allocation

policies that can stabilize the switched linear system over a

random and time-varying wireless channel, while constrained

by a resource budget. The channel is unknown and can only be

observed through samples across time. We demonstrate in Sec-

tion II that the optimal power allocations of the control system

can be modeled with a stochastic optimization problem. When

channel samples are used in place of the model, this becomes

an empirical risk minimization (ERM) problem (Section III).

To find optimal allocation policies at each point in time as the

channel varies, we present a second order optimization method

that can learn statistically accurate policies with a single

iteration (Section III-A). We establish conditions under which

the system exhibits small suboptimality of control performance

and stays in the stable region over all time (Section IV). A

numerical simulation is presented in Section V. Proofs not

present in this paper are found in [16].

II. PROBLEM FORMULATION

We consider a setting of m independent control systems

labeled i = 1, . . . ,m, each of which closes its control loop
by sending state information to its controller over a wireless

channel. Depending upon whether or not the message is

successfully decoded and received at the controller, the system

operates in either closed or open loop. Specifically, each node

i has a state variable xit ∈ R that dynamically evolves over

time t with the following switched dynamical system

xit+1 =

{
Ai

cx
i
t + w

i
t if loop closes

Ai
ox

i
t + w

i
t otherwise

(1)

In (1), Ai
c < 1 and Ai

o > 1 are the closed and open

loop dynamics of system i and wi
t is some zero-mean i.i.d.

disturbance process with variance W i. These systems arise in

cases where the control inputs uit are expressed as Kx
i
t for

some K (e.g. LQR control). Note that the system in (1) and

proceeding derivations can be extended to multidimensional

states as well, but is kept in scalar form here for simplicity.

The closing of the loop is determined by the signal-to-noise

ratio (SNR) at the receiver, which is the product of the transmit

power pi ∈ R+ and channel condition hi ∈ R+ of system

i. The channel fading conditions change randomly over time
in an unpredictable manner [17, Ch. 3], and are traditionally

modeled as i.i.d. random variables taken from distribution
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H. The conditions of the wireless channel distribution H
may slowly vary in a non-stationary manner, and is therefore

indexed as Hk with channel states h
i
k for time epoch k, which

will in general encompass many time steps t.
We are interested in a quadratic system cost objective that

measures the cumulative growth of xit over all time, i.e.

lim
T→∞

1

T

T−1∑
t=0

E(xit)
2 (2)

Considering the switched system dynamics in (1) during epoch

k, the system state decreases when the system is in closed loop
and increases in open loop. We consider a function q(hi

k, p
i)

that, given a current channel state and transmit power, gives

the probability of successful transmission and decoding of the

transmitted packet [5], [6]. Given such a function, the goal

is to minimize the aggregate cost in (2) across all systems

i = 1, . . . ,m while maintaining a total power budget. As such,

we can determine a transmit power policy for each system,
pi(hi

k) : R → R+ that selects a transmission power given a

current channel state hi
k. We define the ergodic average over

all channel states as

yik := Ehi
k

{
q(hi

k, p
i(hi

k))
}
. (3)

From the ergodic average definition in (3), we can refor-

mulate (2) without the limit in time. Specifically, it can be

seen that by using the system parameters in (1), the quadratic

cost can be equivalently viewed as a function of yik along

with the system parameters. We can consequently formulate an

optimization problem that minimizes (2) for all systems while

constraining the total expected power
∑

i Ehp
i(hi

k) to be less
than a budget P0. Defining the boldface notation for any vector
z ∈ R

m := [z1; z2; . . . ; zm], we represent optimal power
allocation policies p∗

k(h) and associated ergodic averages y
∗
k

to be the solution to the following optimization problem.

[p∗
k(h),y

∗
k]:=argmin

p,y∈Rm

m∑
i=1

W i

1− yi(Ai
c)
2 − (1− yi)(Ai

o)
2

(4)

s. t. y ≤ Ehk
q(hk,p(hk)), 1T

Ehk
p(hk) ≤ P0.

The objective in (4) is indeed an equivalent formulation of

the cost in (2)—see, e.g. [16, Example 1]—while we also

point out that the equivalence relation in (3) can be relaxed

to an inequality constraint in (4). Note that this problem

is, in its current form, difficult to solve due to both the

possible nonconvexity of the first constraint and the fact that

the policy p∗
k(h) is an infinite dimensional variable. However,

an important result in [18] shows the problems of this form

exhibit zero duality gap and can thus be solved in the dual

domain. Using standard techniques of Lagrangian duality (see,

e.g. [19]), the dual problem can be written as

{μ∗
k, λ

∗
k}:=argmax

μ,λ≥0
Lk(μ, λ):=argmax

μ,λ≥0
Ehk
f(μ, λ,hk), (5)

where f(μ, λ,hk) := min
p,y

{
m∑

i=1

W i

1− yi(Ai
c)
2 − (1− yi)(Ai

o)
2

+μT (y − q(hk,p(hk))) + λ(1
Tp(hk)− P0)

}
.

The dual problem in (5) in inherently easier to solve than (4)

because it is convex and optimizes over low-dimensional dual

variables μ ∈ Rm
+ and λ ∈ R+. Because of the property of

zero duality gap, p∗(hk) and be recovered from {μ∗, λ} as
the arguments of the minimization operator in f(μ∗, λ∗,hk).

III. EMPIRICAL RISK MINIMIZATION

The dual loss function Lk(μ, λ) is a statistical loss function
over the channel distribution Hk. As the channel distributions

are in general difficult to model and will be varying an a

non-stationary manner over time epochs, we can substitute

the statistical loss function in (5) with an empirical risk
function, which replaces the expectation operator with an

empirical average over N channel samples h1k, . . . ,h
N
k . This

is a common substitution in machine learning and is referred

to as empirical risk minimization (ERM). The empirical loss

function in epoch k is formally defined as

L̂k(μ, λ) :=
1

N

N∑
l=1

f(μ, λ,hl
k). (6)

Substituting the empirical risk L̂k into the dual problem in

(5) results in a convex and deterministic program, solvable

with a wide array of convex finite-sum optimization methods.

Indeed, this substitution only serves as an approximation of

the true dual problem, although one that can be made stronger

with the number of samples taken. We define a quantity

called the statistical accuracy of L̂k(μ, λ), which is the max
difference between L̂k(μ, λ) and Lk(μ, λ) across the domain.
This bound is well-studied for simple i.i.d. samples in machine

learning literature and is of the order of O(1/√N) for N
samples [20]. In this paper we define VN to be the statistical

accuracy.
Remark 1: We note that drawing N new samples at

each epoch form L̂k may be limiting in practical scenar-

ios. For such cases, an alternative sampling approach is to

keep (M − 1)N/M samples previously drawn the window

Hk−M+1, . . . ,Hk−1 and draw only N/M new samples from

Hk. The exact bounds on the statistical accuracy achieved

by L̂k in this non-i.i.d. case are not well studied, so is not

considered in depth in this work, but can reduce the sampling

complexity necessary at each epoch when consecutive distri-

butions Hk−M+1, . . . ,Hk are close.
Given that the maximization of the ERM function will only

maximize the dual function to within the statistical accuracy,

we may consider any additional bias of O(VN ) is permissible.
Therefore we augment the ERM function in (6) with two

additional regularization terms that induce desirable properties

to the maximization problem. Firstly, we add the regularization

term αVN/2‖μ‖2 to the empirical risk in (6) to make the
problem strongly convex. Secondly, we remove the non-

negativity constraint of the dual parameters in (5) by adding

a logarithmic barrier regularizer. To preserve smoothness for

small μ, however, we use an ε-threshold log function, i.e.

logε(z) :=

{
log(z) z ≥ ε
�2,ε(z− ε) z < ε,

(7)
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where �2,ε(z) is a second order Taylor series expansion of
log(z) centered at ε for some small 0 < ε < 1. The second
regularization term −βVN1T logε μ is also added, resulting in
the regularized empirical risk function

R̂k(μ, λ) :=
1

N

N∑
l=1

f(μ, λ,hl) +
αVN

2
‖μ‖2 (8)

− βVN1T logε μ+
αVN

2
λ2 − βVN logε λ.

At each epoch k, we are interested in finding the approximate
optimal dual parameters, defined as

{μ̂∗
k, λ̂

∗
k} := argmax

μ,λ
R̂k(μ, λ). (9)

Both the quadratic and log-barrier regularizers, when scaled

by VN , are known to introduce biases of this order—see, e.g.,

[19], [21] for details—and we can say the solutions in (9) are

within the statistical accuracy of the solutions in (5).

Continuously solving (9) at every epoch can be costly

and time-consuming, and therefore infeasible in the wireless

dynamical systems we are interested in. However, in the fol-

lowing section we demonstrate how the quadratic convergence

of Newton’s method make it possible to instantaneously find

approximate solutions to (9) at each epoch k.

A. Solving in Non-Stationary Channels

To solve (9) at each epoch k, a naive approach would be
to draw N samples from the new channel distribution Hk and

then solve the optimization problem directly using a standard

convex optimization method—at potentially significant com-

putation time and cost. However, there are two observations

that inspire a more direct approach to finding the optimal

dual parameters. The first is that the solution to (9) only

solves the true problem (5) up to statistical accuracy VN ,

making it unnecessary to solve (9) to within more than VN .

We therefore only look for VN -optimal solutions to (9). The

second observation is that the risk functions for consecutive

epochs R̂k and R̂k+1 differ only in the channel distributions

Hk and Hk+1 from which the samples are drawn. Assuming

the channel distributions evolve in a smooth manner, Hk

and Hk+1 will be close to each other, as will {μ̂∗
k, λ̂

∗
k}

and {μ̂∗
k+1, λ̂

∗
k+1}. Therefore, starting from VN -optimal dual

parameters at epoch k, we should not be far from VN - optimal

dual parameters at epoch k + 1.

Newton’s method is well suited for finding approximate

solutions in the non-stationary setting across time epochs due

its property of local quadratic convergence—see, e.g. [19].

This means that, when close to the next optimal solution,

Newton’s method can reach near-optimal iterates in just a

single update. To define the update, consider the gradient

∇R̂k(μ, λ) and Hessian ∇2R̂k+1(μ, λ) of the regularized
empirical risk function. At epoch k + 1, we find a new dual

parameter estimate using the previous epoch’s estimate with

the standard Newton update formula[
μk+1

λk+1

]
=

[
μk

λk

]
− (10)[

∇2μμR̂k+1(μk) ∇2μλR̂k+1(μk)

∇2μλR̂k+1(μk) ∇2λλR̂k+1(μk)

]−1 [∇μR̂k+1(μk)

∇λR̂k+1(μk)

]

At each epoch, using the dual parameter μk, we can then

recover a near optimal power allocation policy pk(hk) as

pk(hk) = argmin
p

{−μT
k q(hk,p(hk)) + λk1

Tp(hk)
}
.

(11)

The complete algorithm across all time is then presented in

Algorithm 1. After preliminaries and initialization in Steps 1-

4, the backtracking loop starts in Step 5. Each iteration begins

in Step 6 with the the drawing of N samples from the new

channel distributionHk+1 to form R̂k+1. The gradient∇R̂k+1

and Hessian Hk+1 of the regularized dual loss function are

computed in Step 7, after which the Newton step is taken to

update μk+1 in Step 8. In Step 9, the near-optimal resource

allocation policy pk+1(hk+1) is determined using the updated
dual variable. We include a backtracking step for the sample

draw N in Step 10 to ensure the new iterate μk+1 is within

the statistical accuracy VN of R̂k+1, as verified in Step 11, to

adapt to unknown system parameters.

Algorithm 1
1: Parameters: Sample size increase constants N0 ≥ 1 backtrack-
ing params 0 < δ < 1, α, β.

2: Input: Initial sample size N = N0 and argument μ0

‖∇R̂0(μ0)‖ < (
√
2α)VN

3: for k = 0, 1, 2, . . . do {main loop}
4: Reset factor N = N0 .
5: repeat {sample size backtracking loop}
6: Draw N samples from Hk+1.
7: Compute gradient ∇R̂k+1(μk), Hessian ∇2R̂k+1(μk).
8: Update [cf. (10)]: μk+1 = μk−∇2R̂−1

k+1(μk)∇R̂k+1(μk)
9: Determine power allocation [cf. (11)]: pk+1(hk+1) =

argminp
{−μTk+1q(hk+1,p(hk+1)) + λk+11

Tp(hk+1)
}

10: Backtrack sample draw N = δN .
11: until ‖∇R̂n(μk+1)‖ < (

√
2α)VN

12: end for

IV. THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the use

of Newton’s method on the switched linear system in a non-

stationary distribution. We specifically make characterizations

of the suboptimality and constraint violation of the dual

parameters μk, λk found with the Newton update in (10) to

demonstrate stability of the resulting system. We first state a

series of assumptions made in our analysis.

Assumption 1: The statistical loss functions f(μ, λ,hk) are
self-concordant with respect to μ and λ and have gradients
∇f(μ, λ,hk) that are Lipschitz continuous with constant Δ.
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Assumption 2: The difference between the gradients of the
empirical loss L̂k and the statistical average loss Lk is bounded

by V
1/2
N for all {μ, λ} and k with high probability,
sup
μ,λ

‖∇Lk(μ, λ)−∇L̂k(μ, λ)‖ ≤ V 1/2N , w.h.p. (12)

Assumption 3: The difference between two successive

expected loss Lk(μ, λ) = Ehk
f(μ,hk) and Lk+1(μ, λ) =

Ehk+1
f(μ,hk+1) and the difference between gradients are

bounded respectively by a bounded sequence of constants

{Dk}, {D̄k} ≥ 0 for all {μ, λ},
sup
μ,λ

|Lk(μ, λ)− Lk+1(μ, λ)| ≤ Dk, (13)

sup
μ,λ

‖∇Lk(μ, λ)−∇Lk+1(μ, λ)‖ ≤ D̄k. (14)

Assumption 4: For all epochs k, the problem in (4) under

distribution Hk is strictly feasible. Also, the optimal dual

variable is bounded as ‖[μ∗
k, λ

∗
k]‖ ≤ K̂.

Assumption 1, in addition to self concordance (i.e.

|f ′′′(μ, λ)|i ≤ 2f ′′(μ, λ)3/2i for all dimensions i), implies that
the regularized empirical loss gradients ∇R̂k are Lipschitz

continuous with constant Δ + cVN where c := α + β/ε2

and the function R̂k is strongly convex with constant αVN .

Assumption 2 can be established through the law of large

numbers while Assumption 3 effectively provides a limit on

the rate at which the channel evolves between epochs.

Using these properties along with the properties of Newton’s

method, we characterize the control performance suboptimal-

ity of the dual iterates {μk, λk} generated by the Newton
update in (10). We first use the following Lemma to establish

conditions under which (10) achieves statistical accuracy at

each epoch with respect to the regularized empirical risk.

Lemma 1: Consider Newton’s method defined in (10). Fur-
ther consider the variable {μk, λk} as a VN -optimal solution

of the loss R̂k, and suppose Assumptions 1-3 hold. If(
2(Δ + cVN )VN

αVN

)1/2
+
2V

1/2
N + D̄k

(αVN )1/2
<
1

4
(15)

144(5VN + 2Dk)
2 ≤ VN (16)

are satisfied, then the variable μk+1 computed from (10) has

the suboptimality of VN with high probability, i.e.,

R̂k+1(μk+1)− R̂∗
k+1 ≤ VN , w.h.p. (17)

The expressions in (15) and (16) provide conditions on

VN (controlled by sampling rate N ), Dk and D̄k, such that

Newton’s method produces VN -accurate dual variables for

each k. Because these parameters may not be known in

practice, we include a backtracking step (as done in Algorithm

1) to control parameters N to achieve statistical accuracy. We

now derive an important bound on the suboptimality of the

control performance metric used in the objective of (4) (itself

a reformulation of (2)).

Theorem 1: Consider μk to be a VN -optimal minimizer

of Rk. Define J(yk) to be the control performance objective

in (4). There exists a finite constants C and c such that the
control performance sub-optimality can be upper bounded as

J(yk)− J(y∗
k) ≤ CVN + c. (18)

Theorem 1 establishes a control performance sub-optimality

on the order of VN and a constant of the ergodic averages

yk generated by the Newton update. We can relate this sub-

optimality back to the switched linear system in (1) and use

it to establish a stability result. Recall that the open loop gain

Ao > 1 can cause the system to grow unstably if the system is
not closed sufficiently often. With the following corollary, we

establish that the ergodic averages yk keep the system stable

over all time and all epochs.

Corollary 1: Consider yk to be the ergodic average vari-

ables generated by the Newton update. These averages keep

the state xit governed by (1) finite for all t over non-stationary
channel.

Proof: In (18) we have control performance subobtimality is
bounded by a term proportional to VN . If we assume J(y

∗
k)

is finite for all epochs k, it follows that J(yk) is also finite.
Referring back to the objective in (4) that J(yk) represents,
this implies that yik(A

i
c)
2+(1−yik)(Ai

o)
2 ≤ ρ < 1 at all epochs

k and systems i for some ρ. As yik is an ergodic average, the
variance of the system state satisfies the recursive formula

E(xit+1)
2 = yik (A

i
c)
2
Ex2t+(1−yik) (Ai

o)
2
E(xit)

2+W i (19)

Substituting yik(A
i
c)
2+(1−yik)(Ai

o)
2 ≤ ρ into (19), we obtain

E(xit+1)
2 ≤ ρE(xit)2 +W i. (20)

Operating recursively and using the geometric series substitu-

tion, we can rewrite (20) as

E(xit+1)
2 ≤ ρt+1E(xi0)2 +

t∑
s=0

ρtW i

= ρt+1E(xi0)
2 +W i 1− ρt+1

1− ρ . (21)

As both terms on the right hand side of (21) are finite, we can

conclude that the state variables remain bounded for all t in
the non-stationary channel. �

V. SIMULATION RESULTS

For our simulations, the open and closed loop control

gains Ai
o and A

i
c are chosen between [1.1, 1.5] and [0, 0.8],

respectively, for m = 4 systems. The probability of successful
transmission is modeled as a negative exponential function

of both the power and channel state, q(hi, pi(hi) := 1 −
e−hipi(hi), while the channel states at epoch k are drawn from
an exponential distribution with mean uk. The time-varying
channel varies uk over epochs and draw N = 200 samples.
To demonstrate the ability of Newton’s method to find

approximately optimal power allocation as the channel dis-

tribution varies over time, we perform Algorithm 1 using

the above parameters. In Figure 1 we show the path of the

resulting control performance at each epoch k using the dual
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Fig. 1: (left) Convergence paths of optimal control performance vs. that generated by proposed method for time-varying Hk.

Newton’s method is able to find an approximately optimal value for the dual variable at each iteration. (right) State evolution

for 4 systems using opportunistic policy found with proposed method over time-varying channel.

parameters found with (10). The red line of each figure plots

the optimal values for the current distribution parameter uk as
it changes with k. The blue line, alternatively, plots the values
generated by Newton’s method over epochs. The channel

evolves at each iteration by a fixed rate uk+1 = uk±r for some
rate r. Observe that within some small error that Newton’s
method is indeed able to quickly and approximately find each

new solution as the channel varies over time.

With the found power allocation policies, we simulate the

resulting dynamical system. Figure 1 shows the resulting state

evolution of xit for each of the 4 states. The blue curve shows
the process using the opportunistic transmission policy from

Newton’s method, while the red curve shows the process when

the loop is always closed. Here, we observe that while there

are some instances when the state variable grows large when

the system is in open loop, overall the system remains stable.

VI. CONCLUSION

In this paper we develop a method of determining near-

optimal power allocation policies in a switched linear control

system over a non-stationary wireless channel. We apply La-

grangian duality to reformulate the problem as a statistical loss

problem, which can be further approximated using samples

as empirical risk minimization. The quadratic convergence

of Newton’s method allows one to solve consecutive ERM

problems over time epochs with single updates. We establish

formal conditions for this and characterize the suboptimality

and stability in the switched dynamical system.
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