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Abstract— This paper considers wireless control systems over
an unknown time-varying non-stationary channel. The goal
is to maximize control performance of a set of independent
control systems by allocating transmitting power within a
fixed budget. Since the channel’s time-varying distribution is
unknown, samples of the channel are taken at every epoch.
By reverting the resulting stochastic optimization problem
in its Lagrange dual domain, we demonstrate that it takes
the equivalent form of minimizing a certain empirical risk
measure, a well-studied problem in machine learning. New-
ton’s method is used to quickly learn approximately optimal
power allocation policies over the sampled dual function as
the channel evolves over time over windows of epochs. The
quadratic convergence rate of Newton is used to establish,
under certain conditions on the sampling size and rate of
channel variation, an instantaneous learning and tracking of
these optimal policies. Numerical simulations demonstrate the
effectiveness of the learning algorithm on a low-dimensional
wireless control problem.

Index Terms— wireless autonomous systems, learning,
Newton’s method, non-stationary channel

I. INTRODUCTION

Wireless communication is increasingly used in au-
tonomous applications to connect devices in industrial con-
trol environments, teams of robotic vehicles, and the Internet-
of-Things. To guarantee safety and control performance it is
customary to include a model of the wireless channel, for
example an i.i.d. or Markov link quality, alongside the model
of the physical system to be controlled. In such modeled-
based approaches one can characterize, for example, that it
is impossible to estimate or stabilize an unstable plant if its
growth rate is larger than the rate at which the link drops
packets [1]–[3], or below a certain channel capacity [4],
[5]. Models also facilitate the allocation of communication
resources to optimize control performance in, e.g., power
allocation over fading channels [6], [7], or in event-triggered
control [8]–[10].

In practice wireless autonomous systems operate under
unpredictable channel conditions following unknown time-
varying distributions, which are more often observable via
collected channel quality samples. While one may try first
to learn a channel model and then employ the above
model-based design, common channel effects are not always
amenable to modeling, such as mobility in the environ-
ment. In this paper we propose an alternative learning-based
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approach, whereby autonomy relies on collected channel
samples to directly optimize control performance in a non-
stationary environment, thus bypassing the channel-modeling
phase. To achieve this we make a connection between the
model-based design approach and an empirical risk mini-
mization (ERM) problem, typical in machine learning.

In this paper we consider a wireless autonomous system
where the design goal is to maximize a level of control
performance for multiple systems while meeting a desired
transmit power budget over the wireless channel (Section II).
Power allocation is important in large wireless control sys-
tems where battery life is to be maximized, or has to
operate under a strict budget of resource availability. The
wireless channel is modeled as a fading channel with a
time-varying and unknown distribution, and only available
through samples taken over time. We show in Section III
that the (Lagrange dual of the) power allocation problem
can be rewritten using channel samples as an empirical risk
minimization problem. To track the time-varying channel
distribution in a fast and sample-efficient manner we employ
two tools: i) we formulate the ERM problem over a window
of channel samples taken from consecutive distributions, and
ii) we employ a fast learning algorithm, in particular second
order Newton’s method (Section IV). More specifically, the
quadratic convergence rate of Newton’s method is shown
to be sufficient to adapt to finding approximate solutions to
slowly varying objectives with single steps [11], [12]. We
point out that the authors’ previous work [13], [14] studied
a related multiple-access wireless control problem but under
a stationary channel distribution, and employed a first-order
stochastic method, which has slow convergence rates and
hence not suitable for the present framework. Our methods
differ from existing non-stationary learning works, e.g. the
two time-scale approach in [15], by optimizing locally at
all time epochs, rather than optimizing a global average
performance.

Our contribution is an algorithm that uses channel samples
to approximate the solution of the power allocation control
problem over a non-stationary channel using second order
information. Moreover, we prove that, under specific condi-
tions on the sampling size and rate of channel variation, the
algorithm reaches an approximately optimal point in a single
iteration of Newton’s method (Section V). This is further
demonstrated in a numerical demonstration of learning over
a time-varying channel (Section VI). Proofs for results are
included in [16].
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II. POWER ALLOCATION IN CONTROL SYSTEMS

The wireless control architecture we consider includes m
independent control systems labeled i = 1, . . . ,m. Each
control system/agent i communicates over a wireless channel
in order to close a loop and maximize a level of control
performance. Due to propagation effects the channel fading
conditions that each system i experiences, denoted by hi ∈
R+, change unpredictably over time [17, Ch. 3], and are thus
considered as a random variable. Fading is assumed constant
during transmission slots and independently distributed over
time slots (block fading), with distribution H that may
change over time epochs in a non-stationary fashion. We
consider the distribution H to be stationary over the course
of a single time epoch.

When system i attempts to close its loop over the wireless
channel a transmit power level pi taking values in R+ is
selected. Then channel fading and transmit power determine
the signal-to-noise ratio (SNR) at the receiver, which affects
the probability of successful decoding of the transmitted
packet at the receiver. Overall we express the probability
of successful packet delivery by a given relationship of the
form q(hi, pi) – see [6], [7] for more details on this model.

We proceed by deriving a problem formulation for optimal
power allocation during a single epoch, and later in Section
IV generalize to the non-stationary setting. Given a random
channel state hi ∈ R drawn from the distributionH, assumed
to be available at the transmitter at each slot, we wish to
determine the amount of transmit power pi(hi) : R+ →
R+ to be used when attempting to close its loop. Then the
probability of closing the loop is given by the value

yi = Eh
{
q(hi, pi(hi))

}
(1)

that is, the integral of the transmission success function over
the channel distribution.

For each agent i, we also assume a monotonically in-
creasing concave function Ji : [0, 1] → R that returns a
measure of control system performance as a function of
the probability of successful transmission yi given in (1).
A concrete example is presented next.

Example 1 Consider for example that a control system i is
a scalar switched linear dynamical system of the form

xt+1 =

{
Acxt + wt if loop closes
Aoxt + wt otherwise (2)

where xt ∈ R is the state at transmission time t, Ac is the
closed loop stable dynamics, Ao is the open loop unstable
dynamics, and wt is zero-mean i.i.d. disturbance process with
variance W . The system attempts to close the loop at a high
rate in order to minimize a control cost objective of the form

lim
N→∞

1

N

N−1∑
t=0

Ex2t (3)

Assuming the control loop in (2) is closed with the success
probability yi in (1) at all future time steps, it is possible to
express the above cost explicitly as a function of yi. Using

the system dynamics (2), the variance of the system state
satisfies the recursive formula

Ex2t+1 = yiA2
c Ex2t + (1− yi)A2

o Ex2t +W (4)

Substituting this in the cost function (3) yields

J i(yi) =
W

1− (yiA2
c + (1− yi)A2

o)
(5)

This control cost function is a convex decreasing function,
so that its negative satisfies the above problem assumptions.

As can be seen from Example 1, control performance in
(3) is a long term objective. However, as the future channel
distributions that will be encountered are time-varying and
unknown, we do not have a way to incorporate their effect
in the planned future control performance. Hence in this
paper we use as a surrogate objective function the future
control performance assuming the channel distribution will
not change in the future (this can also be thought as a model
predictive control approach)—-see Remark 3.

Given a set of channel states h := [h1;h2; . . . ;hm],
the goal is to determine a set of power allocation policies
p(h) = [p1(h1); p2(h2); . . . ; pm(hm)] ∈ Rm whose ex-
pected aggregate value is within a maximum power budget
pmax while maximizing the total system performance over
m agents. This problem can be formally stated as the
following optimization problem. Because Ji is monotonically
increasing, using the auxiliary variables y = [y1; y2; . . . ; ym]
as defined in (1) we formulate the problem as

p∗(h) := argmax
p,y∈Rm

m∑
i=1

Ji(y
i) (6)

s. t.

m∑
i=1

Ehi(pi(hi)) ≤ pmax

yi ≤ Ehi

{
q(h, pi(hi))

}
i = 1, . . . ,m

The problem in (6) states the optimal power alloca-
tion policy p∗(h) is the one that maximizes the expected
aggregate control performance over channel states while
guaranteeing that the expected total transmitting power is
below an available budget pmax. This problem is challeng-
ing to solve, both due to the infinite dimensional vari-
able p(h) and the possible non-convexity coming from
the constraint. However, this is naturally solved in the
dual domain. To simplify the presentation, we introduce
of a couple of new augmented variables. Define the vec-
tor q̃(p(h)) ∈ Rm+1 of transmission probabilities aug-
mented with the total power allocation as q̃(p(h)) :=
[q(h1, p1(h1)); . . . ; q(hm, pm(hm));−

∑m
i=1 p

i(hi)] and the
auxiliary vector ỹ ∈ Rm+1 augmented with total power bud-
get as ỹ := [y1; . . . ; ym;−pmax]. The Lagrangian function
is then formed as

L(p(h),y,µ) :=

m∑
i=1

Ji(y
i) + µT (Ehq̃(p(h))− ỹ) , (7)

where µ = [µ1; . . . ;µm; µ̃] ∈ Rm+1
+ contains the dual
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variables associated with each constraint. The dual loss
function is then defined as L(µ) := maxp,y L(p(h),y,µ)
and the corresponding dual problem as

µ∗ := argmin
µ≥0

L(µ)

= argmin
µ≥0

max
p,y

m∑
i=1

Ji(y
i) + µT (Ehq̃(p(h))− ỹ) . (8)

Observe that the problem in (8) is a simply constrained
stochastic problem which can be solved with a variety of
projected stochastic descent methods [13], [14], [18]–[20].
We stress that, while not necessarily strongly convex, the
original problem in (6) can be shown to exhibit zero duality
gap under the technical assumption that the primal problem is
strictly feasible and that the channel probability distribution
is non-atomic [21], implying that the optimal primal variable
p∗(h) in (6) and be recovered from the optimal dual variable
µ∗ in (8). Thus, the power allocation policy for each agent
i is found indirectly by solving (8) and recovering as

pi(h,µ) = argmax
p

Eh
{
µiqi(h, p(h))

}
− µ̃pi(h), (9)

y(µ) = argmax
y

m∑
i=1

[Ji(y
i)− µiyi], (10)

where the optimal policy is recovered using the optimal dual
variable as p∗(h) = p(h,µ∗).

III. ERM FORMULATION OF POWER ALLOCATION

The stochastic program in (8) used to find the optimal
resource allocation over a channel can be considered as
specific formulation of empirical risk minimization (ERM)
problem. In the general ERM problem, we consider a convex
loss function f(µ,h) of a decision variable µ ∈ Rm+1 and
random variable h drawn from a particular channel distri-
bution H and seek the optimal variable µ∗ that minimizes
the associated expected loss L(µ) := Eh[f(µ,h)]. For the
optimal power allocation problem in (6), we define the loss
function L and associated ERM problem using its dual as

µ∗ := argmin
µ≥0

L(µ) := argmin
µ≥0

Ehf(µ, h), (11)

where f(µ, h) :=

m∑
i=1

Ji(y
i(µ)) + µT (q̃(p(h,µ))− ỹ(µ)) .

Because the channel distribution H is not known, we can-
not minimize L(µ) directly. In ERM problems, we re-
place the expected loss by an empirical risk by taking
n m-dimensional samples from the channel H, labeled
h1,h2, . . . ,hn, (where hl := [h1,l; . . . ;hm,l]) and consider
a statistical average, i.e.

L̂(µ) :=
1

n

n∑
l=1

f(µ,hl) :=
1

n

n∑
l=1

f l(µ). (12)

Note that we define f l(µ) := f(µ,hl) to remove depen-
dencies on random realization hl for notational simplicity.
Further note that the empirical sampling additionally modi-
fies our optimal power allocation policy, previously defined

in (9) to the sampled version, i.e.

p̂i(h,µ):= argmax
p

1

n

n∑
l=1

{
µiq(hi,l, p(h))− µ̃p(h)

}
. (13)

While the empirical risk L̂(µ) is indeed only an approxi-
mation of the expected loss L(µ), we may define a constant
V called the statistical accuracy of L̂. The statistical accu-
racy V provides a bound of the difference in the empirical
and expected loss for all µ with high probability (i.e. at least
1− δ for some small δ). In other words, we define V to be
the constant that satisfies

sup
µ
‖L̂(µ)− L(µ)‖ ≤ V w.h.p. (14)

The upper bounds on V are well studied in the learning
literature and in general may involve a number of parameters
of the loss function f as well as, perhaps most importantly,
the number of samples n. In the simple sampling of L(µ)
defined in (12), a bound for the statistical accuracy V can
be obtained in the order of O(1/

√
n) or, in some cases,

O(1/n) [22], [23]. The inherent error accrued by replacing
the expected loss with a statistical average motivates the use
of further regularization to impose more desirable properties
on the empirical risk L̂(µ), such as strong convexity. Because
the optimal empirical value L̂∗ := min L̂(µ) will have
a difference of order V from the optimal expected value
L∗, an additional regularization whose bias is of order V
will produce a solution that is any more inaccurate. We
can therefore add the regularization term αV/2‖µ‖2 to the
empirical risk in (12). In addition, we can remove the non-
negativity constraint on the dual variables in (11) through
the use of a logarithmic barrier. To preserve smoothness for
small µ, however, we specifically use an ε-thresholded log
function, defined as

logε(µ) :=

{
log(µ) µ ≥ ε
`2,ε(µ− ε) µ < ε,

(15)

where `2,ε(µ) is a second order Taylor series expansion of
log(µ) centered at ε for some small 0 < ε < 1. We then use
−βV 1T logε µ as a second regularization term, and obtain
a regularized empirical risk function

R(µ) :=
1

n

n∑
l=1

f l(µ) +
αV

2
‖µ‖2 − βV 1T logε µ. (16)

The regularized R(µ) provides a strongly convex approxi-
mation to L whose minimizer R∗ will satisfy µ ≥ 0 and of
order V from the true optimal L∗, given appropriate selection
of constants α and β. This is demonstrated formally in the
following proposition.

Proposition 1 Consider L∗ = minµ≥0 L(µ) as the optimal
value of the expected loss function with nonnegative µ
and define R∗ := minµR(µ) as the optimal value of the
regularized empirical risk. The difference |L∗−R∗| is upper
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bounded on the order of statistical accuracy V , i.e.

|L∗ −R∗| ≤ O(V ), w.h.p. (17)

The full proof is omitted here for space considerations,
however can be obtained from considering the error induced
by a logarithmic barrier with respect to the constrained
problem is bounded (m + 1)βV—see, e.g., [24, Section
11.2.2]. Likewise, the quadratic regularizer is known to
introduce a bias on the order of O(V ) [22].

IV. ERM OVER NON-STATIONARY CHANNEL

The regularized problem in (16) can be solved using
standard optimization techniques for a stationary channel
distribution H. To learn the optimal allocation policies over
a non-stationary channel, however, we may consider a mod-
ified empirical risk function. Consider an epoch index k =
0, 1, . . . that specifies a particular channel distribution Hk
with realizations hk. At each epoch k we draw a new set of n
samples from the current distributionHk labelled h1

k, . . . ,h
n
k

and wish to an approximate solution to the expected loss Lk
defined in (11) with H = Hk. While we may use a simple
empirical risk as we did in (12), we instead define a more
general statistical loss function for a non-stationary channel
using samples from the previous M epochs. Consider that we
keep a window of collected samples of total size N = Mn
and at epoch k, with some associated statistical accuracy VN .

The bounds on this constant VN in general for the col-
lection of M sampling distributions will be dependent on a
number of parameters used to define both R̃k(µ) and Lk(µ).
The sample batch size n, window size M , and correlation
between successive distributions Hj and Hj+1 will all play
a role. Precise bounds on this statistical accuracy in the case
of non-i.i.d. samples would require a sophisticated statistical
analysis and is not considered in this work. For the purposes
of this work we use a user-defined accuracy V̂ that plays
the role of the statistical accuracy VN . Then, using the
same regularizations introduced previously, we define the
regularized loss function Rk and associated optimal dual
variable µ∗k as

Rk(µ) :=
1

M

k∑
j=k−M+1

L̂j(µ) +
αV̂

2
‖µ‖2 −βV̂ 1T logε µ

(18)

We subsequently define µ∗k := argminµRk(µ). The defi-
nition of the loss function in (18) includes the batches of
n samples taken from the previous M channel distributions
Hk−M+1, . . . ,Hk. This definition is, in a sense, a general-
ization of the simpler empirical risk R(µ). Observe that, by
using a window size of M = 1, we use only samples from
the current channel and recover R(µ) for H = Hk.

The pivotal observation used to establish our learning
algorithm is that the exact solution to loss function µ∗k
will only solve the expected loss Lk to within accuracy
VN . Therefore it is not necessary to minimize (18) exactly,
and is indeed sufficient to find an approximately accurate
solution. As VN may not be known in practice, we more

select an accuracy V̂ that is user-defined and may, in the case
where the statistical accuracy VN is known, be equivalent,
i.e. V̂ = VN . We therefore only try to find V̂ -accurate
solutions to Rk. While many optimization methods can be
used to find a minimizer to (18), we demonstrate in the
next section that fast second order methods can be used
to instantaneously learn approximate minimizers—and by
extension solve (11)—at each epoch k as the channel distri-
bution Hk changes. Note that, we here say instantaneously
in the discrete time sense, or, in other words, with a single
iteration over an epoch.

A. Learning via Newton’s Method

We propose the use of Newton’s method to approximately
minimize (18) efficiently as the channel Hk changes with
epoch k. Motivated by recent work in using Newton’s
method to solve large scale ERM problems through adaptive
sampling [11], [12], at each iteration we use the N samples
currently stored to find a point µk that approximately solves
for µ∗k (and thereby a VN optimal solution to expected loss
Lk(µ)). The current iterate µk then provides a “soft” start
that to finding a point µk+1 that approximately minimizes
the new function Rk+1(µ). By quickly finding the near-
optimal solutions for each loss function, we efficiently learn
the optimal power allocation of the wireless channel as the
channel distribution evolves over time.

To discuss the details of such a learning algorithm, we
first recall Newton’s method. Newton’s method at epoch
k computes a new iterate µk+1 by subtracting from the
current iterate µk the product of the Hessian inverse and
the gradient of the function Rk+1(µk). For the empirical
dual loss function Rk defined in (18), the gradient ∇Rk(µ)
and Hessian ∇2Rk+1(µ) can be computed as

∇Rk(µ) =
1

N

k∑
j=k−M+1

n∑
l=1

(
q̃(p(hlj ,µ))− ỹ(µ)

)
+ αV̂ µ− βV̂ µ−1. (19)

∇2Rk(µ) =
1

N

k∑
j=k−M+1

n∑
l=1

∇µ

(
q̃(p(hlj ,µ))− ỹ(µ)

)
+ αV̂ I + βV̂ diag{µ−2}. (20)

The new approximate solution µk+1 is then found from
current approximate solution µk using the Newton update

µk+1 = µk −H−1k+1∇Rk+1(µk), (21)

where we use Hk+1 := ∇2Rk+1(µk) as simplified notation.
Consider that µk is a V̂ -accurate solution of current

loss function Rk, i.e. Rk(µk) − R∗k ≤ V̂ . The new loss
function Rk+1 differs from Rk only in the discarding of
old samples L̂k−M+1 and inclusion of samples L̂k+1 drawn
from current distribution Hk+1. If the channel distribution
changes sufficiently slowly, i.e. Hk+1 is close to Hk, then
the respective loss functions Rk+1 and Rk and their optimal
points R∗k+1 and R∗k will also not differ greatly under some
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Algorithm 1 Learning via Newton’s Method
1: Parameters: Sample size increase constants n0 > 0, M0 ≥ 1

backtracking params 0 < δ < 1 < γ, and accuracy V̂ .
2: Input: Initial sample size n = n0 and argument µn = µm0

with ‖∇Rn(µk+1)‖ < (
√
2α)V̂

3: for k = 0, 1, 2, . . . do {main loop}
4: Reset factor n = n0, M =M0 .
5: repeat {sample size backtracking loop}
6: Draw n samples from Hk+1, discard from Hk−M+1.
7: Gradient ∇Rk+1(µk), Hessian Hk+1 [cf. (19), (20)]:
8: Newton Update [cf. (21)]:

µk+1 = µk −H−1
k+1∇Rk+1(µk)

9: Determine power allocation, aux. variables [cf. (13), (10)]:

p̂i(h,µk+1) = argmax
p

1

N

∑
j

∑
l

{
µiq(hi,l

j , p(h))− µ̃p(h)
}
.

y(µk+1) = argmax
y

m∑
i=1

[Ji(y
i)− µi

k+1y
i].

10: Backtrack sample draw n = γn, window size M = δM .
11: until ‖∇Rk+1(µk+1)‖ < (

√
2α)V̂

12: end for

smoothness assumptions. Therefore, under certain conditions
a single step of Newton’s method as performed in (21) can
in fact be sufficient to reach a V̂ -accurate solution of the new
loss function Rk+1. Given then a V̂ -accurate solution µ0 of
initial loss R0, the proceeding and all subsequent iterates µk
will remain within the statistical accuracy of their respective
losses Rk as the channel distribution varies over time. The
formal presentation and technical details of this result are
discussed in Section V of this paper.

The learning algorithm is presented in Algorithm 1. After
preliminaries and initializations in Steps 1-4, the backtrack-
ing loop starts in Step 5. Each iteration begins in Step 6 with
the drawing of n samples from the new channel distribution
Hk+1 and discarding the old samples from Hk−M+1 to
form Rk+1. Note that samples will be only be discarded
for k > M . The gradient ∇Rk+1 and Hessian Hk+1 of
the regularized dual loss function are computed in Step 7.
The Newton step is taken with respect to Rk+1 in Step 8.
In Step 9, the optimal primal variables are computed with
respect to the updated dual variables. This includes both the
auxiliary variables y(µk+1) and the power allocation policy
p̂(h,µk+1) itself. Because there are function and channel
system parameters that are not known in practice, we include
a backtracking step for the parameters n and M in Step 10 to
ensure the new iterate µk+1 is within the intended accuracy
V̂ of µ∗k+1. The importance of the true statistical accuracy
VN and other unknown parameters in the convergence result
and subsequent need for backtracking is discussed in Remark
2 in Section V.

V. CONVERGENCE ANALYSIS

In this section we provide a theoretical analysis of the
ERM Newton learning algorithm in (21). Specifically, we an-
alyze the ERM formulation of the power allocation problem

in (18) and establish certain conditions that guarantees the
instantaneous solving of statistically accurate solutions for
each epoch k. Our primary theoretical result gives conditions
dependent on statistical accuracy and rate of non-stationarity
that allows for a single iteration of the Newton’s method
in (21) to solve the new loss function Rk+1 to within its
estimated statistical accuracy V̂ . We begin by presenting a
series of assumptions made in our analysis regarding the dual
loss functions f .

Assumption 1 The loss functions f(µ, hk) are convex with
respect to µ for all values of z. Moreover, their gradients
∇f(µ, z) are Lipschitz continuous with constant ∆.

Assumption 2 The loss functions f(µ,h) are self-
concordant with respect to µ for all h.

Based on Assumption 1, we obtain that the regularized
empirical risk gradients ∇Rk are Lipschitz continuous with
constant ∆ + cV̂ where c := α+ β/ε2 and the function Rk
is strongly convex with constant αV̂ . Assumption 2 states
the loss functions are additionally self concordant which
is a customary assumption in the analysis of second-order
methods. It also follows that the functions Rk+1 are therefore
self concordant because both the quadratic and thresholded
log regularizers are self-concordant. Before proceeding with
our other assumptions, we present a brief remark regarding
our power allocation control problem.

Remark 1 While we state these assumptions in terms of the
sampled dual functions f due to their direct use in the pro-
ceeding analysis, they indeed have implications on the primal
domain problem in (6). Note that the dual function is always
convex, while the smoothness condition in Assumption 1
can be obtained from the strong convexity of the control
performance

∑
i Ji. The self-concordance property on the

dual function in Assumption 2 is not easily derived from
properties of Ji(·) or q(·), although there has been work that
establishing self concordance of the dual for various machine
learning problems [25], [26].

Assumption 3 The difference between the gradients of the
empirical risk L̂k and the statistical average loss Lk is
bounded by V 1/2

N for all µ and k with high probability,

sup
µ
‖∇Lk(µ)−∇L̂k(µ)‖ ≤ V 1/2

N , w.h.p. (22)

Assumption 4 The difference between two successive ex-
pected loss Lk(µ) = Ehk

f(µ,hk) and Lk+1(µ) =
Ehk+1

f(µ,hk+1) and the difference between gradients are
bounded respectively by a bounded sequence of constants
{Dk}, {D̄k} ≥ 0 for all µ,

sup
µ
|Lk(µ)− Lk+1(µ)| ≤ Dk, (23)

sup
µ
‖∇Lk(µ)−∇Lk+1(µ)‖ ≤ D̄k. (24)
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Assumption 3 bounds the difference between gradients of
the expected loss and the empirical risk with N samples
by V 1/2

N . This is a reasonable bound for the convergence of
gradients to their statistical averages using the law of large
numbers. Assumption 4 says that the point-wise difference
in the expected loss functions at epochs k and k+ 1 cannot
differ more than a constant Dk. This effectively provides
a limit on the rate at which the channel evolves between
epochs, and is used to establish that optimal dual variables
for two consecutive empirical risk functions Rk and Rk+1

are not very different.
The primary result is arranged as follows. We wish to find

conditions on the parameters of the sampling and the non-
stationarity that guarantee that, starting from an approximate
solution to Rk, a single step of Newton’s method generates
an approximately accurate solution to Rk+1. Using this
result, it follows then that, assuming an initial point µ0 that is
within the intended accuracy of R0, the method will always
continue to find a new approximately accurate solution for
each epoch k as the channel distribution changes with k.
This result is achieved in two primary steps. First, we find
a condition that guarantees that an approximate solution of
Rk is in the quadratic convergence region of Rk+1. Second,
we find a condition that guarantees that a point within the
quadratic convergence region of Rk+1 reaches its intended
accuracy with a single Newton step.

We begin by deriving a condition for the first property to
hold. We wish to show that a V̂ -accurate solution to Rk, la-
belled µk is in in the quadratic convergence region of Rk+1 if
certain conditions hold. By quadratic convergence region, we
refer to the local region in which Newton’s method is known
to converge at a fast quadratic rate. The analysis of Newton’s
method commonly characterizes quadratic convergence in
terms of a quantity called the Newton decrement, which is
simply a weighted norm of the gradient, and is explicitly
defined as λk+1(µ) := ‖∇2Rk+1(µ)−1/2∇Rk+1(µ)‖. We
say the dual iterate µ is in the quadratic convergence
region of Rk+1 when λk+1(µ) < 1/4—see [24, Chapter
9.6.4]. In the following proposition, we give conditions under
which a V̂ -accurate iterate µk is also within the quadratic
convergence region of the succeeding loss function Rk+1.

Lemma 1 Define µk as a V̂ -accurate optimal solution of
the loss Rk, i.e., Rk(µk)−Rk(µ∗k) ≤ V̂ . In addition, define
λk+1(µ) :=

(
∇Rk+1(µ)T∇2Rk+1(µ)−1∇Rk+1(µ)

)1/2
as

the Newton decrement of variable µ associated with the
loss Rk+1. If Assumptions 1-4 hold, then Newton’s method
at point µk is in the quadratic convergence phase for the
objective function Rk+1, i.e., λk+1(µk) < 1/4, if we have(

2(∆ + cV̂ )V̂

αV̂

)1/2

+
2V

1/2
N + D̄k

(αV̂ )1/2
<

1

4
. w.h.p. (25)

With Lemma 1 we establish the first necessary condition
that ensures that a V̂ -accurate solution to Rk is in the
quadratic convergence region of Rk+1, as defined by the
Newton decrement λk+1(µk). It remains then to show the

second step in the analysis, namely that a point in the
quadratic convergence region of Rk+1 will reach its statisti-
cal accuracy with a single Newton step as given in (21). To
demonstrate this, we first present the following proposition
that upper bounds the sub-optimality of the point µk with
respect to the optimal solution of R∗k+1.

Lemma 2 Consider a point µk that minimizes the loss
function Rk to within accuracy V̂ , i.e. Rk(µk)−Rk(µ∗k) ≤
V̂ . Provided that Assumptions 1-4 hold, the sub-optimality
Rk+1(µk)−R∗k+1 is upper bounded as

Rk+1(µk)−R∗k+1 ≤ 4VN + V̂ + 2Dk w.h.p. (26)

Lemma 2 demonstrates a bound on the suboptimality with
respect to Rk+1 of a point µk that is within the statistical
accuracy VN of the previous risk function Rk. From here, we
establish the suboptimality of the iterate µk+1 with respect
to Rk+1, found through the Newton update in (21).

Lemma 3 Consider µk to be in the quadratic neighborhood
of the loss Rk+1, i.e., λk+1(µk) ≤ 1/4. Recall the defini-
tion of the variable µk+1 in (21) as the updated variable
using Newton’s method. If Assumptions 1-3 hold, then the
difference Rk+1(µk+1)−R∗k+1 is upper bounded by

Rk+1(µk+1)−R∗k+1 ≤ 144(Rk+1(µk)−R∗k+1)2. (27)

The proof of this lemma is omitted for space considera-
tions, but follows closely the result in [11, Proposition 4].
With Lemma 3 we establish a quadratic rate of convergence
of the suboptimality of the Newton update in (21). Observe
that by substituting the upper bound on Rk+1(µk) − R∗k+1

from Lemma 2, a condition can easily be derived under
which the suboptimality of the new iterate is within the
accuracy V̂ of Rk+1. Using the results of Lemmata 1-3, we
present our main result in the following theorem.

Theorem 1 Consider Newton’s method defined in (21) and
the full learning method detailed in Algorithm 1. Define VN
to be the statistical accuracy of N = Mn potentially non-
i.i.d. samples, with n samples taken from each of the M
most recent channel distributions Hk. Further consider the
variable µk as a V̂ -optimal solution of the loss Rk, and
suppose Assumptions 1-4 hold. If the sample size m and
window size M are chosen such that the following conditions(

2(∆ + cV̂ )V̂

αV̂

)1/2

+
2V

1/2
N + D̄k

(αV̂ )1/2
<

1

4
(28)

144(4VN + V̂ + 2Dk)2 ≤ V̂ (29)

are satisfied, where VN depends upon n and M , then the
variable µk+1 computed from (21) has the suboptimality of
V̂ with high probability, i.e.,

Rk+1(µk+1)−R∗k+1 ≤ V̂ , w.h.p. (30)

The inequalities specify conditions under which µk+1 is
a V̂ -optimal solution of Rk+1, and come directly from the
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Fig. 1: Convergence paths of optimal values vs. values generated by the Newton learning method for time-varying Hk for dual variables
(left) µ1, (center) µ̃, and (right) control performance

∑
Ji(y

i). Newton’s method is able to find an approximately optimal value for the
dual variables and respective control performance at each iteration.

preceding lemmata. We conclude our analysis with series a
remarks discussing the applicability of the result in Theorem
1 and its connection to the power allocation problem in (6).

Remark 2 Observe that the conditions in (28) and (29)
are functions of four primary terms, V̂ , VN , Dk, and D̄k.
The latter terms, Dk and D̄k, bound the difference in the
neighboring expected loss functions Lk and Lk+1, and can
be viewed as a bound on the degree of non-stationarity of the
channel distribution H between successive iterations. This
limits the degree that the distributions can vary over epochs.

Recall that the second term, VN , in fact indirectly provides
conditions on the sample size n and window size M used to
define Rk necessary to learn a V̂ -optimal solution. Because
the specific nature of both VN and Dk come from the
channel distributions that are most likely not known in
practice, the satisfaction of these conditions motivates the
use of the backtracking step in Step 10 of Algorithm 1.
The free parameters n and M can be respectively increased
and decreased until the new iterate is within the intended
accuracy V̂ , as verified in Step 11.

Remark 3 Theorem 1 indirectly provides a guarantee that
the selected power allocation is tracking the optimal power
allocation that would solve our original problem (6) and
would maximize the objective function Ji(yi). Recall that, as
explained after Example 1, this objective function is a proxy
for control performance but not exactly the realized long term
control performance as in, e.g., (3). In that sense, the above
theorem does not directly guarantee control performance, or
in fact even system stability. Regardless, we expect that if the
time-varying channel distribution remains always sufficiently
favorable, good control performance will be maintained. We
aim to explore this issue in future work.

VI. SIMULATION RESULTS

We simulate the performance of our second order learning
method on a simple wireless control problem. Consider the
dynamical system from Example 1 with Ac = 0 and Ao = a.
Our control performance for the ith agent Ji(Eq(h, pi(hi)))
measures the mean square error performance and is now
given by

Ji(y
i) =

1

1− a2(1− yi)
. (31)

The probability of successful transmission for agent i is
modeled as a negative exponential function of both the power
and channel state, q(hi, pi(hi) := 1− νe−νhipi(hi) for some
ν > 0. The channel states at epoch k are drawn from an
exponential distribution with mean uk. To model a time-
varying channel, we slowly vary uk for different epochs
k. We draw n = 200 samples and store a window of the
previous M = 5 channels for a total of N = 1000 samples.

To demonstrate the ability of Newton’s method to instan-
taneously learn an approximately optimal power allocation
as the channel distribution varies over time, we perform
Algorithm 1 over the ERM problem in (11) with the defined
control performance J(·), transmission probabilities q(·) and
channel distributions Hk. In Figure 1 we show the path of
Newton’s method at each epoch k for the dual variables
µk, µ̃k, and the control performance

∑m
i=1 Ji(y

i
k). The red

line of each figure plots the optimal values for the current
distribution parameter uk as it changes with k. The blue line
plots the values generated by Newton’s method over epochs.
The channel evolves at over epochs by a fixed rate uk+1 =
uk ± r for some rate r. Within some small error, Newton’s
method is indeed able to quickly and approximately find each
new solution as the channel varies over time.

VII. CONCLUSION

In this paper we develop a novel, second order algorithm
to efficiently learn optimal power allocation policies for a
network of wireless agents over a time varying channel.
We employ previous results of strong duality for a power
allocation problem in a control system to solve the problem
in a dual domain. Because channel conditions are unknown
and time-varying, we take samples and formulate the dual
problem as an empirical risk minimization (ERM) problem.
We show the time-varying optimal power allocation can be
found quickly and, under certain conditions, instantaneously
using Newton’s method up to statistical approximation, and
demonstrate with a numerical simulation.
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