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Abstract—Linear-Quadratic-Gaussian (LQG) control is con-
cerned with the design of an optimal controller and estimator
for linear Gaussian systems with imperfect state information.
Standard LQG assumes the set of sensor measurements, to be
fed to the estimator, to be given. However, in many problems,
arising in networked systems and robotics, one may not be able to
use all the available sensors, due to power or payload constraints,
or may be interested in using the smallest subset of sensors
that guarantees the attainment of a desired control goal. In this
paper, we introduce the sensing-constrained LQG control problem,
in which one has to jointly design sensing, estimation, and control,
under given constraints on the resources spent for sensing.
We focus on the realistic case in which the sensing strategy has to
be selected among a finite set of possible sensing modalities. While
the computation of the optimal sensing strategy is intractable,
we present the first scalable algorithm that computes a near-
optimal sensing strategy with provable sub-optimality guarantees.
To this end, we show that a separation principle holds, which
allows the design of sensing, estimation, and control policies in
isolation. We conclude the paper by discussing two applications
of sensing-constrained LQG control, namely, sensing-constrained
formation control and resource-constrained robot navigation.

I. INTRODUCTION

Traditional approaches to control of systems with partially
observable state assume the choice of sensors used to observe
the system is given. The choice of sensors usually results from
a preliminary design phase in which an expert designer selects
a suitable sensor suite that accommodates estimation require-
ments (e.g., observability, desired estimation error) and system
constraints (e.g., size, cost). Modern control applications, from
large networked systems to miniaturized robotics systems,
pose serious limitations to the applicability of this traditional
paradigm. In large-scale networked systems (e.g., smart grids
or robot swarms), in which new nodes are continuously added
and removed from the network, a manual re-design of the
sensors becomes cumbersome and expensive, and it is simply
not scalable. In miniaturized robot systems, while the set of
onboard sensors is fixed, it may be desirable to selectively
activate only a subset of the sensors during different phases of
operation, in order to minimize power consumption. In both
application scenarios, one usually has access to a (possibly
large) list of potential sensors, but, due to resource constraints
(e.g., cost, power), can only utilize a subset of them. Moreover,
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the need for online and large-scale sensor selection demands
for automated approaches that efficiently select a subset of
sensors to maximize system performance.

Motivated by these applications, in this paper we consider
the problem of jointly designing control, estimation, and
sensor selection for a system with partially observable state.

Related work. One body of related work is control over
band-limited communication channels, which investigates the
trade-offs between communication constraints (e.g., data rate,
quantization, delays) and control performance (e.g., stability)
in networked control systems. Early work provides results
on the impact of quantization [1], finite data rates [2], [3],
and separation principles for LQG design with communica-
tion constraints [4]; more recent work focuses on privacy
constraints [5]. We refer the reader to the surveys [6]–[8].
A second set of related work is sensor selection and schedul-
ing, in which one has to select a (possibly time-varying) set of
sensors in order to monitor a phenomenon of interest. Related
literature includes approaches based on randomized sensor
selection [9], dual volume sampling [10], [11], convex relax-
ations [12], [13], and submodularity [14]–[16]. The third set
of related works is information-constrained (or information-
regularized) LQG control [17], [18]. Shafieepoorfard and Ra-
ginsky [17] study rationally inattentive control laws for LQG
control and discuss their effectiveness in stabilizing the system.
Tanaka and Mitter [18] consider the co-design of sensing,
control, and estimation, propose to augment the standard LQG
cost with an information-theoretic regularizer, and derive an
elegant solution based on semidefinite programming. The main
difference between our proposal and [18] is that we consider
the case in which the choice of sensors, rather than being
arbitrary, is restricted to a finite set of available sensors.

Contributions. We extend the Linear-Quadratic-Gaussian
(LQG) control to the case in which, besides designing an op-
timal controller and estimator, one has to select a set of sensors
to be used to observe the system state. In particular, we for-
mulate the sensing-constrained (finite-horizon) LQG problem
as the joint design of an optimal control and estimation policy,
as well as the selection of a subset of k out of N available
sensors, that minimize the LQG objective, which quantifies
tracking performance and control effort. We first leverage a
separation principle to show that the design of sensing, control,
and estimation, can be performed independently. While the
computation of the optimal sensing strategy is combinatorial
in nature, a key contribution of this paper is to provide the
first scalable algorithm that computes a near-optimal sensing
strategy with provable sub-optimality guarantees. We motivate
the importance of the sensing-constrained LQG problem, and
demonstrate the effectiveness of the proposed algorithm in nu-
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merical experiments, by considering two application scenarios,
namely, sensing-constrained formation control and resource-
constrained robot navigation, which, due to page limitations,
we include in the full version of this paper, located at the
authors’ websites. All proofs can be found also in the full
version of this paper, located at the authors’ websites.

Notation. Lowercase letters denote vectors and scalars, and
uppercase letters denote matrices. We use calligraphic fonts to
denote sets. The identity matrix of size n is denoted with In
(dimension is omitted when clear from the context). For a
matrix M and a vector v of appropriate dimension, we define
‖v‖2M, vTMv. For matrices M1,M2, . . . ,Mk, we define
diag (M1,M2, . . . ,Mk) as the block diagonal matrix with
diagonal blocks the M1,M2, . . . ,Mk.

II. SENSING-CONSTRAINED LQG CONTROL

In this section we formalize the sensing-constrained LQG
control problem considered in this paper. We start by intro-
ducing the notions of system, sensors, and control policies.

a) System: We consider a standard discrete-time (possi-
bly time-varying) linear system with additive Gaussian noise:

xt+1 = Atxt +Btut + wt, t = 1, 2, . . . , T, (1)

where xt ∈ Rnt represents the state of the system at time t,
ut ∈ Rmt represents the control action, wt represents the
process noise, and T is a finite time horizon. In addition,
we consider the system’s initial condition x1 to be a Gaussian
random variable with covariance Σ1|0, and wt to be a Gaussian
random variable with mean zero and covariance Wt, such that
wt is independent of x1 and wt′ for all t′ = 1, 2, . . . , T , t′ 6= t.

b) Sensors: We consider the case where we have a
(potentially large) set of available sensors, which take noisy
linear observations of the system’s state. In particular, let V be
a set of indices such that each index i ∈ V uniquely identifies
a sensor that can be used to observe the state of the system.
We consider sensors of the form

yi,t = Ci,txt + vi,t, i ∈ V, (2)

where yi,t ∈ Rpi,t represents the measurement of sensor i at
time t, and vi,t represents the measurement noise of sensor i.
We assume vi,t to be a Gaussian random variable with mean
zero and positive definite covariance Vi,t, such that vi,t is
independent of x1, and of wt′ for any t′ 6= t, and independent
of vi′,t′ for all t′ 6= t, and any i′ ∈ V , i′ 6= i.

In this paper we are interested in the case in which we
cannot use all the available sensors, and as a result, we need
to select a convenient subset of sensors in V to maximize our
control performance (formalized in Problem 1 below).

Definition 1 (Active sensor set and measurement model).
Given a set of available sensors V , we say that S ⊂ V is an
active sensor set if we can observe the measurements from each
sensor i ∈ S for all t = 1, 2, . . . , T . Given an active sensor

set S = {i1, i2 . . . , i|S|}, we define the following quantities

yt(S) , [yTi1,t, y
T
i2,t
, . . . , yTi|S|,t

]T,

Ct(S) , [CT
i1,t
, CT

i2,t
, . . . , CT

i|S|,t
]T,

Vt(S) , diag[Vi1,t, Vi2,t, . . . , Vi|S|,t]

(3)

which lead to the definition of the measurement model:

yt(S) = Ct(S)xt + vt(S) (4)

where vt(S) is a zero-mean Gaussian noise with covari-
ance Vt(S). Despite the availability of a possibly large set
of sensors V , our observer will only have access to the
measurements produced by the active sensors.

The following paragraph formalizes how the choice of the
active sensors affects the control policies.

c) Control policies: We consider control policies ut for
all t = 1, 2, . . . , T that are only informed by the measurements
collected by the active sensors:

ut = ut(S) = ut(y1(S), y2(S), . . . , yt(S)), t = 1, 2, . . . , T.

Such policies are called admissible.
In this paper, we want to find a small set of active sensors S ,

and admissible controllers u1(S), u2(S), . . . , uT (S), to solve
the following sensing-constrained LQG control problem.

Problem 1 (Sensing-constrained LQG control). Find a sen-
sor set S ⊂ V of cardinality at most k to be active across all
times t = 1, 2, . . . , T , and control policies u1:T (S) , {u1(S),
u2(S), . . . , uT (S)}, that minimize the LQG cost function:

min
S ⊆ V, |S|≤ k,

u1:T (S)

T∑
t=1

E
[
‖xt+1(S)‖2Qt

+‖ut(S)‖2Rt

]
, (5)

where the state-cost matrices Q1, Q2, . . . , QT are positive
semi-definite, the control-cost matrices R1, R2, . . . , RT are
positive definite, and the expectation is taken with respect to
the initial condition x1, the process noises w1, w2, . . . , wT ,
and the measurement noises v1(S), v2(S), . . . , vT (S).

Problem 1 generalizes the imperfect state-information LQG
control problem from the case where all sensors in V are
active, and only optimal control policies are to be found [19,
Chapter 5], to the case where only a few sensors in V can
be active, and both optimal sensors and control policies are
to be found jointly. While we already noticed that admissible
control policies depend on the active sensor set S, it is worth
noticing that this in turn implies that the state evolution also
depends on S; for this reason we write xt+1(S) in eq. (5).
The intertwining between control and sensing calls for a joint
design strategy. In the following section we focus on the design
of a jointly optimal control and sensing solution to Problem 1.

III. JOINT SENSING AND CONTROL DESIGN

In this section we first present a separation principle that de-
couples sensing, estimation, and control, and allows designing
them in cascade (Section III-A). We then present a scalable
algorithm for sensing and control design (Section III-B).
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Algorithm 1 Joint Sensing and Control design for Problem 1.
Input: Time horizon T , available sensor set V , covariance

matrix Σ1|0 of initial condition x1; for all t = 1, 2, . . . , T ,
system matrix At, input matrix Bt, LQG cost matrices Qt

and Rt, process noise covariance matrix Wt; and for all
sensors i ∈ V , measurement matrix Ci,t, and measurement
noise covariance matrix Vi,t.

Output: Active sensors Ŝ, and control matrices K1, . . . ,KT .
1: Ŝ is returned by Algorithm 2 that finds a (possibly approx-

imate) solution to the optimization problem in eq. (6);
2: K1, . . . ,KT are computed using the recursion in eq. (8).

A. Separability of Optimal Sensing and Control Design

We characterize the jointly optimal control and sensing
solutions to Problem 1, and prove that they can be found in
two separate steps, where first the sensing design is computed,
and second the corresponding optimal control design is found.

Theorem 1 (Separability of optimal sensing and control de-
sign). Let the sensor set S? and the controllers u?1, u

?
2, . . . , u

?
T

be a solution to the sensing-constrained LQG Problem 1. Then,
S? and u?1, u

?
2, . . . , u

?
T can be computed in cascade as follows:

S? ∈ arg min
S⊆V,|S|≤k

T∑
t=1

tr[ΘtΣt|t(S)], (6)

u?t = Ktx̂t,S? , t = 1, . . . , T (7)

where x̂t(S) is the Kalman estimator of the state xt,
i.e., x̂t(S) , E(xt|y1(S), y2(S), . . . , yt(S)), and Σt|t(S)

is x̂t(S)’s error covariance, i.e., Σt|t(S) , E[(x̂t(S) −
xt)(x̂t(S)−xt)T] [19, Appendix E]. In addition, the matrices
Θt and Kt are independent of the selected sensor set S, and
they are computed as follows: the matrices Θt and Kt are the
solution of the backward Riccati recursion

St = Qt +Nt+1,
Nt = AT

t (S−1
t +BtR

−1
t BT

t )−1At,
Mt = BT

t StBt +Rt,
Kt = −M−1

t BT
t StAt,

Θt = KT
t MtKt,

(8)

with boundary condition NT+1 = 0.

Remark 1 (Certainty equivalence principle). The control
gain matrices K1,K2, . . . ,KT are the same as the ones that
make the controllers (K1x1, K1x2, . . . ,KTxT ) optimal for
the perfect state-information version of Problem 1, where the
state xt is known to the controllers [19, Chapter 4].

Theorem 1 decouples the design of the sensing from the
controller design. Moreover, it suggests that once an optimal
sensor set S? is found, then the optimal controllers are equal
to Ktx̂t(S), which correspond to the standard LQG control
policy. This should not come as a surprise, since for a given
sensing strategy, Problem 1 reduces to standard LQG control.

We conclude this section with a remark providing a more
intuitive interpretation of the sensor design step in eq. (6).

Algorithm 2 Sensing design for Problem 1.
Input: Time horizon T , available sensor set V , covariance

matrix Σ1|0 of system’s initial condition x1, and for
any time t = 1, 2, . . . , T , any sensor i ∈ V , process
noise covariance matrix Wt, measurement matrix Ci,t, and
measurement noise covariance matrix Vi,t.

Output: Sensor set Ŝ.
1: Compute Θ1,Θ2, . . . ,ΘT using recursion in eq. (8);
2: Ŝ ← ∅; i← 0;
3: while i < k do
4: for all a ∈ V \ Ŝ do
5: Ŝa ← Ŝ ∪ {a}; Σ1|0(Ŝa)← Σ1|0;
6: for all t = 1, . . . , T do
7: Σt|t(Ŝa)←
8: [Σt|t−1(Ŝa)−1 + Ct(Ŝa)TVt(Ŝa)−1Ct(Ŝa)]−1;
9: Σt+1|t(Ŝa)← AtΣt|t(Ŝa)AT

t +Wt;
10: end for
11: costa ←

∑T
t=1 tr[ΘtΣt|t(Ŝa)];

12: end for
13: ai ← arg mina∈V\S costa;
14: Ŝ ← Ŝ ∪ {ai}; i← i+ 1;
15: end while

Remark 2 (Control-aware sensor design). In order to pro-
vide more insight on the cost function in (6), we rewrite it as:

T∑
t=1

tr[ΘtΣt|t(S)]=

T∑
t=1

E
(
tr{[xt − x̂t(S)]TΘt[xt − x̂t(S)]}

)
=

T∑
t=1

E
(
‖Ktxt −Ktx̂t(S)‖2Mt

)
, (9)

where in the first line we used the fact that Σt|t(S) =
E
[
(xt − x̂t(S))(xt − x̂t(S))T

]
, and in the second line we

substituted the definition of Θt = KT
t MtKt from eq. (8).

From eq. (9), it is clear that each term tr[ΘtΣt|t(S)]
captures the expected control mismatch between the imperfect
state-information controller ut(S) = Ktx̂t(S) (which is only
aware of the measurements from the active sensors) and the
perfect state-information controller Ktxt. This is an important
distinction from the existing sensor selection literature. In par-
ticular, while standard sensor selection attempts to minimize
the estimation covariance, for instance by minimizing

T∑
t=1

tr[Σt|t(S)] ,
T∑

t=1

E
(
‖xt − x̂t(S)‖22

)
, (10)

the proposed LQG cost formulation attempts to minimize the
estimation error of only the informative states to the perfect
state-information controller: for example, the contribution of
all xt − x̂t(S) in the null space of Kt to the total control
mismatch in eq. (9) is zero. Hence, in contrast to minimizing
the cost function in eq. (10), minimizing the cost function in
eq. (9) results to a control-aware sensing design.
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B. Scalable Near-optimal Sensing and Control Design

This section proposes a practical design algorithm for
Problem 1. The pseudo-code of the algorithm is presented in
Algorithm 1. Algorithm 1 follows the result of Theorem 1,
and jointly designs sensing and control by first computing an
active sensor set (line 1 in Algorithm 1) and then computing
the control policy (line 2 in Algorithm 1). We discuss each
step of the design process in the rest of this section.

1) Near-optimal Sensing design: The optimal sensor design
can be computed by solving the optimization problem in
eq. (6). The problem is combinatorial in nature, since it
requires to select a subset of elements of cardinality k out
of all the available sensors that induces the smallest cost.

In this section we propose a greedy algorithm, whose
pseudo-code is given in Algorithm 2, that computes a (possibly
approximate) solution to the problem in eq. (6). Our interest
towards this greedy algorithm is motivated by the fact that
it is scalable (in Section IV we show that its complexity is
linear in the number of available sensors) and is provably
close to the optimal solution of the problem in eq. (6)
(we provide suboptimality bounds in Section IV).

Algorithm 2 computes the matrices Θt (t = 1, 2, . . . , T )
which appear in the cost function in eq. (6) (line 1).
Note that these matrices are independent on the choice of
sensors. The set of active sensors Ŝ is initialized to the
empty set (line 2). The “while loop” in line 3 will be
executed k times and at each time a sensor is greedily
added to the set of active sensors Ŝ. In particular, the
“for loop” in lines 4-12 computes the estimation covariance
resulting by adding a sensor to the current active sensor
set and the corresponding cost (line 11). Finally, the sensor
inducing the smallest cost is selected (line 13) and added
to the current set of active sensors (line 14).

2) Control policy design: The optimal control design is
computed as in eq. (7), where the control policy matrices
K1,K2, . . . ,KT are obtained from the recursion in eq. (8).

In the following section we characterize the approximation
and running-time performance of Algorithm 1.

IV. PERFORMANCE GUARANTEES FOR JOINT SENSING
AND CONTROL DESIGN

We prove that Algorithm 1 is the first scalable algorithm
for the joint sensing and control design Problem 1, and that it
achieves a value for the LQG cost function in eq. (5) that is
finitely close to the optimal. We start by introducing the notion
of supermodularity ratio (Section IV-A), which will enable to
bound the sub-optimality gap of Algorithm 1 (Section IV-B).

A. Supermodularity ratio of monotone functions

We define the supermodularity ratio of monotone functions.
We start with the notions of monotonicity and supermodularity.

Definition 2 (Monotonicity). Consider any finite ground
set V . The set function f : 2V 7→ R is non-increasing if and
only if for any A ⊆ A′ ⊆ V , f(A) ≥ f(A′).

Definition 3 (Supermodularity [20, Proposition 2.1]). Con-
sider any finite ground set V . The set function f : 2V 7→ R is
supermodular if and only if for any A ⊆ A′ ⊆ V and x ∈ V ,
f(A)− f(A ∪ {x}) ≥ f(A′)− f(A′ ∪ {x}).

In words, a set function f is supermodular if and only if it
satisfies the following intuitive diminishing returns property:
for any x ∈ V , the marginal drop f(A) − f(A ∪ {x})
diminishes as A grows; equivalently, for any A ⊆ V and
x ∈ V , the marginal drop f(A)−f(A∪{x}) is non-increasing.

Definition 4 (Supermodularity ratio). Consider any finite
ground set V , and a non-increasing set function f : 2V 7→ R.
We define the supermodularity ratio of f as

γf = min
A⊆V,x,x′∈V\A

f(A)− f(A ∪ {x})
f(A ∪ {x′})− f [(A ∪ {x′}) ∪ {x}]

.

In words, the supermodularity ratio of a monotone set
function f measures how far f is from being supermodular.
In particular, per the Definition 4 of supermodularity ratio, the
supermodularity ratio γf takes values in [0, 1], and
• γf = 1 if and only if f is supermodular, since if γf = 1,

then Definition 4 implies f(A) − f(A ∪ {x}) ≥ f(A ∪
{x′})−f [(A∪{x′})∪{x}], i.e., the drop f(A)−f(A∪
{x}) is non-increasing as new elements are added in A.

• γf < 1 if and only if f is approximately supermodular, in
the sense that if γf < 1, then Definition 4 implies f(A)−
f(A∪{x}) ≥ γf {f(A ∪ {x′})− f [(A ∪ {x′}) ∪ {x}]},
i.e., the drop f(A)− f(A ∪ {x}) is approximately non-
increasing as new elements are added in A; specifically,
the supermodularity ratio γf captures how much ones
needs to discount the drop f(A∪{x′})− f [(A∪{x′})∪
{x}], such that f(A)− f(A∪{x}) remains greater then,
or equal to, f(A ∪ {x′})− f [(A ∪ {x′}) ∪ {x}].

We next use the notion of supermodularity ratio Definition 4
to quantify the sub-optimality gap of Algorithm 1.

B. Performance Analysis for Algorithm 1

We quantify Algorithm 1’s running time, as well as, Al-
gorithm 1’s approximation performance, using the notion of
supermodularity ratio introduced in Section IV-A. We con-
clude the section by showing that for appropriate LQG cost
matrices Q1, Q2, . . . , QT and R1, R2, . . . , RT , Algorithm 1
achieves near-optimal approximate performance.

Theorem 2 (Performance of Algorithm 1). For any active
sensor set S ⊆ V , and admissible control policies u1:T (S) ,
{u1(S), u2(S), . . . , uT (S)}, let h[S, u1:T (S)] be Problem 1’s
cost function, i.e.,

h[S, u1:T (S)] ,
∑T

t=1 E(‖xt+1(S)‖2Qt
+‖ut(S)‖2Rt

);

Further define the following set-valued function and scalar:

g(S) , minu1:T (S) h[S, u1:T (S)], (11)

g? , minS⊆V,|S|≤k,
u1:T (S)

h[S, u1:T (S)].

The following results hold true:
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1) (Approximation quality) Algorithm 1 returns an active
sensor set Ŝ ⊂ V of cardinality k, and gain matrices K1,
K2, . . . ,KT , such that the cost h[Ŝ, u1:T (Ŝ)] attained by
the sensor set Ŝ and the corresponding control policies
u1:T (Ŝ) , {K1x̂1(Ŝ), . . . ,KT x̂T (Ŝ)} satisfies

h(Ŝ, u1:T (Ŝ))− g?

g(∅)− g?
≤ exp(−γg) (12)

where γg is the supermodularity ratio of g(S) in eq. (11).
2) (Running time) Algorithm 1 runs in O(k|V|Tn2.4) time,

where n , maxt=1,2,...,T (nt) is the maximum system size
in eq. (1).

Theorem 2 ensures that Algorithm 1 is the first scalable
algorithm for the sensing-constrained LQG control Problem 1.
In particular, Algorithm 1’s running time O(k|V|Tn2.4) is lin-
ear both in the number of available sensors |V|, and the sensor
set cardinality constraint k, as well as, linear in the Kalman
filter’s running time across the time horizon {1, 2 . . . , T}.
Specifically, the contribution n2.4T in Algorithm 1’s running
time comes from the computational complexity of using the
Kalman filter to compute the state estimation error covariances
Σt|t for each t = 1, 2, . . . , T [19, Appendix E].

Theorem 2 also guarantees that for non-zero ratio γg
Algorithm 1 achieves a value for Problem 1 that is finitely
close to the optimal. In particular, the bound in ineq. (12)
improves as γg increases, since it is decreasing in γg , and
is characterized by the following extreme behaviors: for
γg = 1, the bound in ineq. (12) is e−1 ' .37, which
is the minimum for any γg ∈ [0, 1], and hence, the best
bound on Algorithm 1’s approximation performance among
all γg ∈ [0, 1] (ideally, the bound in ineq. (12) would be 0
for γg = 1, in which case Algorithm 1 would be exact,
since it would be implied h(Ŝ, u1:T (Ŝ)) = g?; however,
even for supermodular functions, the best bound one can
achieve in the worst-case is e−1 [21]); for γg = 0, ineq. (12)
is uninformative since it simplifies to h(Ŝ, u1:T (Ŝ)) ≤ g(∅) =
h(∅, u1:T (∅)), which is trivially satisfied.1

In the remaining of the section, we first prove that if the
strict inequality

∑T
t=1 Θt � 0 holds, where each Θt is defined

as in eq. (8), then the ratio γg in ineq. (12) is non-zero, and
as result Algorithm 1 achieves a near-optimal approximation
performance (Theorem 3). Then, we prove that the strict
inequality

∑T
t=1 Θt � 0 holds true in all LQG control problem

instances where a zero controller would result in a suboptimal
behavior of the system and, as a result, LQG control design
(through solving Problem 1) is necessary to achieve their
desired system performance (Theorem 4).

Theorem 3 (Lower bound for supermodularity ratio γg).
Let Θt for all t = 1, 2, . . . , T be defined as in eq. (8), g(S)
be defined as in eq. (11), and for any sensor i ∈ V , C̄i,t be
the normalized measurement matrix V −1/2

i,t Ci,t.

1The inequality h(Ŝ, u1:T (Ŝ)) ≤ h(∅, u1:T (∅)) simply states that a con-
trol policy that is informed by the active sensor set S has better performance
than a policy that does not use any sensor; for a more formal proof we refer
the reader to Appendix B.

If
∑T

t=1 Θt � 0, the supermodularity ratio γg is non-zero.
In addition, if we consider for simplicity that the Frobenius
norm of each C̄i,t is 1, i.e., tr

(
C̄i,tC̄

T
i,t

)
= 1, and that

tr[Σt|t(∅)] ≤ λ2
max[Σt|t(∅)], γg’s lower bound is

γg ≥
λmin(

∑T
t=1 Θt)

λmax(
∑T

t=1 Θt)

mint∈{1,2,...,T} λ
2
min[Σt|t(V)]

maxt∈{1,2,...,T} λ2
max[Σt|t(∅)]

1 + mini∈V,t∈{1,2...,T} λmin[C̄iΣt|t(V)C̄T
i ]

2 + maxi∈V,t∈{1,2...,T} λmax[C̄iΣt|t(∅)C̄T
i ]
.

(13)

The supermodularity ratio bound in ineq. (13) suggests two
cases under which γg can increase, and correspondingly, the
performance bound of Algorithm 1 in eq. (12) can improve:

a) Case 1 where γg’s bound in ineq. (13) increases:
When the fraction λmin(

∑T
t=1 Θt)/λmax(

∑T
t=1 Θt) increases

to 1, then the right-hand-side in ineq. (13) increases. Equiv-
alently, the right-hand-side in ineq. (13) increases when on
average all the directions x(i)

t − x̂
(i)
t of the estimation errors

xt− x̂t = (x
(1)
t − x̂

(1)
t , x

(2)
t − x̂

(2)
t , . . . , x

(nt)
t − x̂(nt)

t ) become
equally important in selecting the active sensor set. To see this,
consider for example that λmax(Θt) = λmin(Θt) = λ; then,
the cost function in eq. (6) that Algorithm 1 minimizes to
select the active sensor set becomes

T∑
t=1

tr[ΘtΣt|t(S)] = λ

T∑
t=1

E
[
tr(‖xt − x̂t(S)‖22)

]
= λ

T∑
t=1

nt∑
i=1

E
[
tr(‖x(i)

t − x̂
(i)
t (S)|22)

]
.

Overall, it is easier for Algorithm 1 to approximate a solution
to Problem 1 as the cost function in eq. (6) becomes the cost
function in the standard sensor selection problems where one
minimizes the total estimation covariance as in eq. (10).

b) Case 2 where γg’s bound in ineq. (13) increases:
When either the numerators of the last two fractions in the
right-hand-side of ineq. (13) increase or the denominators
of the last two fractions in the right-hand-side of ineq. (13)
decrease, then the right-hand-side in ineq. (13) increases.
In particular, the numerators of the last two fractions in right-
hand-side of ineq. (13) capture the estimation quality when
all available sensors in V are used, via the terms of the
form λmin[Σt|t(V)] and λmin[C̄i,tΣt|t(V)C̄T

i,t]. Interestingly,
this suggests that the right-hand-side of ineq. (13) increases
when the available sensors in V are inefficient in achieving
low estimation error, that is, when the terms of the form
λmin[Σt|t(V)] and λmin[C̄i,tΣt|t(V)C̄T

i,t] increase. Similarly,
the denominators of the last two fractions in right-hand-
side of ineq. (13) capture the estimation quality when no
sensors are used, via the terms of the form λmax[Σt|t(∅)] and
λmax[C̄i,tΣt|t(∅)C̄T

i,t]. This suggests that the right-hand-side of
ineq. (13) increases when the measurement noise increases.

We next give a control-level equivalent condition to Theo-
rem 3’s condition

∑T
t=1 Θt � 0 for non-zero ratio γg .

Theorem 4 (Control-level condition for near-optimal sensor
selection). Consider the LQG problem where for any time t =
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1, 2, . . . , T , the state xt is known to each controller ut and
the process noise wt is zero, i.e., the optimization problem

minu1:T

∑T
t=1 [‖xt+1‖2Qt

+‖ut(xt)‖2Rt
]
∣∣
Σt|t=Wt=0

. (14)

Let At to be invertible for all t = 1, 2, . . . , T ; the strict
inequality

∑T
t=1 Θt � 0 holds if and only if for all non-zero

initial conditions x1,

0 /∈ arg minu1:T

∑T
t=1 [‖xt+1‖2Qt

+‖ut(xt)‖2Rt
]
∣∣
Σt|t=Wt=0

.

Theorem 4 suggests that Theorem 3’s sufficient condition∑T
t=1 Θt � 0 for non-zero ratio γg holds if and only if for

any non-zero initial condition x1 the all-zeroes control policy
u1:T = (0, 0, . . . , 0) is suboptimal for the noiseless perfect
state-information LQG problem in eq. (14).

Overall, Algorithm 1 is the first scalable algorithm for
Problem 1, and (for the LQG control problem instances of
interest where a zero controller would result in a suboptimal
behavior of the system and, as a result, LQG control design
is necessary to achieve their desired system performance) it
achieves close to optimal approximate performance.

V. CONCLUDING REMARKS

In this paper, we introduced the sensing-constrained LQG
control Problem 1, which is central in modern control ap-
plications that range from large-scale networked systems to
miniaturized robotics networks. While the computation of
the optimal sensing strategy is intractable, We provided the
first scalable algorithm for Problem 1, Algorithm 1, and
under mild conditions on the system and LQG matrices,
proved that Algorithm 1 computes a near-optimal sensing
strategy with provable sub-optimality guarantees. To this end,
we showed that a separation principle holds, which allows the
design of sensing, estimation, and control policies in isolation.
We motivated the importance of the sensing-constrained LQG
Problem 1, and demonstrated the effectiveness of Algorithm 1,
by considering two application scenarios: sensing-constrained
formation control, and resource-constrained robot navigation.
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