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Abstract— In this paper, we study the problem of remote
state estimation, in the presence of a passive eavesdropper. An
authorized user estimates the state of a stable linear plant, based
on the packets received from a sensor, while the packets may
also be intercepted by the eavesdropper. Our goal is to design a
coding scheme at the sensor, which encodes state information,
in order to impair the eavesdropper’s estimation performance,
while enabling the user to successfully decode the sent messages.
We introduce a novel class of codes, termed State-Secrecy
Codes. By using acknowledgment signals from the user, they
apply linear time-varying transformations to the current and
previously received states, imposing artificial unstable dynamics
to the eavesdropper’s Riccati recursive estimation scheme. By
exploiting the process noise, the channel randomness and the
artificial dynamics, these codes manage to be fast and efficient
for real-time dynamical systems. Under minimal conditions they
achieve perfect secrecy, namely the eavesdropper’s estimation
error covariance matrix converges to the open-loop prediction
one, which is the same as not intercepting any messages at all;
meanwhile, the user’s estimation performance is optimal. Those
conditions only require that at least once, the user receives the
corresponding packet while the eavesdropper fails to intercept
it. The theoretical results are illustrated in simulations.

I. INTRODUCTION

The recent emergence of the Internet of Things (IoT) as a
collection of interconnected sensors and actuators has created
a new attack surface for adversarial attacks [1], [2]. Research
efforts in the context of control systems have targeted denial-
of-service attacks [3] and data integrity of compromised
sensors [4], [5], [6], [7]. Another fundamental vulnerability
of such interconnected systems is eavesdropping attacks,
especially when the underlying communication medium is
of a broadcast nature, i.e. as in wireless systems [8]. This
data leakage, not only compromises confidentiality, but could
be also used to perform other more complex attacks [9].

In this paper, we study eavesdropping attacks in dynam-
ical systems. In many IoT applications, sensors collect the
state information of a dynamical system and send it to an
authorized user, i.e. a controller, a cloud server, etc. through
a (wireless) channel. Our goal is to design codes such that
the user receives the confidential state information, while
any eavesdroppers are confused about the true state. Since
we are dealing with time-critical systems, it is desirable to
avoid elaborate codes which might introduce severe delays
to the user’s data processing. Thus, we might not be able
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to employ cryptography-based tools [10], since they might
introduce computation and communication overheads [11].

Another approach includes developing codes in the
physical layer of wireless communications [12], [13],
by exploiting the characteristics of the underlying chan-
nel. Information-theoretic approaches, both for static
sources [14]–[16] and dynamical systems [17]–[19], give
conditions about the existence of codes such that an eaves-
dropper receives no information. However, finding such
codes is challenging in practice and may require knowledge
of the eavesdropper’s channel, which may not be available.
Nonetheless, in the case of packet erasure channels, more
practical codes can be designed [20].

A control-theoretic approach was employed in [21]–[23],
where the performance metric of the user and the eavesdrop-
per is the minimum mean square error (mmse). These works
employ a secrecy mechanism which withholds measurements
either randomly [21] of deterministically [22], [23]. Their
goal is to achieve large expected mmse error for the eaves-
dropper while the user’s expected mmse error is small. The
guarantees about the eavesdropper’s error, however, are only
in expectation (her error will be small with high probability),
while the user’s performance is degraded as a side-effect.

In this paper, we develop a novel class of codes, suitable
for stable dynamical systems, which we call State-Secrecy
Codes. The system’s state is encoded by subtracting a
weighted version of the user’s most recently received state
from the current state. This operation has low complexity and
only requires acknowledgment signals from the user back
to the sensor. By designing the code’s weighting factor, we
can impose artificial dynamics to the eavesdropper’s Riccati
recursion, which impair its estimation performance. Then,
confidentiality is protected by also exploiting the process
noise of the dynamical system and the channel’s randomness.

In previous work [24], we developed the first state-secrecy
codes for unstable systems, which are usually open-loop
control systems. However, the codes from [24] do not work
in stable or closed-loop systems, which are much harder to
protect; the stable dynamics make any noise to naturally
contract over time. In this work, we introduce a new code
construction, which imposes artificial unstable dynamics to
the eavesdropper’s Riccati recursion, counterbalancing the
natural stable dynamics.

In Section II we model the dynamical system as linear
and the channel as a packet dropping one. We also introduce
a novel control-theoretic notion of perfect secrecy, requiring
that the eavesdropper’s mmse covariance matrix converges
to the open-loop prediction one almost surely, while the
user’s performance is optimal. In Section III, we show that
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with State-Secrecy Codes, perfect secrecy can be guaranteed
under remarkably mild conditions. These conditions require
that at some time the user receives the corresponding packet,
while the eavesdropper misses it. Due to the artificial dy-
namics imposed to the eavesdropper’s estimation scheme, a
single occurrence of this event, which we call critical event,
makes the eavesdropper lose track of the state.

In summary our main contributions, are the following:
• We introduce State-Secrecy Codes, which are suitable

for stable real-time dynamical systems. They impose
artificial dynamics to the eavesdropper’s estimation
scheme, overcoming the limitations of the codes in [24],
which do not work for stable systems.

• Our coding scheme is asymptotically optimal, since
the eavesdropper’s mmse covariance matrix converges
almost surely to the open-loop prediction one, while
the user’s estimation performance remains optimal. This
supersedes the results in [21], [22].

• The condition for perfect secrecy is minimal and chan-
nel free, requiring one occurrence of the critical event.

We illustrate the code performance in simulations in
Section IV, and conclude with remarks in Section V.

II. PROBLEM FORMULATION

A. Dynamical system model

The considered remote estimation architecture is shown in
Figure 1 and consists of a sensor observing a dynamical sys-
tem, a legitimate user, and an eavesdropper. The dynamical
system is linear and has the following form:

xk+1 = Axk + wk+1 (1)

where xk ∈ Rn is the state, A ∈ Rn×n is the system
matrix, and k ∈ N is the (discrete) time. Signal wk ∈ Rn

is the process noise, modeled as i.i.d. Gaussian process
with zero mean and covariance matrix Q. The initial state
x0 is also Gaussian with zero mean, covariance Σ0 and
is independent of the process noise. All system and noise
parameters A,Q,Σ0 are assumed to be public knowledge,
available to all involved entities, i.e., the sensor, the user,
and the eavesdropper. We assume a common probability
space Ω for all random quantities (noises, initial condition
and channel outcomes). The following assumption holds
throughout this paper.

Assumption 1: System (1) is asymptotically stable and
matrix A is invertible. Matrices Q, Σ0 are positive definite.
In more compact notation Q, Σ0 � 0, where � (�) denotes
comparison in the positive definite (semidefinite) cone. �
The invertibility assumption is necessary for our coding
scheme to work and covers many systems of practical inter-
est. The positive definiteness of Q implies that the process
noise can affect all states and create uncertainty about them.

B. Channel model

The sensor communicates over a channel with two out-
puts/receivers as shown in Figure 1. The input to the channel
is denoted by zk ∈ Rn. The first output, denoted by hu,k, is
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Fig. 1. A sensor collects the state xk of the dynamical system (1). Then it
transmits an encoded version zk of the state to the channel, which is neither
reliably nor securely received by the user. The packets might be dropped, as
captured by γu,k , and might be intercepted by the eavesdropper, as captured
by γk . To decode the messages, the user and the eavesdropper use the
minimum mean square error (mmse) estimates x̂u,k and x̂k respectively.

the authorized one to the user, while the second, denoted by
hk, is the unauthorized one to the eavesdropper. Communi-
cation follows the packet-based paradigm commonly used in
networked control systems [25]–[27].

Communication with the user is unreliable, i.e., may
undergo packet drops. Additionally, communication is not
secure against the eavesdropper, i.e., the latter may intercept
transmitted packets. We denote by γu,k ∈ {0, 1} the outcome
of the user packet reception at time k, and by γk ∈ {0, 1}
the outcome of the eavesdropper’s packet interception. If
γu,k = 1 (or γk = 1), then the reception (interception) is
successful. Otherwise, the respective packet is dropped. The
outputs of the channel are modeled as:

hu,k =

{
zk, if γu,k = 1

ε, if γu,k = 0
, hk =

{
zk, if γk = 1

ε, if γk = 0
(2)

where symbol ε, is used to represent the “no information”
outcome. The channel outcomes {γu,k, γk, k = 0, 1, . . . } are
modeled as random and assumed to be independent of the
initial state x0, and the process noise wk, for k = 0, 1, . . . .
We do not assume any specific joint distribution of the
channel outcomes; as explained in Section III the result of
this paper (Theorem 1) is channel-free.

In addition to the main channel, the user can reliably
send acknowledgment signals back to the sensor via the
reverse channel. Thus, at any time step the sensor knows
what is the latest received message zk at the user. Meanwhile,
we assume that the eavesdropper is able to intercept all
acknowledgment signals, and thus, knows the history of
user’s packet successes. In that respect, we model a powerful
eavesdropper. Neither the sensor nor the user have any
knowledge about the eavesdropper’s intercept successes γk.

C. Encoder definition

The sensor collects state measurements xk and encodes
them by sending zk ∈ Rp over the channel at each time
step k, where p is an integer to be designed. In general,
the encoder may produce zk, given all the information at the
sensor at time k, i.e. current and past states xt for t ≤ k, past
sent messages zt for t < k, as well as past user’s channel
outcomes γu,t for t < k:

zk = fk (xk, xt, zt, γu,t, t < k) , (3)

172



where fk is a function from Rm(k+1)+pk × {0, 1}k to Rp.
Although this allows encoders with infinite memory, our
proposed one (see Section III) does not need the whole
history and, thus, only uses finite memory.

D. MMSE Estimation

Both the user and the eavesdropper know the encoding
scheme and use a minimum mean square error (mmse)
estimate to decode the received/intercepted messages. This
estimate depends on their information up to time k. We
define the user’s batch vector of channel outputs by hu,0:k =
(hu,0, . . . , hu,k) and the batch vector of channel outcomes by
γu,0:k = (γu,0, . . . , γu,k). The eavesdropper’s batch vectors
h0:k, γ0:k are defined similarly. Then, the user’s information
at time k is denoted by Iuk = {hu,0:k}, with Iu−1 = ∅.
Respectively, we denote the eavesdropper’s information by

Ik =
{
h0:k,γu,0:k

}
, I−1 = ∅ (4)

Notice that the eavesdropper has the additional information
of the user’s reception success history.

The user’s mmse estimate, x̂u,k, and the respective mmse
covariance matrix Pu,k are given by:

x̂u,k = E {xk|Iuk } , Pu,k = Cov {xk|Iuk } (5)

where the conditional covariance of any random vector Z
with respect to some other random vector I is defined as

Cov {Z|I} = E
{

(Z − E {Z|I}) (Z − E {Z|I})′ |I
}
.

Similarly, the eavesdropper’s mmse estimate, x̂k and the
respective mmse covariance matrix Pk are:

x̂k = E {xk|Ik} , Pk = Cov {xk|Ik} . (6)

E. Problem

The goal of this work is to design a coding scheme at
the sensor, so that we achieve perfect secrecy (introduced in
the following definition). We require the user’s estimation
scheme to be optimal, while the confidentiality guarantees
against the eavesdropper are asymptotically optimal. The
user’s estimation scheme is optimal when at the successful
reception times the estimation error is zero. Respectively, the
confidentiality guarantees are asymptotically optimal when
the eavesdropper’s mmse covariance matrix Pk approaches
the open-loop prediction one, i.e. the eavesdropper’s mmse
covariance when all signals zk are lost. The open-loop
prediction estimate and error covariance matrix are given by:

xopk = E {xk} = 0, P op
k = Cov {xk} , (7)

with the prediction error obeying the Lyapunov recursion:

P op
k = AP op

k−1A
′ +Q. (8)

Definition 1 (Perfect Secrecy): Given the stable sys-
tem (1) and channel model (2), a coding scheme (3) achieves
perfect secrecy if and only if both of the following hold:

(i) the user’s performance is optimal:

x̂u,k = xk, when γu,k = 1. (9)

(ii) the eavesdropper’s mmse covariance matrix converges
to the open-loop prediction error covariance matrix
with probability one:

Pk − P op
k

a.s.→ 0, (10)

where a.s.→ denotes almost sure convergence with re-
spect to the probability space Ω, as k → ∞ and the
convergence is with respect to any matrix norm. �

Remark 1: Contrary to the unstable case in [24], [28]
where we required the trace trPk to converge to infinity, here
we require the whole covariance matrix Pk to converge to the
open-loop prediction covariance matrix. Here the objective
is different since we require that the whole state is protected.

III. STATE-SECRECY CODES FOR STABLE SYSTEMS

In this section, we introduce State-Secrecy Codes for sta-
ble systems, which, under minimal conditions, lead to perfect
secrecy. The sensor encodes and transmits the current state
xk as a weighted state difference of the form xk−Lk−tkxtk ,
where L is a carefully designed matrix and xtk is a previous
state called the reference state of the encoded message, for
some tk < k depending on k. The sensor and the user can
agree on this reference state via the acknowledgment signals,
e.g., it can be the most recent state received at the user’s end.
At the user’s side no information is lost with this encoding;
upon receiving a new message xk − Lk−tkxtk , she can first
recover xk by adding Lk−tkxtk and then notify the sensor
to use xk as the reference state for the next transmission.

On the other hand, when the eavesdropper fails to intercept
that reference packet at time tk, we will show that the eaves-
dropper’s mmse covariance matrix starts converging to the
open-loop prediction one. That is because the eavesdropper
misses important information about the reference state xtk .
Then, by carefully designing L, the eavesdropper’s error is
amplified when she tries to decode a following packet of
the form xk − Lk−tkxtk to obtain xk. This, in turn, also
obstructs the eavesdropper from decoding future packets, as
any following reference state xk for some k > tk, depends
on the current reference state xtk and so on. This triggers an
irreversible chain reaction effect; the uncertainty about xtk
is amplified through time, driving the eavesdropper’s mmse
covariance matrix to the open-loop prediction one. For this
reason, we call the event, where the user receives a packet
at time tk while the eavesdropper misses it, critical event.

Let us now formally present the coding scheme. We define
the reference time tk to be the time of the most recent
successful reception at the user before k:

tk = max {t : 0 ≤ t < k, γu,t = 1} . (11)

When the set {t : 0 ≤ t < k, γu,t = 1} is empty (before the
first successful transmission), we use tk = −1, x−1 = 0.

Since by Assumption 1 A is stable and Q � 0, the open-
loop prediction covariance matrix P op

k converges to a steady-
state matrix PL, the unique positive definite solution of:

PL = APLA
′ +Q. (12)

Since the solution is positive definite, P−1L exists.
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Algorithm 1 State-Secrecy Code for stable systems
Input: A, Q, xk for all k ≥ 0.
Output: Encoded signals zk, for all k ≥ 0.

Let t represent the time of user’s most recent message.
1: Solve PL = APLA

′ +Q, set L = PL(PLA
′)−1

2: Initialize t = −1, x−1 = 0
3: for k = 0, 1, . . . do
4: Transmit zk = xk − Lk−txt
5: if Acknowledgment received then t = k
6: end if
7: end for

Definition 2 (State-Secrecy Codes for stable systems):
Given system (1) and under Assumption 1, a State-Secrecy
Code applies the following time-varying linear operation

zk = xk − Lk−tkxtk , with L = PL(PLA
′)−1, (13)

where tk is the reference time as defined in (11) and PL is
the solution of the Lyapunov equation (12). �
This choice of L imposes unstable dynamics to the eaves-
dropper’s estimation as explained in Remark 2. Since matri-
ces A, PL are invertible, matrix L in (13) is well-defined.

The implementation of the scheme is described in Algo-
rithm 1. The sensor always keeps in memory the reference
time tk and state xtk , with t0 = −1, x−1 = 0. At each
time step k, it transmits zk as in (13). If the user receives
the packet successfully, it sends an acknowledgment signal
back to the sensor. In this case, the sensor updates the
reference time tk+1 = k. Otherwise, it keeps tk+1 = tk. The
memory required for the encoder is minimal (O(n)) and the
only computational burden is a matrix-vector multiplication
(O(n2)). The critical event described in the beginning of the
section and formally defined below, is crucial for reinforcing
secrecy with our coding scheme.

Definition 3 (Critical event): A critical event occurs at
time k if the user receives the packet, while the eavesdropper
fails to intercept it: γu,k = 1, γk = 0 �

An example to clarify the coding scheme and the critical
event is presented next.

Example 1: Suppose that for k = 0, 1, 2, 3 we have the
channel outcomes as shown in the first two rows of the
following table:

k 0 1 2 3
user γu,k 0 1 0 1
eavs. γk 1 0 0 1
tk −1 −1 1 1
zk x0 x1 x2 − Lx1 x3 − L2x1
user hu,k ε x1 ε x3 − L2x1
eavs. hk x0 ε ε x3 − L2x1

Then, the last four rows of the table are constructed using the
definitions of the reference times (11), of the coding scheme
(13), and the channel outcomes (2). Notice that a critical
event occurs at time k = 1, when the user receives x1, while
the eavesdropper misses it. Then, the user can recover x3
at time k = 3, adding L2x1 to hu,3. However, since the

eavesdropper does not know x1, she cannot recover x3. Since
γu,3 = 1, x3 is going to be the next reference state after k =
3. Thus, the eavesdropper will also not be able to successfully
recover xk, for k > 3. A single occurrence of the critical
event impairs future estimation at the eavesdropper. �

The following theorem, formally proves the previous ob-
servations. If the critical event {γu,k0

= 1, γk0
= 0} occurs

at some time k0, then the eavesdropper’s mmse covariance
matrix starts to converge to the open-loop prediction one. On
the other hand, the user’s performance remains optimal.

Theorem 1 (Perfect secrecy): Consider system (1), with
channel model (2) and coding scheme (13). If

P(γu,k = 1, γk = 0, for some k ≥ 0) = 1, (14)

then perfect secrecy is achieved according to Definition 1. �
The condition (14) for perfect secrecy is minimal; it

only requires the critical event, where the user receives a
message without the eavesdropper intercepting it, to occur
at least once. Any joint distribution of packet receptions and
interceptions that satisfies this condition is covered. In this
sense, the result is channel-free, and holds in most cases of
practical interest (see also Remark 1 in [24]).

The proof of Theorem 1 is included in the Appendix and is
a consequence of the following lemma, which can be thought
as the worst case, in terms of secrecy, of Theorem 1. That is
when the critical event {γu,k0

= 1, γk0
= 0} occurs at time

k0 and the eavesdropper receives all the packets for k > k0.
Lemma 1 (Worst case analysis): Consider system (1)

with channel model (2) and coding scheme (13). Suppose

B = {γu,k0 = 1, γk0 = 0} and (15)
C = {γk = 1, for all k ≥ k0 + 1} (16)

both occur for some k0 ≥ 0. Then, conditioned on B ∩ C:
1) For k ≥ k0, the eavesdropper’s mmse covariance

matrix satisfies the Riccati recursion:

Pk+1 = APkA
′ +Q− Tk (HPkH

′ +Q)
−1
T ′k, (17)

where Tk = APkH
′ +Q, and H = A− L.

2) The mmse covariance matrix Pk converges to PL:

Pk → PL, (18)

where PL is defined in (12). �
The above result shows that even in the most pessimistic

case of Theorem 1 for confidentiality, the eavesdropper’s
mmse covariance matrix converges to the open-loop predic-
tion one. In the general case when the eavesdropper does not
intercept all packets after k0, her mmse covariance will be
larger (cf. proof of Theorem 1 in Appendix).

The proof of (18) is based on the following lemma. The
Riccati recursion (17) is different from the standard one,
since we have the additive term of Q in Tk. It still can be
transformed to a standard Riccati recursion (see equation (19)
below), which, however, violates the stabilization condition.
Nonetheless, using the results from [29], we prove that
Pk converges to PL under the assumption that the initial
condition is positive definite.
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Lemma 2 (Riccati Convergence): Let A, Q satisfy As-
sumption 1. Suppose Pk satisfies equation (17) for k ≥ k0,
with L defined in (13), PL defined in (12) and H = A−L.
Then, the following properties hold:

1) Recursion (17) is equivalent to:

Pk+1 = g (Pk) ,

g(X) = LXL′ − LXH ′ (HXH ′ +Q)
−1
HXL′

(19)

2) The pair (L,H) is observable.
3) PL is the stabilizing solution of PL = g(PL) (see [29]

for definition).
4) If Pk0

� 0, then Pk → PL exponentially fast. �
The rate of the exponential convergence in the above lemma
is asymptotically equal to

Pk − PL ∼ A(Pk−1 − PL)A′,

as follows from the proof of Lemma 2 (part 3) in the
Appendix and equation (4.2) in [29]. The following remark
reveals the intuition behind the form of matrix L.

Remark 2 (Artificial Dynamics): Comparing (19) with
the standard Riccati recursion:

Pk+1 = ĀPkĀ
′ + Q̄− ĀPkC̄

′ (C̄PkC̄
′ + R̄

)−1
C̄PkĀ

′,

we have Ā = L, C̄ = A − L, Q̄ = 0 and R̄ =
Q. Thus, by selecting an unstable L, we impose unstable
artificial dynamics to the eavesdropper’s estimation scheme
to counterbalance the stable dynamics. Thus, we make the
mmse covariance matrix in (19) to converge to a positive
definite solution if Pk0

� 0; if L was stable then (19) would
converge to zero. The specific selection of L in (13) tunes
the steady-state solution of (19) to be equal to PL. It forces
the encoded messages zk to be less and less correlated with
xk for the eavesdropper, with Cov {zk, xk|Ik−1} = 0, when
Pk−1 = PL.

Remark 3: One caveat is that the first time k0 of the
critical event is random and not in our control. A possible
remedy is to use a more expensive coding scheme, i.e.
encryption, to securely and reliably transmit just the first
packet at time k = 0. Then, letting our cheap coding scheme
take over is sufficient to achieve perfect secrecy. �

IV. SIMULATIONS

In this section, we illustrate the efficiency of State-Secrecy
Codes via numerical simulation. The system under con-

sideration has state matrix A =

[
0.9 1
0 0.8

]
and noise

covariance matrices Σ0 = Q =

[
1 0.5

0.5 2

]
. For the

channel model, we assume that the channel outcomes are
independent across time and stationary with probabilities
P (γu,k = i, γk = j) = pij , for i, j ∈ {0, 1}. The assumed
values are p11 = 0.7, p01 = p10 = p00 = 0.1. For the
estimation scheme of the eavesdropper we used equation (20)
in the Appendix (see [28] for more details). Since the user
can decode all signals, we used the formula:

Pu,k =

{
0 if γu,k = 1

APu,k−1A
′ +Q if γu,k = 0
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Fig. 2. We compare the eavesdropper’s, user’s and open-loop diagonal
covariance entries for the states x1 and x2. For the log-plots we used
function log (x+ 1) instead of log x. For this random sample of channel
outcomes, the critical event occurs at time k0 = 5. After k = 5 the
eavesdropper’s error starts converging to the open-loop prediction one for
both sub-states. The user has zero error at the reception times.

In Figure 2, we plot the user’s and eavesdropper’s mmse
errors for the states x1, x2, i.e. the diagonal elements of
the covariance matrices Pu,k, Pk. We compare them to the
open-loop prediction error P op

k defined in (7). As shown in
Figure 2, the eavesdropper’s mmse error starts converging
to the open-loop prediction one after the first critical event
occurs at time k0 = 5. The user can decode all received
messages and has zero error at the times of successful
reception.

V. CONCLUSION

The presence of the eavesdropper adds new challenges
to the problem of remote estimation. Nonetheless, by using
a simple State-Secrecy Code, based on acknowledgment
signals from the user back to the sensor, we can achieve pow-
erful confidentiality guarantees with minimal computational
cost. At the same time the user’s estimation performance is
optimal. By exploiting the imposed artificial dynamics, the
random packet erasures and the process noise, perfect secrecy
is achieved with just a single occurrence of the critical event,
when the user receives more information than the eavesdrop-
per. Future work includes implementation and experimental
evaluation of the proposed scheme. We also seek to adapt
our codes to the case of output measurements. Finally, the
analysis should be repeated when the eavesdropper uses a
different estimator than the mmse one.

APPENDIX

A. Estimation formula

In the following proposition, we present the estimation
formula for the eavesdropper’s mmse covariance. The proof
is similar to [28] and hence, omitted.

Proposition 1 ( [28]): Consider system (1), with channel
(2) and coding scheme (13). Fix any k ≥ 0. Let the
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covariance matrix of xk and zk given Ik−1 be:

Cov

{[
xk
zk

]
|Ik−1

}
=

[
Σk,xx Σk,xz

Σk,zx Σk,zz

]
Then, the eavesdropper’s mmse covariance Pk at time k
defined in (6) is given by:

Pk = Σk,xx − γkΣk,xz (Σk,zz)
−1

Σk,zx, (20)

Moreover, Σk,xx = APk−1A
′+Q if k > 0 and Σ0,xx = Σ0.

B. Proof of Lemma 1

First, we prove (17). By independence of wk+1 from Ik,
it follows that xk+1 − E {xk+1|Ik} = A (xk − x̂k) +wk+1.
Next, we claim that in B ∩ C, for k ≥ k0:

zk+1 − E {zk+1|Ik} = (A− L) (xk − x̂k) + wk+1, (21)

which we prove in the next paragraph. Thus, denoting H =
A− L, in B ∩ C we have:

Σk+1,xx = APkA
′ +Q, Σk+1,xz = APkH

′ +Q,

Σk+1,zz = HPkH
′ +Q.

(22)

Thus, formula (17) follows from (20), (22).
Next, we show (21). Since the critical event happened at

time k0, the reference time at k0 +1 is tk0+1 = k0 (equation
(11)). Hence, all reference times tk+1 , for k ≥ k0 satisfy
tk+1 ≥ k0 and there are two possible cases:

1) tk+1 = k, when γu,k = 1
2) tk+1 = tk, when γu,k = 0.

In the former one, the intercepted signal by (13) is zk+1 =
xk+1−Lxk = (A−L)xk+wk+1. But the process noise wk+1

is independent of Ik, thus, E {wk+1|Ik} = 0 and equation
(21) holds. In the latter one, we have

zk+1 = xk+1 − Lk+1−tk+1xtk+1
= xk+1 − Lk+1−tkxtk .

since tk+1 = tk. Then, if we add and subtract Lxk, we get:

zk+1 = xk+1 − Lxk + L(xk − Lk−tkxtk).

= (A− L)xk + wk+1 + Lzk (23)

But since γu,k = 0 and tk ≥ k0, the only possibility is
k > k0. Thus, the eavesdropper has intercepted zk, which
implies Lzk = E {Lzk|Ik} in B ∩ C or

E {zk+1|Ik} = (A− L)x̂k + Lzk.

This, along with (23) prove equation (21).
Convergence (18) follows from Lemma 2, if we show that

Pk0
� 0. But since γk0

= 0, from (20), we either have
Pk0

= Σ0 � 0 or Pk0
= APk0−1A

′ +Q � Q � 0 �

C. Technical lemmas

Lemma 3 (Covariance upper bound): Consider system
(1), with channel model (2) and coding scheme (13). Then,
with probability one:

Pk � P op
k , for all k ≥ 0, (24)

where Pk is the eavesdropper’s mmse covariance matrix (6)
and P op

k is the open-loop prediction covariance matrix (7).

Proof: We use induction. For k = 0, from estimation
formula (20):

P0 � Σ0 = P op
0 .

Next, assume that the induction hypothesis Pk � P op
k is true.

Then, for k + 1, we have:

Pk+1 � APkA
′ +Q � AP op

k A′ +Q = P op
k+1,

where the first inequality follows from (20) and the second
from the induction hypothesis and monotonicity of operator
AXA′ +Q with respect to X .

Lemma 4 (Kalman filter with correlated noise. [30]):
Let Ā, Q̄ ∈ Rn×n, S̄′, C̄ ∈ Rm×n and R̄ ∈ Rm×m, for
some n,m ∈ N, m ≤ n. If[

Q̄ S̄
S̄′ R̄

]
� 0, R̄ � 0,

then, the Kalman recursion

P̄k+1 = ĀP̄kĀ
′ + Q̄− T̄k

(
C̄P̄kC̄

′ + R̄
)−1

T̄ ′k, (25)

with T̄k = ĀP̄kC̄
′ + S̄ is equivalent to:

P̄k+1 = AsP̄kA
′
s +Qs −AsP̄kC̄

′ (C̄P̄kC̄
′ + R̄

)−1
C̄P̄kA

′
s,

with As = Ā− S̄R̄−1C̄, Qs = Q̄− S̄R̄−1S̄′. �

D. Proof of Lemma 2

To prove 1), we apply Lemma 4. Notice that equation (17)
has the form of (25) with Ā = A, C̄ = H , Q̄ = S̄ = R̄ = Q
and covariance matrix:[

Q Q
Q Q

]
=

[
Q1/2

Q1/2

] [
Q1/2 Q1/2

]
� 0

Since Q � 0, equation (17) is equivalent to (19) as follows
from the transformations of Lemma 4 with As = L, Qs = 0.

To prove 2), assume that (L,H) is not observable. By the
PHB observability conditions, there exists an eigenvector v
of L such that Lv = λv and Hv = (A − L)v = 0. But
this implies that also Av = λv. This is a contradiction since
A is a stable matrix, while L = PL(A′)−1(PL)−1 has only
unstable eigenvalues. Thus, (L,H) is observable.

To prove 3) first notice that if Pk = PL, then in (17):

Tk = APL (A′ − L′) +Q = PL −APLL
′ = 0.

Thus, Pk+1 = APLA
′ + Q = PL = Pk and PL is a fixed

point of (17). From 1), it is also a fixed point of (19). It
remains to show that PL is a stabilizing solution (see [29]).
This requires the matrix L−K∞H , to have all eigenvalues
inside the unit circle, where

K∞ = LPLH
′ (HPLH

′ +Q)
−1
.

Applying the matrix inversion lemma, after some lengthy
algebra we find that K∞ = −I . Thus, L − K∞H = A.
Since A is asymptotically stable, PL is stabilizing.

Part 4) follows directly from Theorem 4.2 in [29]. Since
L does not have any eigenvalue on the unit circle, (L,H)
is observable and Pk0 � 0, Pk converges to the unique
stabilizing solution PL exponentially fast. �

176



E. Proof of Theorem 1

First, we show that if the critical event B =
{γu,k0

= 1, γk0
= 0} occurs at some time k0, then the eaves-

dropper’s error covariance matrix converges to PL. Define a
new channel outcome sequence γ̃u,k, γ̃k that is coupled with
the original outcome sequence γu,k, γk as follows:

(γ̃u,k, γ̃k) = (γu,k, γk) , for all 0 ≤ k ≤ k0
(γ̃u,k, γ̃k) = (γu,k, 1) , for all k > k0.

In this new outcome sequence, the eavesdropper receives ev-
erything after time k0. Now, define again the channel outputs
(2), the eavesdropper’s information (4) and the covariance
matrix (6), but with the original channel outcomes γu,k, γk
replaced by γ̃u,k, γ̃k, for all k. Denote the eavesdropper’s
covariance matrix under γ̃u,k, γ̃k by P̃k. Following the proof
of Lemma 5 in [28] we obtain the inequality Pk � P̃k with
probability one. But from the above inequality and Lemma 3:

P̃k � Pk � P op
k , with prob. 1, (26)

where P op
k is the open-loop prediction covariance matrix

defined in (8), which converges to PL. Thus, it is sufficient
to show that also P̃k converges in B. Notice that since
γ̃u,k0 = γu,k0 and γ̃k0 = γk0 , the following events are equal:

B̃ = {γ̃u,k0
= 1, γ̃k0

= 0} = B.

Also observe that since γ̃2,k = 1, k > k0, the event

C̃ = {γ̃u,k = 1, for all k ≥ k0 + 1}

is the whole probability space. Thus, applying Lemma 1 for
the coupled channel sequence γ̃u,k, γ̃k, and the events B̃ and
C̃, we obtain P̃k → PL in B. Hence, from (26) we get:

Pk → PL, in B.

Finally, we prove that coding scheme (13) achieves per-
fect secrecy. The above convergence result along with the
theorem hypothesis (14), prove that:

Pk → PL, with prob. 1.

But since also P op
k → PL, we prove condition (10) of

perfect secrecy. The user always knows xtk and, thus, she
can completely reconstruct the states xk, when γu,k = 1.
This exactly implies that condition (9) is satisfied. �
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