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A Robust Moment Closure for General Continuous-time Epidemic Processes

Nicholas J. Watkins, Cameron Nowzari, and George J. Pappas

Abstract— We develop a robust moment closure for a ge-
neral class of continuous-time epidemic spreading processes,
the elements of which are prevalent in the literature. Our
moment closure method takes as input a general stochastic
compartmental spreading process defined for n agents and
m compartments, and produces a system of 2nm differential
equations whose solutions provide nontrivial approximations to
the marginal compartmental membership probabilities for each
agent. This is an improvement over the commonly used mean-
field type approximation, which provides no such guarantee. We
demonstrate that our results provide useful predictions with
examples performed on two models of competitive spreading
processes, and find the developed closure to be more informative
than mean-field approximations.

I. INTRODUCTION

Compartmental epidemic spreading processes have been
proposed as models for a broad class of complex systems,
in which many system components interact in ways which
are fundamentally nondeterministic in order to spread certain
statuses throughout the agents. Typical examples include the
spread of beliefs by way of social conversation [1], [2], the
spread of messages through ad hoc wireless networks [3],
and the proliferation of biological disease [4]. To enable
a rigorous understanding of how best to interact with such
systems, we must first develop an understanding of how the
components of the system interact with each other. However,
cultivating such an understanding is difficult.

This difficulty arises from the inherent complexity of
the models. While it is possible to represent a broad class
of compartmental epidemic spreading processes as finite
state-space Markov chains, this is only possible through
constructing a process with exponentially many (m™) states
(see, e.g. [5], [6]). This difficulty can be addressed without
introducing approximations in the presence of very special
structure in both the compartmental transition process and
the processes’ spreading graph. For example, if one is only
concerned about the total number of agents who reside in
each compartment at each time, and all spreading parameters
of the process are homogeneous (i.e. they affect each agent
identically), one can use lumping to reduce the complexity
of the model [6, Section 2.4]. However, it is unclear whether
or not such special structures exist in practice, and research
has focus primarily on the case of heterogeneous spreading
processes in recent years (see, e.g., [7] for a review).

In the case of general heterogeneous spreading processes,
there are no currently known techniques for accurately ap-
proximating the evolution of the compartmental membership
probabilities of the process with respect to time. Indeed,
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most prior works study compartmental epidemic spreading
processes by way of a mean-field type approximation. Such
approximations only provide weak guarantees that hold only
in the case of processes with special structure. Indeed, the ar-
guments used to justify the use of mean-field approximations
most commonly appeal to a result from [8], which demon-
strates that mean-field approximations are asymptotically
equivalent to the expectation of the process, where the limit
is taken with respect to the number of agents in a density-
dependent system of stochastic differential equations. While
this result does indeed apply to epidemic models on complete
and homogeneous spreading graphs, it is unclear how to
apply it to general, heterogeneous spreading processes.

Few results exist which formally demonstrate that mean-
field approximations are good approximations to the sta-
tistics of spreading processes which demonstrate any sig-
nificant heterogeneity [6]. While it can be shown that
for the Susceptible-Infected-Recovered (SIR) process on
tree graphs [9], [10], the mean-field model is equivalent
to the expectation dynamics, this appears to be the only
currently known case for which this is true. Likewise,
while it is known that the mean-field approximation of the
Susceptible-Infected-Susceptible (S1.5) model provides an
over-approximation of the probability of infection for each
node on arbitrary spreading graphs, such a result seems pecu-
liar to the SIS process, and the analysis used to demonstrate
the result depends strongly on the structure of the model’s
compartmental transition process [11].

The primary contribution of this paper is a moment
closure technique for general compartmental epidemic spre-
ading processes which provides nontrivial approximations
to the compartmental membership probabilities for every
node in the graph regardless of the structure of the graph,
or the compartmental transition process. In particular, gi-
ven any compartmental epidemic spreading process mo-
del defined with n agents each taking membership in m
compartments, our moment closure technique produces an
approximate model consisting of a system of 2nm ordinary
differential equations (ODEs), such that each compartmental
membership probability of every agent is provided a rigorous
and nontrivial approximation, i.e. an approximation more
informative than membership in [0,1]. This is important,
as it is the first step required in developing controllers for
epidemic processes with provable convergence guarantees, as
we have done for SETV in [12]. Note that due to the limited
size constraints of the venue, some technical arguments have
been removed here. Analogous arguments for the special case
in which the SEIV process is considered are presented in
detail in [12]. The full results will be presented in detail in
a forthcoming thesis, which will be made publicly available.

Organization of Remainder: The remainder of the
paper is organized as follows. In Section II, we formally



define the class of epidemic spreading processes considered,
and formally state the problem studied. In Section III, we
construct a robust moment closure to the general compart-
mental epidemic model. In Section IV, we demonstrate how
to use the robust moment closure approximation to make
optimal predictions about the compartmental membership
probabilities for every node in the graph with respect to the
bounds given by the robust moment closure. In Section V,
we apply the developed tools to two models of competitive
epidemics to demonstrate the benefits of our techniques as
opposed to traditional mean-field approximation.

Notation and Terminology: We use R to denote the
set of non-negative real numbers, and Z-( denote the set of
non-negative integers. We denote by [k] the set of the first
k positive integers, i.e. [k] = {1,2,...,k}, and by [k] the
first k£ + 1 natural numbers, i.e. [k]o = {0,1,2,...,k}.

We denote by E[X] the expectation of a random variable
X. When clear from context, we omit the initial condition
X (0) of a stochastic process. When necessary, we explicitly
include it as a part of the expectation’s conditioning.

II. MODEL AND PROBLEM STATEMENT

In this section, we formally develop the model and the
problem we study in this paper. The particular construction
we present for the class of epidemic models we present here
is our own (Section II-A), but we arrive at the same class
of models as was discussed in [5], in which dynamics for
mean-field models were proposed. In this work, we present
dynamics which provide rigorous approximations to the com-
partmental membership probabilities of the process (Section
), from which good over- and under- approximations to
each node’s compartmental membership probabilities can be
readily computed (Section IV).

A. General Compartmental Epidemic Model (GCEM)

We consider the dynamics of a general compartmental
epidemic spreading model. In this model, each agent in a
population is represented in a directed n-node spreading
graph G = (V,€) by a particular node i € V. At each time
in the process, every node belongs to one of a finite set of
the model’s compartments, which are described by the set
of compartmental labels L. Intuitively, a node being in a
particular compartment ¢ represents the current status of an
agent (e.g. belief state, infection stage).

We denote by X (t) a stochastic vector containing the
compartmental memberships of each node at time ¢. To make
the notation as intuitive as possible, we index X (¢) in two
dimensions: one which indicates the compartment which is
being described, and the other the numerical label of the
node. As such, we denote by X/(¢) an indicator random
variable, taking the value 1 if node ¢ is in compartment ¢,
and 0 otherwise. In this way, we see that for all times ¢, we
have that Y, Xf(t) = 1 for all i, as each node belongs
to precisely one compartment at all times. We denote by
X the set of states of the process. Figure 1 provides an
illustration of a GCEM process with five compartments. Note
that it is often the case in the literature that compartments are
assigned alphabetical symbols bearing a mnemonic relation
to the description of a particular status: S for “susceptible,”
I for “infected,” R for “removed,” and so forth (see, e.g.,
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Fig. 1: A compartmental diagram of a GCEM process, in which
each agent belongs to one of five compartments. The transition
process for node 4 is explicitly illustrated, in which edges denote
that a particular transition can occur with positive probability.

[5], [6], [13] and references therein). Our use of abstract
labels ¢}, here is due to the generality of our considerations:
there is no assumed meaning to any compartment here. In
our examples (Section V), we use alphabetical symbols to
adhere to convention.

In general, GCEM processes can be posed as a system of
Itd integrals taken with respect to measures of independent
Poisson processes as

dx{ = Xx{dp{~" — xfdP{~"
el (1)
+ Z Z Xi Xﬁin —/ XKXK’ Q[—)él
jevier

where the symbols d]P’flﬁ[ and d@f}”e are the probability
measures associated to transitions associated to internal ef-
fects (i.e. endogenous transitions), and transitions associated
to external effects (i.e. exogenous transitions), respectively.
Note that whenever a particular transition £ — ¢ is not
possible, we take the corresponding measure to instead be
the constant zero, as doing so greatly simplifies notation.

We wish to study the expectation of the process (1). After
some technical manipulations, we have these to be

dE[X!] s v
T = Z E[Xf ]Af ¢ *E[Xi[])‘f ¢
Vel (2)
+Z Z XZXZ Z—>e E[XZXE] Z—»[,
jev el
where the terms )\4/”4 are the transition rates associated to
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the measures dIP’e —t , and the terms 4i;; " are the transition

rates associated to the measures dejﬁe. It is important to
note that the system of ordinary differential equations (2) is
not closed. We have no expressions detailing the evolution of
the second-order moments, which are required to evaluate the
right-hand side of (2). However, there is no known method
for closing the system (2) tractably without introducing
the possibility of incorporating significant error. Explicit
representation of the higher-order moments usually requires
studying a Markov process with m'™ states; approximate
representations typically introduce errors which interact with
the system in complicated and poorly understood ways [6].
In particular, most authors currently use mean-field type
moment closures in the style of [5], [13], for which there
are only accuracy guarantees in very special cases.

The problem we study in this paper is constructing a
tractable method of rigorously approximating the solutions
of (2), i.e. the trajectories of the compartmental membership



probabilities for each node in the graph. To accomplish this,
we construct a robust moment closure in Section III, wherein
we take advantage of the structure of the process to bound
the evolution of the probabilities. We then demonstrate how
the optimal bounds which are admitted by the solutions of
our approximation dynamics can be computed as a closed
form output function of our system’s states (Section IV).

III. ROBUST MOMENT CLOSURES FOR GCEM

In this section, we construct a robust moment closure
applicable to all GCEM processes. While to date, mean-
field approximations such as those constructed in [5] have
been used in the study of networked epidemic process, these
come with no approximation accuracy guarantees outside
of very special cases. Indeed, in Section V-A we see that
for a simple model contained in GCEM, the mean-field
approximation yields neither an over-approximation or an
under-approximation to the compartmental membership pro-
babilities of interest. As such, to design a controller which
provides rigorous performance guarantees (as we have done
in [12]), we need to construct a different moment closure.
Our primary purpose in constructing a robust moment closure
at this level of generality is to rigorously demonstrate that
the concepts used to construct the moment closure in [12]
can be readily adopted to any epidemic process.

We accomplish our goal in Theorem 1, however before
stating it, we must first introduce some additional concepts
and notation. Key in our result is the use of a well-known pair
of inequalities which allow us to bound the joint probabilities
of the form E[X/X¥] which appear in (2). We define the
Fréchet inequalities as follows:

Definition 1 (Fréchet Inequalities) Let A and B be events,
let Pr(A) and Pr(B) be the marginal probability of each
event (respectively), and let Pr(A, B) denote the joint pro-
bability. Then, it holds that

Fiwr(Pr(A4),Pr(B)) = max{0,Pr(A) + Pr(B) — 1}

< Pr(4,B), ®

and
Pr(A, B) < Fuu(Pr(A), Pr(B))

= min(Pr(A), Pr(B)), @

where Fiy, and Fy, are called the Fréchet bounds of the
joint probability Pr(A, B). o

The Fréchet inequalities are interesting not only because
they allow us to bound the joint probabilities Pr(A, B) with
simple functions, but also because they are optimal in the
sense that given only knowledge of the marginal probabilities
Pr(A) and Pr(B), Fi is a tight lower bound, and Fyp
is a tight upper bound [14]. That is, they give us the best
pointwise approximation to the joint probabilities E[ XX f,]
which we can reasonably expect without having to prove
further distributional properties of a particular epidemic
process. However, simply replacing the joint probabilities
with an approximation without taking into account the effect
of integrating the introduced error will lead to a needlessly
conservative approximation (see [12, Section III.A]). We may
have that the solutions of the resultant system of differential

equations do not produce approximations which are valid
probabilities (e.g. they can be greater than one).

With this in mind, we use complement bounding operators
in such a way so as to guarantee that the induced system of
differential equations always give us nontrivial probability
estimates (i.e. estimates which always remain in the unit
interval). We define the complement upper-bound operator:

Definition 2 (Complement Upper-Bounding Operator) Let
¢ and ¢ be compartmental labels of a GCEM process.
Suppose Z! and Z! are valid upper-bounds of Pr(X? = 1)
and Pr(X! = 1), respectively. We define the complement
upper-bounding operator as

Bye(z) = min{1 — #¢, 20}, )
where we note that #¢ = Pr(X! = 1) implies that
Be(z!) = Pr(X! = 1) holds. .

We see in the formal statement of our main result that
the complement upper-bounding operator serves to prevent
the over-approximation of the compartmental membership
probabilities from becoming trivial, i.e. growing larger than
one. This is important, as the over-approximations of com-
partmental membership probabilities appear in the dynamics
of the approximating system we develop in nontrivial ways.

We now are ready to state our main result, which gives
a system of 2mn ordinary differential equations that ap-
proximate the evolution of the compartmental membership
probabilities of a given GCEM process.

Theorem 1 (Robust Moment Closure of GCEM) Fix some
GCEM process. Let (0) = X (0) = z(0), and consider the
solutions of the system of ordinary differential equations

/
Z B )\l —0 —f}\fﬂl +
el
E 0 —0 =0 0N 4L
Z Z fupr L 7 ])MU ‘EWI'(xi? _/ ):uzj bl
JeEV el (6)
’ / ’
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Vel

-t 4 -t

Z 2 ‘-F.IWI‘ 1, ) L j /’sz 'Fupf(x fL' )/"Ll]
JeEV Vel

Then, for every compartment ¢ € L and each node i € V, the
inclusions

E[X{ ()| X (0)] € [z (1), 7 (t)] =
hold for allt = 0.

[0,1], )

Intuitively, we arrive at the dynamics (6) by replacing
every occurrence of a joint probability E[X}X f'] with a
Fréchet bound, where the particular bound used and the
arguments passed depends on the manner in which the
joint probability appears in the dynamics. When constructing
dynamics for the over-approximation, we use the upper-
bound when the joint probability appears in a term with a
nonnegative coefficient, and the lower-bound when the joint
probability appears in a term with a negative coefficient.
When constructing dynamics for the under-approximation,
we do the opposite. We then bound approximate probabilities
which may cause components of solutions of the system
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to leave the unit interval with appropriate complementarity
bounds to prevent such an event from occurring.

Principally, the difficulty of proving Theorem 1 comes
from determining that despite the fact the dynamics (6) do
not adhere to an ordering point-wise in the system’s state
space, the solutions still obey the inclusion (7). Formally,
this holds due to an extension of a comparison result from
monotone systems theory [15], which has been demonstrated
in [12]. Importantly, this result only requires the dynamics
to obey an ordering on a small subset of the state space.

It is important to note that the argument used to prove
Theorem 1 is conceptually similar to the argument used to
prove the robust moment closure we construct in [12] for
the SETV process. We have provided an explicit, general,
result here in order to allow general use of our robust moment
closure technique directly without having to develop ad hoc
extensions for particular processes. We see the utility of The-
orem 1 in Section V, where we demonstrate its application
to two separate models of competitive epidemics, for which
the mean-field approximations do not provide analytical
accuracy guarantees, but our moment closure technique does.

IV. OPTIMAL SET MEMBERSHIP PREDICTION

A principle reason that approximating the evolution of
the compartmental membership probabilities rigorously is
interesting is using the approximations to construct rigorous
approximations to statistics of the process. For example,
such statistics can be useful in predicting how many nodes
are infectious after a certain amount of time has passed to
ensure that an applied control realizes sufficient progress in
driving the epidemic to extinction, as was done in [12]. Such
statistics may also be used in predicting how many agents in
a social system adopt a certain desirable behavior, for which
we may like to compute a lower bound.

Our next result demonstrates that the optimal approxima-
tions of a particular statistic of the process, set membership
expectations, can be expressed as closed-form functions of
the state variables of (6).

Theorem 2 (Optimal Approximation of Set Membership
Expectations) Let 2(0) = X (0) = z(0), and consider the
solutions (x, ) of (6) evaluated at time t. Define S(X) as the
number of nodes belonging to compartments S < L in state
X. It holds that

E[S(X (1)) X(0)] <
Z min {Z T (t) Z zi(t) b, ®
eV LeS LeL\S

and that
E[S(X(1)|[X(0)] =
Zmax fo(t),l — Z isf(t) . ©)
€V tesS LeL\S

Moreover, the bounds are the tightest which can be derived
from the inclusions generated by integrating (6).

The proof of Theorem 2 follows from forming variational
characterizations of the optimal upper- and lower- bounds
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which can be derived on E[S(X (¢))| X (0)], given solutions
of (6). Because the optimization problems formulated are
highly structured, they admit analytical solutions. In parti-
cular, the solutions of these optimization problems give the
inequalities (8) and (9).

We expect Theorem 2 to find use in generating predictions
for use in controllers for epidemic processes, as was done
for the particular case of SEIV containment in [12]. As
these predictions give both upper- and lower- bounds on
the expectations, we can envision applications in which
processes are controlled in such away so as to guarantee
a certain minimum level of activity is maintained, as well
as applications in which guarantees are provided that certain
behaviors cannot persist.

V. NUMERICAL EXAMPLES

In this section, we demonstrate the utility of our results by
performing numerical simulations on two example processes.

A. SI SIS

In principle, the SI;S15S process serves as a mathemati-
cal model for product or belief adoption for the case in which
two products compete for market share. Each node in the net-
work belongs to one of three compartments: susceptible (.5),
infected with contagion one ([;), or infected with contagion
two (I2). Susceptible nodes are interpreted as disinterested
by both products. Nodes infected with contagion one are
supporters of product one. Nodes infected with contagion
two are supporters of product two.

Transitions from the susceptible compartment to a state of
infection occurs as a function of an exogenous process. Tran-
sitions from either infected compartment to the susceptible
compartment occur as a function of an endogenous process.
By specializing the general GCEM model (1) to this setting,
one can verify that the corresponding stochastic differential
equations for this process are given by

X[ PP + X AP0 -

dXP = S xSxNaQseh - xSxkagy~; (100
JjeV

dx/ = Y XPX Qi — x[rap) (10b)
JjEV

dx /> = Y XFXdQ] " — X[dpl s (10c)
JEV

By defining notations for mean-field approximation states ¢!
for all compartments ¢ € {S, I, I>}, taking expectations, and
replacing expectations of products with products of mean-
field variables, we arrive at the mean-field approximation

I1\I—>S Io\I2—S
;' A + ;2N —

;= Z(bisquf_lu;_ﬁ;ﬂh ¢S¢12 Sﬁ[z7 (11a)
JjeY

= D P o " = o AT (11b)
JjEV

= ol = exETE (110)
JjeV

Recognizing that (;Sf + (;5,11 + ¢le = 0 and that if we
initialize the mean-field approximation to an observed state



of the process, we have ¢ +¢;* +¢/> = 1, we may remove
the variables qﬁf by substituting the expression 1 — (bf 1— (bf?.
Doing so obtains the reduced mean-field approximation

ot = 21— — o) — el AT, (120)
JjeV

67 = 2 (L=l —oP)epul " = GPAPTS, (12b)
JjeV

which has been the object of study in prior works on
SI151,S (see [1], [16]-[18] and references therein). As
first noted in [17], the mean-field approximation is neither
a reliable upper-bound or a reliable lower-bound of the
expected probabilities of infection. We see this here in Figure
2, where contagion one spread on a 50 node Erdds-Rényi
graph with connection probability 0.5 with S — I transition
rate 7 and I; — S transition rates chosen uniformly at
random from the interval [0, 200], contagion two spread on a
50 node Erdos-Rényi graph with connection probability 0.5
with S — I, transition rate 2 and I; — S transition rates
chosen uniformly at random from the interval [0, 50], where
the two spreading graphs were generated independently.

For this particular simulation, the mean-field approxi-
mation overestimates the probability of being infected by
contagion one, and underestimates the probability of being
infected by contagion two. We also see that the the predicti-
ons generated by the robust moment closure are nontrivial.
Indeed, it restricts the expectation of the number of infected
nodes for contagion one to roughly the interval [0, 30], and
the expectation of the number of infected nodes for contagion
two to roughly the interval [0, 35]. In both cases, the upper
bound is less than 50, the total number of nodes.

While even for this example the predictions given were
nontrivial, one may wonder if the predictions given by the
robust moment closure are always as coarse as those given in
Figure 3. This is not the case. Often, they are substantially
better. Consider the simulation results presented in Figure
3, where contagion one spread on a 100 node Erdos-Rényi
graph with connection probability 0.75 with S — I; transi-
tion rate 0.50 and I; — S transition rates chosen uniformly
at random from the interval [0, 1], contagion two spread on
a 100 node Erdos-Rényi graph with connection probability
0.75 with S — I transition rate 0.05 and [; — S transition
rates chosen uniformly at random from the interval [0, 10],
and the two spreading graphs were generated independently.
In this case, the upper bound for contagion one is nearly
tight, as is the lower bound for contagion two.

B. Direct Competition

For SI, 51,5, the mean-field approximations often seem
to work well as a proxy for the expectation, despite not
having a predefined ordering relation with the underlying
expectation of the process. One may wonder if this is
generally true. Here, we show by example that it is not. In
particular, for a simple competitive epidemic model we call
direct competition, a mean-field approximation is shown to
be a poor proxy for the process’ expectation.

For simplicity, we consider a model with two compart-
ments such that transitions between each are due to exogene-
ous processes. Note that this is only a slight distinction from
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Fig. 2: Comparison of the evolution of S1;S12S statistics against
predictions made by the robust moment closure dynamics and
mean-field approximation (11), where the light red region gives
the bounds from integrating (6), and the dark red region gives the
bounds computed by applying Theorem 2. This demonstrates the
lack of an ordering relation between the mean-field approximation
and the expectation of the process. The mean-field approximation
overestimates the number of nodes infected with contagion one, and
underestimates the number of nodes infected with contagion two.
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Fig. 3: Comparison of the evolution of S1;S1>S statistics against
predictions made by the robust moment closure dynamics and
mean-field approximation (11), where the light red region gives
the bounds from integrating (6), and the dark red region gives the
bounds computed by applying Theorem 2. One can see that the
optimized predictions (from applying Theorem 2) are substantially
better than those which come from direct integration, as they
substantially reduce the uncertainty in the predictions of I; here.
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Fig. 4: Comparison of the evolution of the expectation of (13)
against predictions made by the robust moment closure dynamics,
and the mean-field approximation (14), where the light red region
gives the bounds from integrating (6), and the dark red region gives
the bounds computed by applying Theorem 2. It can be readily
seen that the mean-field approximation differs significantly from

the sample mean of the simulation, which is just below the upper-
bound given by the robust moment-closure dynamics.

the S1;51,5 process, in that we now disallow people from
taking neutral positions (i.e. susceptibility). As in Section V-
A, we label the two infected compartments I; and I5. Doing
so allows us to write the corresponding specialization of (1)
as the system of stochastic differential equations

dx/r = Y X' X2dQl " — XX 1dQ2 ", (13a)
JEV

dx/ =Y XPXx[dQiE~" - X[ x[2dQ[i 7", (13b)
%

As in Section V-A, we may take expectations and replace
expectations of products by products of mean-field approx-
imation variables to arrive at the mean-field approximation

Of = D et oru T — el (140
JjeV

O = ooy — el Pul T (14b)
JjeEV

where we may use the fact that gblh +<f5f2 = 0Oand qﬁf ! +¢f 2 =
1 to eliminate ¢f2 to obtain the reduced representation

O =D ol (1— ¢l )¢

JEV

I, —1Is
ij

Iy
J

Is—14

I
. i .

—(1—¢; (15)

Figure 4 is illustrative of a typical simulation in contagion
one spreads on a 100 node Erdds-Rényi graph with con-
nection probability 0.5 and I; — I rate 0.005, contagion
two spreads on a 100 node Erdos-Rényi graph with con-
nection probability 0.5 and I, — I; rate 0.001, and the
graphs are generated independently. The prediction given
by the mean-field approximation and the sample mean of
the process are substantially different. Indeed, the sample
expectation of the process very nearly attains the upper
bound provided by the robust moment closure, whereas the
mean-field approximation comes near to the lower bound.
This example demonstrates clearly that mean-field approxi-
mations should not be used as a proxy for the expectation
of an epidemic process in general. They should only be
trusted in particular cases, when approximation guarantees
are demonstrated analytically. Our robust moment closure
provides one method of providing such guarantees.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we provide a general robust moment closure
for a broad class of compartmental epidemic spreading
processes. This is important, in that the mean-field approxi-
mations typically studied to date provide no formal accuracy
guarantees. Since the robust moment closures provided here
provide rigorously demonstrable upper- and lower- bounds
on compartmental membership probabilities, they can be
used readily to design control laws with provable conver-
gence guarantees. We believe that designing such control
laws is an interesting area for future work: as there is an
extensive body of work which studies the control of epidemic
processes under mean-field approximation, we expect that
there can be an extensive body of work studying the control
of epidemic processes using robust moment closures.
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