
Resilient Monotone Sequential Maximization
Vasileios Tzoumas,1 Ali Jadbabaie,2 George J. Pappas3

Abstract—Applications in machine learning, optimization, and
control require the sequential selection of a few system elements,
such as sensors, data, or actuators, to optimize the system
performance across multiple time steps. However, in failure-prone
and adversarial environments, sensors get attacked, data get
deleted, and actuators fail. Thence, traditional sequential design
paradigms become insufficient and, in contrast, resilient sequen-
tial designs that adapt against system-wide attacks, deletions, or
failures become important. In general, resilient sequential design
problems are computationally hard. Also, even though they often
involve objective functions that are monotone and (possibly)
submodular, no scalable approximation algorithms are known
for their solution. In this paper, we provide the first scalable
algorithm, that achieves the following characteristics: system-wide
resiliency, i.e., the algorithm is valid for any number of denial-of-
service attacks, deletions, or failures; adaptiveness, i.e., at each
time step, the algorithm selects system elements based on the
history of inflicted attacks, deletions, or failures; and provable
approximation performance, i.e., the algorithm guarantees for
monotone objective functions a solution close to the optimal.
We quantify the algorithm’s approximation performance using a
notion of curvature for monotone (not necessarily submodular)
set functions. Finally, we support our theoretical analyses with
simulated experiments, by considering a control-aware sensor
scheduling scenario, namely, sensing-constrained robot navigation.

I. INTRODUCTION

Problems in machine learning, optimization, and control
[1]–[9] require the design of systems in applications such as:
• Car-congestion prediction: Given a flood of driving data,

collected from the drivers’ smart-phones, which few
drivers’ data should we process at each time of the day
to enable the accurate prediction of car traffic? [1]

• Adversarial-target tracking: At a flying robot, that uses
on-board sensors to navigate itself, which few sensors
should we activate at each time step both to maximize
the robot’s battery life, and to ensure its ability to track
targets moving in a cluttered environment? [2]

• Hazardous environmental-monitoring: In a team of mo-
bile robots, which few robots should we choose at each

1At the time the paper was written, the author was with the Department of
Electrical and Systems Engineering, University of Pennsylvania, Philadelphia,
PA 19104 USA. Currently, the author is with the Laboratory for Information
& Decision Systems (LIDS), Massachusetts Institute of Technology (MIT),
Cambridge, MA 02139 USA (email: vtzoumas@mit.edu).

2The author is with the Institute for Data, Systems and Society (IDSS),
Massachusetts Institute of Technology (MIT), Cambridge, MA 02139 USA
(email: jadbabai@mit.edu).

3The author is with the Department of Electrical and Systems Engineering
(ESE), University of Pennsylvania (UPenn), Philadelphia, PA 19104 USA
(email: pappasg@seas.upenn.edu).

This work was partially supported by the AFOSR Complex Networks
program, by the ARL CRA DCIST W911NF-17-2-0181 program, and the
Rockefeller Foundation.

time step as actuators (leaders) to guarantee the team’s
capability to monitor the radiation around a nuclear
reactor despite intro-robot communication noise? [3]

In particular, all the aforementioned applications [1]–[9] moti-
vate the sequential selection of a few system elements, such as
sensors, data, or actuators, to optimize the system performance
across multiple time steps, subject to a resource constraint,
such as limited battery for sensor activation. More formally,
each of the above applications motivate the solution to a
sequential optimization problem of the form:

max
A1⊆V1

· · · max
AT⊆VT

f(A1, . . . ,AT),

such that:
|At| = αt, for all t = 1, . . . , T,

(1)

where T represents the number of design steps in time; the ob-
jective function f is monotone and (possibly) submodular —
submodularity is a diminishing returns property;— and the car-
dinality bound αt captures a resource constraint at time t. The
problem in eq. (1) is combinatorial, and, specifically, it is NP-
hard [10]; notwithstanding, several approximation algorithms
have been proposed for its solution, such as the greedy [11].

But in all the above critical applications, sensors can get
cyber-attacked [12]; data can get deleted [13]; and actuators
can fail [14]. Hence, in such failure-prone and adversarial sce-
narios, resilient sequential designs that adapt against denial-
of-service attacks, deletions, or failures become important.

In this paper, we formalize for the first time a problem
of resilient monotone sequential maximization, that goes be-
yond the traditional objective of the problem in eq. (1),
and guards adaptively against real-time attacks, deletions, or
failures. In particular, we introduce the following resilient re-
formulation of the problem in eq. (1):

max
A1⊆V1

min
B1⊆A1

· · · max
AT⊆VT

min
BT⊆AT

f(A1 \ B1, . . . ,AT \ BT),

such that:
|At| = αt and |Bt| ≤ βt, for all t = 1, . . . , T,

(2)

where the number βt represents the number of possible attacks,
deletions, or failures —in general, it is βt ≤ αt. Overall,
the problem in eq. (2) maximizes the function f despite real-
time worst-case failures that compromise the consecutive max-
imization steps in eq. (1). Therefore, the problem formulation
in eq. (2) is suitable in scenarios where there is no prior on the
removal mechanism, as well as, in scenarios where protection
against worst-case failures is essential, such as in expensive
experiment designs, or missions of adversarial-target tracking.

2018 IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, Dec. 17-19, 2018

978-1-5386-1395-5/18/$31.00 ©2018 IEEE 7261

In more detail, the problem in eq. (2) may be interpreted
as a T -stage perfect information sequential game between
two players [15, Chapter 4], namely, a “maximization” player
(designer), and a “minimization” player (attacker), who play
sequentially, both observing all past actions of all players,
and with the designer starting the game. That is, at each time
t = 1, . . . , T, both the designer and the attacker adapt their set
selections to the history of all the players’ selections so far,
and, in particular, the attacker adapts its selection also to the
current (t-th) selection of the designer (since at each step t, the
attacker plays after it observes the selection of the ‘designer).

In sum, the problem in eq. (2) goes beyond traditional (non-
resilient) optimization [16]–[20] by proposing resilient opti-
mization; beyond single-step resilient optimization [21]–[23]
by proposing multi-step (sequential) resilient optimization;
beyond memoryless resilient optimization [24] by proposing
adaptive resilient optimization; and beyond protection against
non-adversarial attacks [13], [25] by proposing protection
against worst-case attacks. Hence, the problem in eq. (2) aims
to protect the system performance over extended periods of
time against real-time denial-of-service attacks or failures,
which is vital in critical applications, such as multi-target
surveillance with teams of mobile robots [9].

Contributions. In this paper, we make the contributions:

• (Problem definition) We formalize the problem of re-
silient monotone sequential maximization against denial-
of-service removals, per eq. (2). This is the first work to
formalize, address, and motivate this problem.

• (Solution) We develop the first algorithm for the problem
of resilient monotone sequential maximization in eq. (2),
and prove it has the following properties:
– system-wide resiliency: the algorithm is valid for any

number of removals;
– adaptiveness: the algorithm adapts the solution to each

of the maximization steps in eq. (2) to the history of
realized (inflicted) removals;

– minimal running time: the algorithm terminates with
the same running time as state-of-the-art algorithms for
(non-resilient) set function optimization, per eq. (1);

– provable approximation performance: the algorithm
ensures for all T ≥ 1, and for objective functions f
that are monotone and (possibly) submodular —as it
holds true in all aforementioned applications [1]–[9],—
a solution finitely close to the optimal.
To quantify the algorithm’s approximation perfor-
mance, we used a notion of curvature for monotone
(not necessarily submodular) set functions.

• (Simulations) We conduct simulations in a variety of
sensor scheduling scenarios for autonomous robot nav-
igation, varying the number of sensor failures. Our sim-
ulations validate the benefits of our approach.

Overall, the proposed algorithm in this paper enables the
resilient reformulation and solution of all the aforementioned
applications [1]–[9] against worst-case attacks, deletions, or
failures, over multiple design steps, and with provable approx-

imation guarantees. All proofs can be found in the full version
of this paper, located at the authors’ websites.

Notation. Calligraphic fonts denote sets (e.g., A). Given a
set A, then 2A denotes the power set of A; in addition, |A|
denotes A’s cardinality; given also a set B, then A\B denotes
the set of elements in A that are not in B. Given a ground
set V , a set function f : 2V 7→ R, and an element x ∈ V , the
f(x) denotes f({x}), and the f(A,B) denotes f(A ∪ B).

II. RESILIENT MONOTONE SEQUENTIAL MAXIMIZATION

We formally define resilient monotone sequential maximiza-
tion. We start with the basic definition of monotonicity.

Definition 1 (Monotonicity) Consider any finite ground
set V . The set function f : 2V 7→ R is non-decreasing if
and only if for any sets A ⊆ A′ ⊆ V , it holds f(A) ≤ f(A′).

We define next the main problem in this paper.

Problem 1 (Resilient Monotone Sequential Maximization)
Consider the parameters: an integer T ; finite ground sets
V1, . . . ,VT ; a non-decreasing set function f : 2V1 × · · · ×
2VT 7→ R such that, without loss of generality, it holds
f(∅) = 0 and f is non-negative; finally, integers αt and βt
such that 0 ≤ βt ≤ αt ≤ |Vt|, for all t = 1, 2, . . . , T.

The problem of resilient monotone sequential maximization
is to maximize the objective function f through a sequence
of T maximization steps, despite compromises to the solutions
of each of the maximization steps; in particular, at each
maximization step t = 1, . . . , T a setAt ⊆ Vt of cardinality αt
is selected, and is compromised by a worst-case set removal Bt
of cardinality βt. Formally:

max
A1⊆V1

min
B1⊆A1

· · · max
AT⊆VT

min
BT⊆AT

f(A1 \ B1, . . . ,AT \ BT),

such that:

|At| = αt and |Bt| ≤ βt, for all t = 1, . . . , T.
(3)

As we mentioned in this paper’s Introduction, Problem 1
may be interpreted as a T -stage perfect information sequential
game between two players [15, Chapter 4], a “maximization”
player, and a “minimization” player, who play sequentially,
both observing all past actions of all players, and with the
“maximization” player starting the game. In the following
paragraphs, we describe this game in more detail:
• 1st round of the game in Problem 1: the “maximization”

player selects the set A1; then, the “minimization” player
observes A1, and selects the set B1 against A1;

• 2nd round of the game in Problem 1: the “maximization”
player, who already knows A1, observes B1, and selects
the set A2, given A1 and B1; then, the “minimization”
player, who already knows A1 and B1, observes A2, and
selects the set B2 against A2, given A1 and B1.

...
• T -th round of the game in Problem 1: the “maximization”

player, who already knows the history of selections

7262

A1, . . . ,AT−1, as well as, removals B1, . . . ,BT−1, se-
lects the set AT , given A1, . . . ,AT−1 and B1, . . . ,BT−1;
then, the “minimization” player, who also already knows
the history of selections A1, . . . ,AT−1, as well as, re-
movals B1, . . . ,BT−1, observes AT , and selects the set
BT against AT , given A1, . . . ,AT−1 and B1, . . . ,BT−1.

III. ADAPTIVE ALGORITHM FOR PROBLEM 1

We present the first algorithm for Problem 1, show it is
adaptive, and, finally, describe the intuition behind it. The
pseudo-code of the algorithm is described in Algorithm 1.

A. Intuition behind Algorithm 1

The goal of Problem 1 is to ensure a maximal value for an
objective function f through a sequence of T maximization
steps, despite compromises to the solutions of each of the
maximization steps. In particular, at each maximization step
t = 1, . . . , T, Problem 1 aims to select a set At towards a
maximal value of f, despite that each At is compromised by
a worst-case set removal Bt from At, resulting to f being
finally evaluated at the sequence of sets A1 \B1, . . . ,AT \BT
instead of the sequence of sets A1, . . . ,AT . In this context,
Algorithm 1 aims to fulfil the goal of Problem 1 by construct-
ing each set At as the union of the sets St,1, and St,2 (line 9 of
Algorithm 1), whose role we describe in more detail below:

a) Set St,1 approximates worst-case set removal fromAt:
Algorithm 1 aims with the set St,1 to capture the worst-
case removal of βt elements among the αt elements that
Algorithm 1 is going to select in At; equivalently, the set St,1
is aimed to act as a “bait” to an attacker that selects to
remove the best βt elements from At (best with respect to
the elements’ contribution towards the goal of Problem 1).
However, the problem of selecting the best βt elements in Vt
is a combinatorial and, in general, intractable problem [10].
For this reason, Algorithm 1 aims to approximate the best βt
elements in Vt, by letting St,1 be the set of βt elements with
the largest marginal contributions in the value of the objective
function f (lines 3-4 of Algorithm 1).

b) Set St,2 is such that St,1 ∪St,2 approximates optimal
set solution to t-th maximization step of Problem 1: Assuming
that St,1 is the set of βt elements that are going to be removed
from Algorithm 1’s set selection At, Algorithm 1 needs next
to select a set St,2 of αt − βt elements to complete the
construction of At, since it is |At| = αt per Problem 1.
In particular, for At = St,1∪St,2 to be an optimal solution to
t-th maximization step of Problem 1 (assuming the removal
of St,1 from At), Algorithm 1 needs to select St,2 as a best set
of αt− βt elements from Vt \ St,1. Nevertheless, the problem
of selecting a best set of αt − βt elements from Vt \ St,1
is a combinatorial and, in general, intractable problem [10].
As a result, Algorithm 1 aims to approximate such a best set,
using the greedy procedure in the lines 5-8 of Algorithm 1.

Overall, Algorithm 1 constructs the sets St,1 and St,2 to
approximate an optimal solution At to the t-th maximization
step of Problem 1 with their union (line 9 of Algorithm 1).

We describe next the steps in Algorithm 1 in more detail.

Algorithm 1 Adaptive algorithm for Problem 1.

Input: Per Problem 1, Algorithm 1 receives two input types:
• (Off-line) Integer T ; finite ground sets V1, . . . ,VT ; set

function f : 2V1 × · · · × 2VT 7→ R such that f is non-
decreasing, non-negative, and f(∅) = 0; integers αt and
βt such that 0 ≤ βt ≤ αt ≤ |Vt|, for all t = 1, . . . , T.

• (On-line) At each step t = 2, 3, . . . , T : realized set
removal Bt−1 from Algorithm 1’s set selection At−1.

Output: At each step t = 1, 2, . . . , T, set At.

1: for all t = 1, . . . , T do
2: St,1 ← ∅; St,2 ← ∅;
3: Sort elements in Vt such that Vt ≡ {vt,1, . . . , vt,|Vt|}

and f(vt,1) ≥ . . . ≥ f(vt,|Vt|);
4: St,1 ← {vt,1, . . . , vt,β};
5: while |St,2| < αt − βt do
6: x ∈ arg maxy∈Vt\(St,1∪St,2) f(A1 \ B1, . . . ,At−1 \
Bt−1,St,2 ∪ {y});

7: St,2 ← {x} ∪ St,2;
8: end while
9: At ← St,1 ∪ St,2;

10: end for

B. Description of steps in Algorithm 1

Algorithm 1 executes four steps for each t = 1, . . . , T ,
where T is the number of maximization steps in Problem 1:

a) Initialization (line 2 of Algorithm 1): Algorithm 1
defines two auxiliary sets, namely, the St,1 and St,2, and
initializes each of them with the empty set (line 2 of Algo-
rithm 1). The purpose of St,1 and of St,2 is to construct the
set At, which is the set Algorithm 1 selects as a solution to
Problem 1’s t-th maximization step; in particular, the union of
St,1 and of St,2 constructs At at the end of the t-th execution
of the algorithm’s “for loop” (lines 1-10 of Algorithm 1).

b) Construction of set St,1 (lines 3-4 of Algorithm 1):
Algorithm 1 constructs the set St,1 such that St,1 contains βt
elements from the ground set Vt and, for any element s ∈ St,1
and any element s′ /∈ St,1, the marginal value of f(s) is at least
that of f(s′); that is, among all elements in Vt, the set St,1 con-
tains a collection of βt elements that correspond to the highest
marginal values of f. In detail, Algorithm 1 constructs St,1
by first sorting and indexing all elements in Vt such that
Vt = {vt,1, . . . , vt,|Vt|} and f(vt,1) ≥ . . . ≥ f(vt,|Vt|) (line 3
of Algorithm 1), and, then, by including in St,1 the fist βt
elements among the {vt,1, . . . , vt,|Vt|} (line 4 of Algorithm 1).

c) Construction of set St,2 (lines 5-8 of Algorithm 1):
Algorithm 1 constructs the set St,2 by picking greedily
αt − βt elements from the set Vt \ St,1, and by accounting
for the effect that the history of set selections and removals
(A1 \B1, . . . ,At−1 \Bt−1) has on the objective function f of
Problem 1. Specifically, the greedy procedure in Algorithm 1’s
“while loop” (lines 5-8 of Algorithm 1) selects an element
y ∈ Vt \ (St,1 ∪ St,2) to add in St,2 only if y maximizes the
value of f(A1 \ B1, . . . ,At−1 \ Bt−1,St,2 ∪ {y}).

7263

d) Construction of set At (line 9 of Algorithm 1):
Algorithm 1 proposes the set At as a solution to Problem 1’s t-
th maximization step. To this end, Algorithm 1 constructs At
as the union of the previously constructed sets St,1 and St,2.

In sum, Algorithm 1 enables an adaptive solution of Prob-
lem 1: for each t = 1, 2, . . ., Algorithm 1 constructs a solution
set At to the t-th maximization step of Problem 1 based on
both the history of selected solutions up to step t−1, namely,
the sets A1, . . . ,At−1, and the corresponding history of set
removals from A1, . . . ,At−1, namely, the B1, . . . ,Bt−1.

IV. PERFORMANCE GUARANTEES FOR ALGORITHM 1

We quantify Algorithm 1’s performance, by bounding its
running time, and its approximation performance. To this end,
we use the following two notions of curvature for set functions.

A. Curvature and total curvature of non-decreasing functions

We present the notions of curvature and of total curvature
for non-decreasing set functions. We start by describing the
notions of modularity and submodularity for set functions.

Definition 2 (Modularity) Consider any finite set V . The set
function g : 2V 7→ R is modular if and only if for any set
A ⊆ V , it holds g(A) =

∑
v∈A g(v).

In words, a set function g : 2V 7→ R is modular if through g
all elements in V cannot substitute each other; in particular,
Definition 2 of modularity implies that for any set A ⊆ V , and
for any element v ∈ V\A, it holds g({v}∪A)−g(A) = g(v).

Definition 3 (Submodularity [26, Proposition 2.1])
Consider any finite set V . The set function g : 2V 7→ R is
submodular if and only if for any sets A ⊆ B ⊆ V , and any
element v ∈ V , it holds g(A∪{v})−g(A) ≥ g(B∪{v})−g(B).

Definition 3 implies that a set function g : 2V 7→ R is sub-
modular if and only if it satisfies a diminishing returns property
where for any set A ⊆ V , and for any element v ∈ V , the
marginal gain g(A∪{v})−g(A) is non-increasing. In contrast
to modularity, submodularity implies that the elements in V
can substitute each other, since Definition 3 of submodularity
implies the inequality g({v} ∪ A) − g(A) ≤ g(v); that is, in
the presence of the set A, the element v may lose part of its
contribution to the value of g({x} ∪ A).

Definition 4 (Curvature of monotone submodular func-
tions [20]) Consider a finite set V , and a non-decreasing
submodular set function g : 2V 7→ R such that (without loss
of generality) for any element v ∈ V , it is g(v) 6= 0. The
curvature of g is defined as follows:

κg , 1−min
v∈V

g(V)− g(V \ {v})
g(v)

. (4)

Definition 4 of curvature implies that for any non-decreasing
submodular set function g : 2V 7→ R, it holds 0 ≤ κg ≤ 1.
In particular, the value of κg measures how far g is from
modularity, as we explain next: if κg = 0, then for all elements
v ∈ V , it holds g(V)−g(V\{v}) = g(v), that is, g is modular.
In contrast, if κg = 1, then there exist an element v ∈ V such

that g(V) = g(V \ {v}), that is, in the presence of V \ {v},
v loses all its contribution to the value of g(V).

Definition 5 (Total curvature of non-decreasing func-
tions [27, Section 8]) Consider a finite set V , and a monotone
set function g : 2V 7→ R. The total curvature of g is defined
as follows:

cg , 1−min
v∈V

min
A,B⊆V\{v}

g({v} ∪ A)− g(A)

g({v} ∪ B)− g(B)
. (5)

Definition 5 of total curvature implies that for any non-
decreasing set function g : 2V 7→ R, it holds 0 ≤ cg ≤ 1. To
connect the notion of total curvature with that of curvature,
we note that when the function g is non-decreasing and sub-
modular, then the two notions coincide, i.e., it holds cg = κg;
the reason is that if g is non-decreasing and submodular, then
the inner minimum in eq. (5) is attained for A = B \ {v}
and B = ∅. In addition, to connect the above notion of total
curvature with the notion of modularity, we note that if cg = 0,
then g is modular, since eq. (5) implies that for any elements
v ∈ V , and for any sets A,B ⊆ V \ {v}, it holds:

(1− cg) [g({v} ∪ B)− g(B)] ≤ g({v} ∪ A)− g(A), (6)

which for cg = 0 implies the modularity of g. Finally, to
connect the above notion of total curvature with the notion of
monotonicity, we mention that if cg = 1, then eq. (6) implies
that g is merely non-decreasing (as it is already assumed by
the Definition 5 of total curvature).

Definition 6 (Approximate submodularity) Consider a fi-
nite set V , and a non-decreasing set function g : 2V 7→ R,
whose total curvature cg is such that cg < 1. Then, we say
that g is approximately submodular.

B. Performance analysis for Algorithm 1
We quantify Algorithm 1’s approximation performance, as

well as, its running time per maximization step in Problem 1.

Theorem 1 (Performance of Algorithm 1) Consider an in-
stance of Problem 1, the notation therein, the notation in
Algorithm 1, and the definitions:
• let the number f? be the (optimal) value to Problem 1;
• given sets A1:T , (A1, . . . ,AT) as solutions to the

maximization steps in Problem 1, let B?(A1:T) be the
collection of optimal (worst-case) set removals from each
of the At, where t = 1, . . . , T, per Problem 1, i.e.:

B?(A1:T) ∈ arg min
B1⊆A1,|B1|≤β1

· · · min
BT⊆AT ,|BT |≤βT

f(A1 \ B1, . . . ,AT \ BT);

The performance of Algorithm 1 is bounded as follows:
1) (Approximation performance) Algorithm 1 returns the se-

quence of sets A1:T , (A1, . . . ,AT) such that, for all
t = 1, . . . , T, it holds At ⊆ Vt, |At| ≤ αt, and:
• if the objective function f is non-decreasing and sub-

modular, then:

f(A1:T \ B?(A1:T))

f?
≥ (1− κf)4, (7)

7264

where κf is the curvature of f (Definition 4).
• if the objective function f is non-decreasing, then:

f(A1:T \ B?(A1:T))

f?
≥ (1− cf)5, (8)

where cf is the total curvature of f (Definition 5).
2) (Running time) Algorithm 1 constructs each set At, for

each t = 1, . . . , T, to solve the t-th maximization step of
Problem 1, with O(|Vt|(αt − βt)) evaluations of f.

Provable approximation performance. Theorem 1 implies
on the approximation performance of Algorithm 1:

a) Near-optimality: Both for monotone submodular ob-
jective functions f with curvature κf < 1, and for merely
monotone objective functions f with total curvature cf < 1,
Algorithm 1 guarantees a value for Problem 1 finitely close
to the optimal. In particular, per ineq. (7) (case of submodular
objective functions), the approximation factor of Algorithm 1
is bounded by (1−κf)4, which is non-zero for any monotone
submodular function f with κf < 1; similarly, per ineq. (8)
(case of approximately-submodular functions), the approxima-
tion factor of Algorithm 1 is bounded by (1− cf)5, which is
non-zero for any monotone function f with cf < 1 —notably,
although it is known for the problem of (non-resilient) set
function maximization that the approximation bound (1− cf)
is tight [27, Theorem 8.6], the tightness of the bound (1−cf)5

in ineq. (8) for Problem 1 is an open problem.
We discuss classes of functions f with curvatures κf < 1 or

cf < 1, along with relevant applications, in the remark below.

Remark 1 (Classes of functions f with κf < 1 or cf < 1,
and applications) Classes of functions f with κf < 1 are
the concave over modular functions [17, Section 2.1], and
the log det of positive-definite matrices [28], [29]. Classes of
functions f with cf < 1 are support selection functions [30],
and estimation error metrics such as the average minimum
square error of the Kalman filter [2, Theorem 4]

The aforementioned classes of functions f with κf < 1 or
cf < 1 appear in applications of facility location, machine
learning, and control, such as sparse approximation and
feature selection [4], [5], sparse recovery and column subset
selection [6], [7], and actuator and sensor scheduling [2],
[8]; as a result, Problem 1 enables applications such as
resilient experiment design, resilient actuator scheduling for
minimal control effort, and resilient multi-robot navigation
with minimal sensing and communication.

b) Approximation performance for low curvature: For
both monotone submodular and merely monotone objective
functions f, when the curvature κf and the total curvature cf ,
respectively, tend to zero, Algorithm 1 becomes exact since
for κf → 0 and cf → 0 the terms (1 − κf)4 and (1 − cf)5

in ineq. (7) and ineq. (8) tend to 1. Overall, Algorithm 1’s
curvature-dependent approximation bounds make a first step
towards separating the classes of monotone submodular and
merely monotone functions into functions for which Problem 1
can be approximated well (low curvature functions), and

functions for which it cannot (high curvature functions).
A machine learning problem where Algorithm 1 guarantees

an approximation performance close to 100% the optimal is
that of Gaussian process regression for processes with RBF
kernels [31], [32]; this problem emerges in applications of
sensor deployment and scheduling for temperature monitor-
ing. The reason that in this class of regression problems
Algorithm 1 performs almost optimally is that the involved
objective function is the entropy of the selected sensor mea-
surements, which for Gaussian processes with RBF kernels
has curvature value close to zero [29, Theorem 5].

c) Approximation performance for no failures or attacks:
Both for monotone submodular objective functions f, and for
merely monotone objective functions f, when the number
of attacks, deletions, and failures is zero (βt = 0, for all
t = 1, . . . , T), Algorithm 1’s approximation performance is
the same as that of the state-of-the-art algorithms for (non-
resilient) set function maximization. In particular, when for all
t = 1, . . . , T it is βt = 0, then Algorithm 1 is the same as the
local greedy algorithm, proposed in [11, Section 4] for (non-
resilient) set function maximization, whose approximation
performance is optimal [27, Theorem 8.6].

Minimal running time. Theorem 1 implies that Algo-
rithm 1, even though it goes beyond the objective of (non-
resilient) multi-step set function optimization, by account-
ing for attacks, deletions, and failures, it has the same or-
der of running time as state-of-the-art algorithms for (non-
resilient) multi-step set function optimization. In particular,
such algorithms for (non-resilient) multi-step set function
optimization [11, Section 4] [27, Section 8] terminate with
O(|Vt|(αt − βt)) evaluations of the objective function f
per maximization step t = 1, . . . , T , and Algorithm 1 also
terminates with O(|Vt|(αt − βt)) evaluations of the objective
function f per maximization step t = 1, . . . , T .

Summary of theoretical results. In sum, Algorithm 1 is
the first algorithm for Problem 1, and it enjoys:
• system-wide resiliency: Algorithm 1 is valid for any num-

ber of denial-of-service attacks, deletions, and failures;
• adaptiveness: Algorithm 1 adapts the solution to each of

the maximization steps in Problem 1 to the history of
inflicted denial-of-service attacks and failures;

• minimal running time: Algorithm 1 terminates with the
same running time as state-of-the-art algorithms for (non-
resilient) multi-step submodular function optimization;

• provable approximation performance: Algorithm 1 en-
sures for all monotone objective functions f that are
either submodular or approximately submodular (cf < 1),
and for all T ≥ 1, a solution finitely close to the optimal.

Notably, Algorithm 1 is also the first to guarantee for
any number of failures, and for monotone approximately-
submodular functions f, a provable approximation perfor-
mance for the one-step version of Problem 1 where T = 1.

V. NUMERICAL EXPERIMENTS

In this section, we demonstrate a near-optimal performance
of Algorithm 1 via numerical experiments. In particular, we

7265

consider a control-aware sensor scheduling scenario, namely,
sensing-constrained robot navigation.1 According to this sce-
nario, an unmanned aerial vehicle (UAV), which has limited
remaining battery and measurement-processing power, has the
objective to land, and to this end, it schedules to activate at
each time step only a subset of its on-board sensors, so to
localize itself and enable the generation of a control input
for landing; specifically, at each time step, the UAV generates
its control input by implementing an LQG-optimal controller,
given the measurements collected by the activated sensors up
to the current time step [2], [33].

In more detail, in the following paragraphs we present a
Monte Carlo analysis for an instance of the aforementioned
sensing-constrained robot navigation scenario, in the presence
of worst-case sensor failures, and observe that Algorithm 1 re-
sults to a near-optimal sensor selection schedule: in particular,
the resulting navigation performance of the UAV matches the
optimal in all tested instances for which the optimal selection
could be computed via a brute-force approach.

Simulation setup. We adopt the same instance of the
sensing-constrained robot navigation scenario adopted in [2,
Section V.B]. Specifically, a UAV moves in a 3D space, start-
ing from a randomly selected initial location. The objective of
the UAV is to land at position [0, 0, 0] with zero velocity.
The UAV is modelled as a double-integrator with state xt =
[pt vt]

> ∈ R6 at each time t = 1, 2, . . . (pt is the 3D position
of the UAV, and vt is its velocity), and can control its own
acceleration ut ∈ R3; the process noise is chosen as Wt = I6.
The UAV is equipped with multiple sensors, as follows: it has
two on-board GPS receivers, measuring the UAV position pt
with a covariance 2 · I3, and an altimeter, measuring only the
last component of pt (altitude) with standard deviation 0.5m.
Moreover, the UAV can use a stereo camera to measure the
relative position of 10 landmarks on the ground; we assume
the location of each landmark to be known only approximately,
and we associate to each landmark an uncertainty covariance,
which is randomly generated at the beginning of each run. The
UAV has limited on-board resource-constraints, hence it can
only activate a subset of sensors (possibly different at each
time step). For instance, the resource-constraints may be due
to the power consumption of the GPS and the altimeter, or
due to computational constraints that prevent to run object-
detection algorithms to detect all landmarks on the ground.

Among the aforementioned 13 possible sensor measure-
ments available to the UAV at each time step, we assume
that the UAV can use only α = 11 of them. In particu-
lar, the UAV chooses the sensors to activate at each time
step so to minimize an LQG cost with cost matrices Q
(which penalizes the state vector) and R (which penalizes
the control input vector), per the problem formulation in [2,
Section II]; specifically, in this simulation setup we set Q =
diag

(
[1e−3, 1e−3, 10, 1e−3, 1e−3, 10]

)
and R = I3. Note

that the structure of Q (which penalizes the magnitude of

1The scenario of sensing-constrained robot navigation is introduced in [2,
Section V.B], yet in the absence of sensor failures.

the state vector) reflects the fact that during landing we are
particularly interested in controlling the vertical direction and
the vertical velocity (entries with larger weight in Q), while
we are less interested in controlling accurately the horizontal
position and velocity (assuming a sufficiently large landing
site). Given a time horizon T for landing, in [2] it is proven
that the UAV selects an optimal sensor schedule and generates
an optimal LQG control input with cost matrices Q and R if it
selects the sensors set St to activate at each time t = 1, . . . , T
by minimizing an objective function of the form:

T∑
t=1

trace[MtΣt|t(S1, . . . ,St)], (9)

where Mt is a positive semi-definite matrix that depends on
the LQG cost matrices Q and R, as well as, on the UAV’s
model dynamics; and Σt|t(S1, . . . ,St) is the error covariance
of the Kalman filter given the sensor selections up to time t.

In the remaining paragraphs, we present results averaged
over 10 Monte Carlo runs of the above simulation setup,
where in each run we randomize the covariances describing
the landmark position uncertainty, and where we vary the
number β of sensors failures at each time step t: in particular,
we consider β to vary among the values 1, 4, 7, 10.

Compared algorithms. We compare four algorithms. All
algorithms only differ in how they select the sensors used.
The first algorithm is the optimal sensor selection algorithm,
denoted as optimal, which attains the minimum of the
cost function in eq. (9); this brute-force approach is viable
since the number of available sensors is small. The second
approach is a pseudo-random sensor selection, denoted as
random∗, which selects one of the GPS measurements and
a random subset of the lidar measurements; note that we do
not consider a fully random selection since in practice this
often leads to an unobservable system. The third approach,
denoted as greedy, selects sensors to greedily minimize the
cost function in eq. (9), ignoring the possibility of sensor
failures, per the problem formulation in eq. (1). The fourth
approach uses Algorithm 1 to solve the resilient reformulation
of eq. (9), per Problem 1, and is denoted as resilience.

At each time step, from each of the selected sensor sets,
selected by any of the above four algorithms, we consider an
optimal sensor removal, which we compute via a brute-force.

Results. The results of our numerical analysis are reported
in Fig. 1. In particular, Fig. 1 shows the LQG cost for
increasing time, for the case where the number of selected
sensors at each time step is α = 11, while the number of
sensor failures β at each time step varies across the values
10, 7, 4, 1. The following observations are due:

• (Near-optimality of Algorithm 1) Algorithm 1 (blue
colour in Fig. 1) performs close to the optimal brute-
force algorithm (green colour in Fig. 1); in particular,
across all scenarios in Fig. 1, Algorithm 1 achieves an
approximation performance at least 97% the optimal.

• (Performance of greedy algorithm) The greedy algorithm
(red colour in Fig. 1) performs poorly as the number β

7266

0 5 10 15 20
time

4

5

6

7

8

LQ
G

 c
os

t

104

(a) β = 10, α = 11

0 5 10 15 20
time

2.5

3

3.5

4

4.5

LQ
G

 c
os

t

104

(b) β = 7, α = 11

0 5 10 15 20
time

0.8

1

1.2

1.4

1.6

LQ
G

 c
os

t

104

(c) β = 4, α = 11

0 5 10 15 20
time

3500

4000

4500

5000

5500

LQ
G

 c
os

t

(d) β = 1, α = 11

Fig. 1: LQG cost for increasing time, where across all sub-figures
(a)-(d) it is α = 11 (number of active sensors per time step). The
value of β (number of sensor failures at each time step among the α
active sensors) varies across the sub-figures.

of sensor failures increases, which was expected, given
that this algorithm greedily minimizes the cost function
in eq. (9) ignoring the possibility of sensor failures.

• (Performance of random algorithm) Expectedly, also the
performance of the random algorithm (black colour in
Fig. 1) is poor across all scenarios in Fig. 1.

Overall, in the above numerical experiments, Algorithm 1
demonstrates a near-optimal approximation performance, and
the necessity for the resilient reformulation of the problem in
eq. (1) per Problem 1 is exemplified.

VI. CONCLUDING REMARKS & FUTURE WORK

We made the first step to ensure the success of critical
missions in machine learning and control, that involve the
optimization of systems across multiple time-steps, against
persistent failures or denial-of-service attacks. In particular,
we provided the first algorithm for Problem 1, which, with
minimal running time, adapts to the history of the inflicted
failures and attacks, and guarantees a close-to-optimal perfor-
mance against system-wide failures and attacks. To quantify
the algorithm’s approximation performance, we exploited a
notion of curvature for monotone (not necessarily submodular)
set functions, and contributed a first step towards characteriz-
ing the curvature’s effect on the approximability of resilient
sequential maximization. Our curvature-dependent characteri-
zations complement the current knowledge on the curvature’s
effect on the approximability of simpler problems, such as of
non-sequential resilient maximization [22], [23], and of non-
resilient maximization [17], [18], [20]. Finally, we supported
our theoretical analyses with simulated experiments.

This paper opens several avenues for future research, both
in theory and in applications. Future work in theory includes

the extension of our results to matroid constraints, to enable
applications of set coverage and of network design [34],
[35]. Future work in applications includes the experimental
testing of the proposed algorithm in applications of motion-
planning for multi-target covering with mobile vehicles [9],
and in applications of control-aware sensor scheduling for
multi-agent autonomous navigation [2], to enable resiliency
in critical scenarios of surveillance, and of search and rescue.

VII. ACKNOWLEDGEMENTS

We thank Luca Carlone for inspiring discussions.

REFERENCES

[1] D. Golovin and A. Krause, “Adaptive submodularity: Theory and
applications in active learning and stochastic optimization,” Journal of
Artificial Intelligence Research, vol. 42, pp. 427–486, 2011.

[2] V. Tzoumas, L. Carlone, G. J. Pappas, and A. Jadbabaie, “Control and
Sensing Co-design,” ArXiv e-prints: 1802.08376, 2018.

[3] A. Clark, L. Bushnell, and R. Poovendran, “A supermodular optimization
framework for leader selection under link noise in linear multi-agent
systems,” IEEE Trans. on Aut. Contr., vol. 59, no. 2, pp. 283–296, 2014.

[4] A. Das and D. Kempe, “Submodular meets spectral: Greedy algorithms
for subset selection, sparse approximation and dictionary selection,” in
International Conference on Machine Learning, 2011, pp. 1057–1064.

[5] R. Khanna, E. Elenberg, A. Dimakis, S. Negahban, and J. Ghosh,
“Scalable greedy feature selection via weak submodularity,” in Artificial
Intelligence and Statistics, 2017, pp. 1560–1568.

[6] E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Communications on pure and
applied mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.

[7] C. Boutsidis, M. W. Mahoney, and P. Drineas, “An improved approxima-
tion algorithm for the column subset selection problem,” in ACM-SIAM
Symposium on Discrete algorithms, 2009, pp. 968–977.

[8] Y. Zhao, F. Pasqualetti, and J. Cortés, “Scheduling of control nodes for
improved network controllability,” in IEEE 55th Conference on Decision
and Control, 2016, pp. 1859–1864.

[9] P. Tokekar, V. Isler, and A. Franchi, “Multi-target visual tracking with
aerial robots,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2014, pp. 3067–3072.

[10] U. Feige, “A threshold of ln(n) for approximating set cover,” Journal
of the ACM, vol. 45, no. 4, pp. 634–652, 1998.

[11] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An analysis
of approximations for maximizing submodular set functions – II,” in
Polyhedral combinatorics, 1978, pp. 73–87.

[12] A. D. Wood and J. A. Stankovic, “Denial of service in sensor networks,”
Computer, vol. 35, no. 10, pp. 54–62, 2002.

[13] B. Mirzasoleiman, A. Karbasi, and A. Krause, “Deletion-robust submod-
ular maximization: Data summarization with ‘the right to be forgotten’,”
in International Conference on Machine Learning, 2017, pp. 2449–2458.

[14] A. S. Willsky, “A survey of design methods for failure detection in
dynamic systems,” Automatica, vol. 12, no. 6, pp. 601–611, 1976.

[15] R. B. Myerson, Game theory. Harvard University Press, 2013.
[16] D. Golovin and A. Krause, “Adaptive submodularity: A new approach

to active learning and stochastic optimization,” in Annual Conference
on Learning Theory, 2010, pp. 333–345.

[17] R. K. Iyer, S. Jegelka, and J. A. Bilmes, “Curvature and optimal algo-
rithms for learning and minimizing submodular functions,” in Advances
in Neural Inform. Processing Systems, 2013, pp. 2742–2750.

[18] A. A. Bian, J. M. Buhmann, A. Krause, and S. Tschiatschek, “Guar-
antees for greedy maximization of non-submodular functions with
applications,” in Int. Conf. on Machine Learning, 2017, pp. 498–507.

[19] G. L. Nemhauser and L. A. Wolsey, “Best algorithms for approximating
the maximum of a submodular set function,” Mathematics of operations
research, vol. 3, no. 3, pp. 177–188, 1978.

[20] M. Conforti and G. Cornuéjols, “Submodular set functions, matroids
and the greedy algorithm,” Discrete Applied Mathematics, vol. 7, no. 3,
pp. 251 – 274, 1984.

[21] J. B. Orlin, A. S. Schulz, and R. Udwani, “Robust monotone submodular
function maximization,” arXiv preprint:1507.06616, 2015.

7267

[22] V. Tzoumas, K. Gatsis, A. Jadbabaie, and G. J. Pappas, “Resilient
monotone submodular function maximization,” in IEEE Conference on
Decision and Control, 2017, pp. 1362–1367.

[23] I. Bogunovic, J. Zhao, and V. Cevher, “Robust maximization of non-
submodular objectives,” ArXiv e-prints:1802.07073, 2018.

[24] S. Mitrovic, I. Bogunovic, A. Norouzi-Fard, J. M. Tarnawski, and
V. Cevher, “Streaming robust submodular maximization,” in Advances
in Neural Information Processing Systems, 2017, pp. 4560–4569.

[25] E. Kazemi, M. Zadimoghaddam, and A. Karbasi, “Deletion-robust
submodular maximization at scale,” ArXiv e-prints:1711.07112, 2017.

[26] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations
for maximizing submodular set functions – I,” Mathematical Program-
ming, vol. 14, no. 1, pp. 265–294, 1978.

[27] M. Sviridenko, J. Vondrák, and J. Ward, “Optimal approximation for
submodular and supermodular optimization with bounded curvature,”
Math. of Operations Research, vol. 42, no. 4, pp. 1197–1218, 2017.

[28] ——, “Optimal approximation for submodular and supermodular opti-
mization with bounded curvature,” in Proceedings of the 26th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2015, pp. 1134–1148.

[29] D. Sharma, A. Kapoor, and A. Deshpande, “On greedy maximization of
entropy,” in Inter. Conf. on Machine Learning, 2015, pp. 1330–1338.

[30] E. R. Elenberg, R. Khanna, A. G. Dimakis, and S. Negahban,
“Restricted strong convexity implies weak submodularity,” ArXiv e-
prints:1612.00804, 2016.

[31] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements
in gaussian processes: Theory, efficient algorithms and empirical stud-
ies,” J.l of Machine Learning Research, vol. 9, pp. 235–284, 2008.

[32] C. Bishop, Pattern recognition and machine learning. Springer, 2006.
[33] D. P. Bertsekas, Dynamic programming and optimal control, Vol. I.

Athena Scientific, 2005.
[34] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a

monotone submodular function subject to a matroid constraint,” SIAM
Journal on Computing, vol. 40, no. 6, pp. 1740–1766, 2011.

[35] A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “Scalable
and distributed submodular maximization with matroid constraints,” in
International Symposium on Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks, 2015, pp. 435–442.

7268

