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Sample Complexity of Networked Control Systems
over Unknown Channels
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Abstract— Recent control trends are increasingly relying
on communication networks and wireless channels to close
the loop in Internet-of-Things applications. Traditionally these
approaches are modeled-based, i.e., given a network or channel
model they analyze stability and design appropriate controller
structures. However such modeling is a fundamental challenge
as channels are typically unknown a priori and only available
through data samples. In this work we aim to characterize
the amount of channel modeling that is required to determine
the stability of networked control tasks. Our most significant
finding is a direct relation between the sample complexity and
the system stability margin, i.e., the underlying packet success
rate of the channel and the spectral radius of the dynamics of
the control system.

I. INTRODUCTION

Wireless communication is increasingly used in au-
tonomous applications to connect devices in industrial con-
trol environments, teams of robotic vehicles, and the Internet-
of-Things. To guarantee safety and control performance it is
customary to include a model of the wireless channel, for
example an i.i.d. or Markov link quality, alongside the model
of the physical system to be controlled. In such modeled-
based approaches one can characterize, for example, that it
is impossible to estimate or stabilize an unstable plant if its
growth rate is larger than the rate at which the link drops
packets [1]-[3], or below a certain channel capacity [4],
[5]. Models also facilitate the allocation of communication
resources to optimize control performance in, e.g., power
allocation and scheduling over fading channels [6]-[8], or in
event-triggered control [9]-[11].

In practice wireless autonomous systems operate under
unpredictable channel conditions following unknown distri-
butions, which are more often observable via a finite amount
of collected channel sample measurements [12], [13]. The
purpose of this work is the analysis of networked control
systems when only channel sample data are available instead
of channel models. We use the data to learn whether a given
networked control system is stable, and we also characterize
how the learning procedure depends on the amount of
channel samples and the control system parameters. To the
best of our knowledge, our paper is the first to consider
data-based algorithms and sample complexity analysis for
networked control, in contrast to the vast literature on model-
based approaches mentioned above.
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Learning methods have been used in control problems
most commonly within the reinforcement learning and ap-
proximate dynamic programming literature [14], [15], where
the goal is to learn from data how to control when the
dynamics of the system are unknown. One approach within
this framework is based on learning the system dynam-
ics [16]. This is used for example in analyzing the sample
complexity of the classic multi-armed bandit problem [17],
[18] and more recently in the quadratic control of unknown
linear systems [19]-[22]. Very recently deep reinforcement
learning has been examined for allocation of communication
resources in control systems [23], [24]. In contrast, to the
best of our knowledge our work is the first one focused on
learning the channel model instead of system dynamics and
considers explicitly the sample complexity of networked con-
trol systems. We also point out that an alternative approach
is to bypass building channel models altogether and learn
solutions directly as in our previous work on power allocation
in [25], [26] and multiple-access in [8], [27]. Sampling
methods were also very recently used to analyze the stability
of a switched linear system under arbitrary switching [28],
which is a related but different problem than the stability
analysis considered here under fixed but unknown switching
induced by the channel.

We consider the stability of a linear dynamical system
over a Bernoulli packet-dropping channel with an unknown
success rate (Section II). Using channel sample data, i.e.,
a number of packet successes and failures, we develop an
algorithm to learn whether the networked control system is
stable or not (Section III). To do this we utilize confidence
bounds obtained by concentration inequalities, more specif-
ically, Hoeffding’s inequality. As our algorithm depends on
random channel samples there is always a probability of
error, i.e., the algorithm determines that the system is stable
while the true system is not. We characterize the statistical
properties of the algorithm (Theorem 1) as well as the
amount of channel sample data needed to correctly learn
the system stability and control performance with a desired
confidence level.

Our most significant finding is that the sample complexity
adversely depends on the system stability margin, i.e., the
underlying packet success rate of the channel and the spec-
tral radius of the system. A significantly larger number of
samples is needed if the networked control system over the
channel is closer to instability. This means that it becomes
impractical to verify stability under a large range of plant and
channel configurations. The derived sample complexity can
be practically useful in describing the amount of channel
samples required if we are willing to verify stability with
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Fig. 1. Wireless Control System. A sensor measures the state of a plant
perturbed by a random disturbance. The sensor transmits the measured
information over a packet-dropping wireless channel to a receiver/controller
providing control inputs.

high confidence up to a certain system stability margin. We
validate our theoretical analysis in numerical simulations
(Section 1IV).

II. MODELED-BASED NETWORKED CONTROL

We consider the evolution of a dynamical system over a
packet dropping channel. This is a standard model for remote
estimation or control over a network or a wireless channel,
for example when a sensor measures the state of the plant and
transmits it to a receiver — see Fig. 1 and [1]-[3] for related
examples. Our goal is to analyze the stability properties and
the control performance of the system, hence we assume the
dynamics for the system are fixed, for example a controller
has been already designed. We assume that the evolution of
the system depends on whether a transmission occurs at time
k or not, indicated with variables v, € {0,1}. We suppose
the system evolution is described by a switched linear time
invariant model of the form

Tr+1 = {

Here z; € R™ denotes the state of the overall control
system at each time k. At a successful transmission the
system dynamics are reset to zero, and otherwise when the
transmission fails the dynamics are in open loop described
by A € R™*™. The open loop matrix A may be unstable, i.e.,
the eigenvalue with the largest modulus may be larger than
unity, p(A) = max;=1,. |Ai(A4)] > 1. This case motivates
the stability analysis. The additive terms wg, k& > 0 model
an independent identically distributed (i.i.d.) noise process
across time with mean zero and positive definite covariance
wW.

We will employ the usual quadratic system state cost
at each time step k as xf@xk, where () is a positive
definite matrix. Intuitively there is a higher penalty when the
state of the system is away from the origin. The cost over
time depends on whether the transmissions are successful or
not over time. In this paper we make the assumption that
{Yk,k > 0} are independent Bernoulli random variables
with a constant success probability ¢, and they are also
independent from the system state zj and noise wy. This
ii.d. assumption is very crucial for our results as we discuss
in Remark 1.

Given the model of the transmission success we can
describe the effect on the control system performance with

Axy + wy,
Wi,

ifyk:O

if v, =1 M

the average quadratic cost
1 Nl
J(q) = limsup ; Elzf Q). )

N—o0

The expectation at the right hand side accounts for the
randomness introduced by the system disturbance and the
channel. We choose to denote this cost as a function of the
success rate of the channel g but it also depends on the
control system parameters A, W.

When the channel success rate ¢ is known, we have the
following result.

Lemma 1. Consider the switched linear system (1) over
an iid. Bernoulli binary channel with a known success
probability q € [0,1]. Then:

1) The system is stable (sup, Emkazg < o) if and only if

1
—3 3)
p(A)?
2) If condition (3) holds, the quadratic control cost (2) is
a non-increasing function of the success rate q given by

J(q) = Tr(PW) 4)

where P is the unique positive definite solution of the
(Lyapunov) matrix equation

P=Q+(1-qATPA. 6))

Proof. The stability condition (3) as well as the expression
for the control cost in (4)-(5) follow from the random jump
linear system theory [29].

The fact that the control cost (2) is a decreasing function
can be shown as follows. It is straightforward to show that
the solution to the Lyapunov equation (5) can be written as

q>1-—

P=Y" (1-¢)(4)7QA' ©6)
i=0

where the sum converges due to (3). Plugging in this expres-

sion in (4) yields the expression for the control cost as
J(q) =Y (1—q)' Tr((A)TQA'W) (7)

i=0

Taking the derivative with respect to ¢ verifies that the func-
tion is non-increasing because all terms Tr((A})TQA'W)
are non-negative. O

The above result is a fundamental limit in the sense that
it characterizes the absolute minimum channel success rate
required for stability as a function of the eigenvalues of the
dynamics A. The Lemma also gives an expression for the
control performance as a function of the system and channel
parameters.

However in practice the channel success rate g is unknown.
Instead we may have access to channel sample data. The
problem we would like to answer is twofold:

o how to check whether the system is stable or not using

the channel sample data?

e what is the confidence of the mehod and how does

it scale with the amount of channel samples and the
control system and channel parameters?
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III. SAMPLE-BASED STABILITY ANALYSIS OF
NETWORKED CONTROL

Suppose that instead of knowing the packet success rate
q of the channel we have available N samples denoted by
Yg, k =0, ..., N—1 drawn independently from the Bernoulli
distribution with success ¢. In practice this data is easy to
obtain, it suffices to send N packets and record whether
they are received or not. Given this data the most natural
approximation of the true success probability ¢ is the sample
average

1 N—-1
QN:N;OW (8)

Indeed this approximation is in some sense optimal - the
sample average is the maximum likelihood estimate given
the data.

In the case of unlimited data samples the sample average
converges almost surely to the true underlying packet success
rate by the Strong Law of Large Numbers [30, Ch.2]. Hence
with unlimited data, learning the stability of the control
system, i.e., checking whether (3) holds, would be easy. In
practice only finite amount of data will be available and this
motivates us to investigate a finite sample analysis.

For a finite number of samples we argue that instead
of point estimates of the channel success rate, confidence
intervals are more useful. One easy approach to construct
confidence intervals by the channel sample data is using
concentration inequalities. In particular in this paper we
employ Hoeffding’s inequality.

Lemma 2. [Hoeffding’s inequality, Th. 2.8 [31]] Consider a
sequence {vyi,k=0,...,N — 1} of i.i.d. random variables
taking values in [0,1] with mean q. Let Gy = % E,]:;Ol Vi

be the sample average. Then for any € > 0 we have that
P(gn > q+¢) < exp{—2Ne’} )

where the probability is with respect to the random sequence
{Vk, k=0,...,N—1}

The result essentially states that there is a low probability
that the sample average deviates much from the true packet
success rate and further provides an explicit bound on this
probability.

There is a useful direct consequence of this inequality.
Given a desired high confidence bound 1 — § where § is
a small positive value, for example of the order of 1073,
and after collecting N samples, we may derive a confidence
about the true underlying mean, that is, the channel success
rate in our problem, as follows.

Lemma 3. Consider a sequence {~i,k=0,...,N —1} of
i.i.d. random variables taking values in [0, 1] with mean q.
Let gy = % ZkN:_Ol Yx be the sample average. Then for any
d € (0,1) it holds that

P(QZQN—

where the probability is with respect to the random sequence
{v%,k=0,...,N —1}.

log(1/5)> >1-9 (10)

2N

Algorithm 1 Stability and performance analysis using chan-
nel samples

Input: Dynamics A, Noise covariance W, Confidence
level 0, Number of samples N, Channel samples

Y0,---5 YN—-1 S {07 1}N
1: Compute the sample average

Y

2: Compute the high confidence lower and upper bounds

. log(1/9)
min — - A 12
q qn 5N (12)
. log(1/6)
max — — 13
q gn + 5N (13)
3:i9f 1 — ’)(7}4)2 < Qmin then
Solve for the matrix P satisfying
P=Q+ (1 — guin) AT PA. (14)
5 Compute Jy = Tr(PW)
6: return ’Stable’ and Jy
7: else
8 if 1— ﬁ > Qmax then
9: return ’Unstable’
10: else
11: return 'Undetermined’
12: end if
13: end if
: IS log(1/4) -
In this lemma the quantity ¢y — \/ —%3— is a sample-

based high-confidence lower bound on the true packet suc-
cess rate of the channel.

Note that the result holds regardless of the distribution
as long as it has a bounded support on [0, 1]. In particular
in the case that we consider the result can be strengthened
as the distribution of the sum of i.i.d. Bernoulli random
variables ), ) is binomial so tighter confidence intervals
can be computed [32]. Here we opt for the bound above for
simplicity. In numerical simulations we will also examine its
conservativeness.

A. Stability Analysis Using Channel Samples

Let us now return to the main question of this paper.
Given some channel data we would like to verify whether
the system is stable, that is, whether the inequality (3)
holds. We propose to utilize Hoeffding’s inequality. We can
construct an interval where the channel success rate lies with
a desired high confidence using Lemma 3. Then we can
check whether stability holds for all such high-confidence
channel conditions. In particular it suffices to check whether
stability holds for the lower end of this interval. A symmetric
argument can verify instability of the system. This procedure
is summarized in Algorithm 1.

The algorithm may not be able to determine stability or
instability for every instance of the data. Intuitively this will
occur if the sample mean of the data is sufficiently different
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from the true mean. Our main result is to analyze the
average performance of Algorithm 1 using a finite number
of samples. By average performance, we mean how often
would the algorithm return the correct answer if we were to
run it multiple times over independent data samples.

Let Ay denote the event that algorithm provides the
correct answer. That is, if the system is stable, i.e., condition
q > 1 — == holds, then define Ay as the event that
Alg. 1 returns ’Stable’. Alternatively if the system is strictly
unstable, i.e., condition ¢ < 1 — p% holds, then define Ay
as the event that Alg. 1 returns *Unstable’. Similarly define as
By the event that the algorithm returns the incorrect answer,
’Unstable’ in the first case, or *Stable’ in the latter. Otherwise
it returns *Undetermined’.

Theorem 1. Consider the switched linear system (1) over
an i.i.d. Bernoulli binary channel with an unknown success
probability q € [0,1] and assume q # 1 — +)2' Consider
the stability analysis procedure developed in Algorithm 1
using N i.i.d. channel samples drawn with success rate q.
Let AN denote the event that the algorithm provides the
correct answer . Then for all N = 1,2,...

2
P(Ay) >1—expq —2N Uq -1+ p(114)2 _ /1og2(]1\[/5)]

15)

where | |4 denotes the projection to the positives, and the
probability is with respect to the random channel samples.
Moreover let By denote the event that the algorithm pro-
vides the incorrect answer. Then for all N = 1,2, ...

1og<1/6>] ’

p(A)? 2N

P(Byn) < exp{ —2N Uq -1+
(16)
and in particular P(By) < 0.

Proof. Suppose the system is stable, i.e., according to

Lemma 1 the packet success probability satisfies
1

p(A)?

The event Ay that Algorithm 1 returns the correct result in

this case corresponds to the event

g>1-— (17)

An = {{r0,- -1} € {0,137 s (18)
N log(1/0)
qN — T>l_p(14)2}' (19)
As a result we have that
log(1/6
P(Ay)=1-P [dzv - % <1- | @

Adding and subtracting ¢ at the right hand side we have that

P(AN):l_P[dNSQ_ (q—1+
(21)

1 [log(1/5)
p(A2 V2N )]

The term in the parenthesis can be in general both negative
or positive, hence we consider two cases.

Case I. ¢ — 1 + —~ —\/%>O.Thisisthecase

p(A)?
where the term in the parenthesis in (21) is positive and we
can directly apply Hoeffding’s inequality (Lemma 2) to get

the desired bound (15).

Case II: ¢ — 1 + p(i‘)z — \/% < 0. In this case the
bound in (15) becomes

P(Ay) > 1—exp{—2N0} =0 (22)

which trivially holds.

A symmetric argument verifies the bound (15) when the
system 1is strictly unstable, i.e., when the packet success
probability satisfies ¢ < 1 — %)2.

The bound (16) follows with a similar argument. The fact
that P(By) < ¢ holds by lower bounding the absolute value

of the stability margin in (16) by 0. O

Some remarks are in order. First, the probability of in-
correct answer is always bounded by the desired confidence
level § by design. This choice is made for safety, i.e., it is
very unlikely that the system is unstable and the algorithm
incorrectly returns that the system is stable. This probability

oes to zero as the number of samples /N grows large.

Second, the probability that the algorithm returns the
correct answer grows to one as the number of samples grows
to infinity. This is expected from the Law of Large Numbers
as already mentioned. But for finite number of samples there
will be a probability of not being able to determine stability,
i.e., the algorithm may return ’undetermined’. More impor-
tantly, the probability of correct answer depends on how far
the system is from stability, i.e., the term |¢ — 1 + p(T%)z
The largest the stability margin the easier it is to estimate
the correct result.

The theorem also assumes that ¢ # 1 — p(%, i.e., that
there is a non-zero stability margin in view of Lemma 1.
Technically the reason is that in that case while ¢ converges
to ¢ it may take values both above and below the limit ¢
and hence the algorithm may oscillate between the answers
’Stable’ and *Unstable’ as the number of samples increases.

Using again Hoeffding’s inequality we next characterize
the sample complexity of the algorithm, i.e., the rate at which
the probability of error diminishes as the number of data
grows given the system parameters. The following is a direct
consequence of the previous Theorem.

Corollary 1. Consider the setup of Theorem 1. If the number
of samples satisfies

21log(1/9)

> _20el/e) (23)
(¢ =1+ 5op)?

then the procedure correctly determines the stability or
instability of the system with probability (1 — 0).

The number of samples required depends on the true
channel success rate ¢ which is unknown so it is not directly
useful but provides intuition. We observe from this result
that the sample complexity scales well with the desired
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confidence level. An order of magnitude improvement in con-
fidence can be guaranteed with just doubling the amount of
data samples. On the other hand, the sample complexity does
not scale well with the system stability margin. Reducing the
stability margin |¢ — 1 + p(T%)Z‘ by a factor of 3 requires /3
more channel samples. In particular for a given channel, it
becomes easier to verify the stability of a very slow system or
a very fast system, otherwise the number of samples grows
unbounded at the critical point where the stability margin
vanishes.

These observations mean that it becomes impractical to
verify stability under all plant and channel configurations,
but the above sample complexity can be useful as follows.
It describes the amount of channel samples required if we
are willing to verify stability with high confidence up to a
certain system stability margin.

B. Control Performance Analysis Using Channel Samples

Beyond verifying stability we are interested in collecting
channel samples in order to estimate the control cost of the
system over the unknown channel, supposing the system is
stable. Formally, given some channel samples we are looking
for a high-confidence upper bound on the control cost, i.e.,
a value Jy such that P(J(¢q) < Jy) > 1—0.

The proposed procedure is again based on high confidence
bounds on the true channel success rate. Intuitively with the
collected samples we can construct a high-confidence lower
bound the channel success ¢. Since the function J(g) is non-
increasing according to Lemma 1, we can construct a high-
confidence upper bound on the control cost by computing
the control cost exactly at the lower bound on g. This is
described again in Alg. 1.

Theorem 2. Consider the switched linear system (1) over
an i.i.d. Bernoulli binary channel with an unknown success
probability q € [0,1] and assume q > 1 — ﬁ. Consider
the control cost analysis procedure developed in Algorithm
1 using N i.i.d. channel samples drawn with success rate q
and some parameter 0 € (0,1). If the number of samples is

> 210g(1/<15) : (24)

(¢ — 1+ S2)
then the procedure returns an upper bound on the control
cost with probability (1 —9), ie.,

P(J(q) < Jn) > 1-4. (25)
Proof. Following the same arguments as in the proof of
Corollary 1, if the number of samples satisfies (24), then
the event 1 — ﬁ < @min Occurs with probability at least
1 — 6, which means that Algorithm 1 returns a cost value,
i.e., it does not return *Undetermined’.

Consider the if close of Algorithm 1 and note that by
construction and using Lemma 1(2) the algorithm returns
the value Jy = J(¢min) Where gmin is as computed by the
algorithm. Note also by Lemma 1 that the control cost J(q) is
non-increasing in the packet success rate q. Hence if qpin <

¢ then Jy = J(gmin) > J(q). As a result we have that

P(J(q) < IN) = P(qmin < q) (26)

_ fles )
2N
where the last equality hold by substituting g, as computed

by the algorithm.
We can now employ directly Lemma 3 to verify (25). [

=1—P(gmin > q) =1—P(gn ) (27)

Interestingly the proposed cost performance analysis has
the same sample complexity as the stability analysis accord-
ing to Corollary 1.

Remark 1. The assumption that the collected channel sam-
ples are i.i.d. following a Bernoulli distribution is crucial in
the above results. In practice, only the channel sample data is
available and no a priori knowledge about their distribution
class, e.g., whether they are i.i.d., as in this paper, or whether
they are correlated or even non-stationary. This is a serious
practical concern, i.e., our procedure does not necessarily
obey the bounds given in Theorem 1 above. Ideally, one
should provide a more robust sample-based stability analysis.
This is the topic of future work.

IV. NUMERICAL SIMULATIONS

We consider a system of the form (1) with spectral radius
p(A) = 2 that evolves over a Bernoulli channel with success
rate ¢ = 0.9. For this values the system is stable because
(3) holds. For 1000 trials we draw N = 2000 i.i.d. channel
samples according to the success rate q. For each trial we
run the stability test described in Algorithm 1.

In Fig.2, for different trials we plot the value of the high-
confidence lower bound g¢ni, on the true packet success
rate ¢ computed by Algorithm 1 as the number of samples
N grows. These lower bounds converge to the true packet
success, also plotted in the figure. We also plot the minimum
packet success rate required for stability which is 1—1/p(A)?
as described in Lemma 1. Algorithm 1 checks stability by
checking whether the lower bounds exceed the minimum
packet success rate. As the number of channel samples
grows, on average more of the lower bounds exceed the
threshold and the algorithm correctly verifies the stability
of the system.

We record the responses of the algorithm as ’Unstable’,
’Stable’, *Undetermined’. Across all trials we average how
many times the algorithm returns the correct answer ’Stable’.
This is an empirical evaluation of the correctness of the
algorithm, similar to the theoretical bound described by The-
orem 1 (cf. (15)). In Fig. 3 we plot both the empirical average
correctness of the algorithm as well as its theoretical bound
as a function of the number of channel samples drawn. First,
we observe that the theoretical bound indeed is a lower bound
on the average correctness of the algorithm. We note also
that the bound is not tight. That means that fewer channel
samples are actually required to learn whether the system is
stable or not than what is predicted by our theoretical bound.
The reason is that Hoeffding’s inequality is conservative,
as already mentioned after Lemma 2. Empirically however
the rate at which the algorithm correctly learns the system
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Fig. 2. We consider a system and channel that lead to stability. For different
trials we plot the value of the high-confidence lower bound on the true
packet success rate ¢ computed by Algorithm 1 as the number of samples
N grow. These lower bounds grow on average above the minimum packet
success rate required for stability as described in Lemma 1, also plotted. As
the number of channel samples grows, on average the algorithm correctly
verifies the stability of the system.
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Fig. 3. We consider a system and channel that lead to stability. As the
number of channel samples grows, the probability that Algorithm 1 correctly
verifies the stability of the system grows. The theoretical bound by Theorem
1 is below the empirical bound obtained by simulation.

10°

stability as the number of samples grows seems to match
the rate at which the theoretical bound grows. We note that
the spikes appearing in the figure are not noise due to the
random samples, they appear because the number of packet
successes is a discrete variable instead of continuous.
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