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Abstract— As the size of the Internet of Things (IoT) grows,
so does its vulnerability to malicious attacks. When such an
attack occurs, one of the only means of defense available to
a system controller before a patch is developed is resetting
devices to a known malware-free state. In this paper, we study
the design of reset strategies which optimize the network’s
performance when under a malware attack. In particular, we
show that under mild assumptions, the problem of optimizing
the network’s performance can be posed as an optimal control
problem for a Markov chain with a number of states and
actions which grows polynomially with respect to the size of
the network. We investigate our results with simulation.

I. INTRODUCTION

As we consider building an Internet-of-Things (IoT), we
must be conscious of the difficulty of ensuring its secure ope-
ration. Already, we have seen several large scale cyberattacks
have significant effects on the operation of the internet for
prolonged periods of time [1]–[3]. This problem will become
worse as more devices are added to the IoT.

Due to the complexity associated with designing secure
devices, and the economics of producing components at
a price point where they can be widely adopted, we can
reasonably expect any device used as a node in the IoT to
be manufactured with inherent security flaws [4]. Certainly,
once a security flaw is noticed by a manufacturer’s main-
tenance team, it is plausible that a software patch will be
developed and disseminated among affected devices. There
are many works which study methods for optimizing patch
dissemination in this setting (see, e.g., [5]–[9]). However, it
is often the case that much damage is done by a malware
before the security exploit used in the attack can be identified
by the manufacturer’s response team - this is why zero day
exploits carry significant financial value [10], [11].

As such, it is important to develop response methods
for protecting against malware attacks using IoT devices
which operate without the capability of patching nodes to
inoculate them against future reinfection. To accomplish this,
we must consider leveraging features of malware which
are commonplace, and can be used as control levers to
mitigate the effect of a malware outbreak. One such feature
is the widespread vulnerability of malware to device resets
(consider, e.g., the malware Mirai and its variants [1]–[3]).

While promising in concept, it is not obvious that device
resets can be used effectively as a means for responding to
a malware attack. For one reason, device resets take non-
negligible time, and remove resources from the network
while they are taking place. Additionally, a reset will not
protect a device from reinfection with whatever malware
had afflicted it in the first place, as the security exploit
used has not been identified or patched. As such, it is not
obvious when a decision to reset a device should be made,
or whether such an approach can be effective. Indeed, it is
not immediately obvious if optimal reset strategies can be
efficiently computed, as models for malware are complicated,
and the number of ways devices can be assigned to reset

grows combinatorially with the size of the network. We study
techniques for computing optimal reset policies in this paper.

Statement of Contributions: Whereas prior works stu-
dying device reset as a means of malware control [12], [13]
have designed heuristic strategies, we believe this paper is
the first to study the design of optimal reset strategies for
defending networks against malware attacks. As core techni-
cal contributions, we show that under mild assumptions,
searching for an optimal reset strategy can be posed as a
Markov decision process on state and action spaces which
grow polynomially with respect to the number of devices in
the network to be controlled, and that this low-complexity
problem representation can be computed efficiently from
the problem’s specification. This result is novel, and its
derivation requires an analysis which we believe will be
of interest broadly to epidemic control researchers, as the
arguments required are not context dependent.

We investigate the utility of our results with simulations.
Moreover, the performance of optimal policies is found to be
substantially better than that of heuristic policies, suggesting
that developing efficient methods for optimizing malware
response policies is a fertile area for future research.

Organization of Remainder: The remainder of the
paper is organized as follows. Section II contains a detailed
epidemic model for computer malware, as well as a formal
technical statement of the problem we address in the paper.
Section III provides a novel model reduction technique useful
for computing optimal reset policies aimed at mitigating
the effects of a malware attack. Section IV provides an
example application, in which the developed model reduction
technique is shown to enable the efficient computation of a
reset policy which optimizes a network’s performance when
responding to a malware attack. •

Notation and Terminology: We denote by [k] the set
of the first k positive integers, i.e. [k] , {1, 2 . . . , k}. We
denote by [k]0 the set of the first k+ 1 natural numbers, i.e.
[k]0 = {0, 1, 2, . . . , k}. We denote by I{·} a 0/1 indicator
function, which takes the value 1 if the argument is true, and
0 otherwise. We denote by E the expectation operator, and by
Eξ the expectation with respect to a probability measure ξ.
Note that when clear from context, we omit explicit reference
to the probability measure used. •

II. MODEL AND PROBLEM STATEMENT

In this section, we provide details of the malware model
we study, and formally state the problem examined in the
paper. Section II-A provides a technical description of the
network model. Section II-B provides a technical description
of the malware model. Section II-C provides a technical
description of the network’s utility model. Section II-D
provides a formal problem statement.

A. Network Model
We consider the case of malware propagating on a network

of nd interconnected devices, which can be decomposed into
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ng groups of statistically identical devices, each of which
may take an arbitrary size, where we notate the particular
group g’s size as ndg, and the set of all groups as G. This
assumption seems reasonable for many practical scenarios.
Malware programs often propagate on groups of networks
of old, out-of-date network devices (e.g. routers, security
cameras) such that all devices within each group have similar
networking capabilities and security vulnerabilities.

In order to coordinate their actions, we assume all devices
communicate with a central controller. At each time step,
every device runs a malware detection routine to asses
whether or not it is currently infected, and reports the result
of its test to the central controller. The central controller
then determines which devices, if any, should initiate a reset,
with the decision being made to optimize the network’s
performance (details regarding evaluation of the network’s
performance are given in Section II-C and Section II-D).

B. Epidemic Model for Mirai-like Malware

As is standard in the study of epidemic processes [14]–
[16], we model the current status of a node by membership
in one of a set of compartments, each of which are labeled
with a particular symbol ` ∈ L. We denote the indicator that
a particular node i is in a particular compartment ` with the
0/1 random variable X`

i , which jointly satisfy
∑
`∈LX

`
i =

1 for all nodes i, as each node belongs to exactly one
compartment at every time. As Mirai and its descendants
can reinfect devices after they have been reset [1]–[3], we
model it by a discrete-time Susceptible-Infected-Removed-
Susceptible (SIRS) epidemic. We label nodes which are
not currently infected with malware with S (for Susceptible),
nodes which are currently infected with malware with I (for
Infected), and nodes which are currently undergoing a device
reset with R (for Removed).

Nodes transition between membership in different com-
partments due to the occurrence of random events and
applied control actions. We denote by random variables Yij
the occurrence of a contact between node i and node j which
will spread malware to node i if node j is infected. We
denote by random variables Z`→`

′

i internal random events
which cause node i to transition from compartment ` to
compartment `′. For example, the random variable ZR→Si
details whether or not a device currently undergoing a reset
comes back online at the next time increment. We model the
action of forcing a node i to initiate a reset with the control
variable ai ∈ {0, 1}, where ai = 1 indicates that node i
is forced to initiate a reset, and ai = 0 the opposite. Note
that since devices which are currently undergoing a reset
cannot communicate with the central controller, the particular
choice of ai has no effect on nodes which are currently in
compartment R.

Assembling this notation in to a mathematical model, we
have that node i’s indicator for compartment S evolves as

XS+
i = (1−ai)(Wi(X)XS

i +XI
i Z

I→S
i )+XR

i Z
R→S
i , (1)

where by Wi(X) we denote a 0/1 random variable indicating
whether a neighbor of node i has attempted to infect it with
malware. More precisely, we have

Wi(X) , (1− Yi0)
∏
j∈[nd]

(1− YijXI
j ), (2)

where we treat the random variables Yi0 as infection attempts
generated by the attacker (assigned the label of node 0).
Note that Wi(X) takes the value 1 if no successful infection
attempt as been made, and 0 otherwise. In a similar fashion,
we may write the dynamics of the indicator of infection as

XI+
i = (1− ai)((1−Wi(X))XS

i + (1− ZI→Si )XI
i ), (3)

and the indicators for reset states as

XR+
i = ai(X

S
i +XI

i ) +XR
i (1− ZR→Si ). (4)

In Section II-A, we made the assumption that the net-
work is comprised of a collection of groups of statistically
identical devices. As such, this places some restrictions on
the distributions of the random variables which comprise
the process. In particular, we have that for any two groups
g and g′ in G, if nodes i and k are both elements of
group g and nodes j and h are elements of group g′, then
Pr(Yij = 1) = Pr(Ykh = 1), i.e. the distributions of Yij
and Ykh are identical. Likewise, we have that for all nodes i
in a particular group g, the random variables which indicate
internal transitions (i.e. Z`→`

′

i ) are identically distributed.
Finally, we note that all random variables which indi-

cate the occurrence of events which cause compartmental
transitions (i.e. Yij or Z`→`

′

i ) are assumed to be mutually
independent at all times. This is not a strong assumption,
as the elements of the network state process {X(t)} remain
strongly correlated, both across devices in the network and
across time. Note also that this assumption makes practical
sense as well, as it suggests that each device’s inherent pro-
perties (e.g. reset time) and the malware’s inherent properties
(e.g. attack strategy) remain fixed in time.

In all, we can see that the process {X(t)} is a controlled
Markov chain which evolves on a state space X with 3nd

elements, on which 2nd possible actions a ∈ A can be
applied. Note that each state X ∈ X corresponds to one
particular combination of compartmental memberships, and
each action a ∈ A corresponds to one particular assignment
of reset initiations. The principle difficulty in controlling
{X(t)} efficiently is due to the large size of its state space,
and the large set of possible actions which can be applied.
While in general it may not be possible to compute an
efficient control policy, in Section II-C we define a large class
of utility functions for which we demonstrate that optimal
control policies can be computed in polynomial time (using
methods developed in Section III).

C. Utility Model
We assume that the network’s manager provides the

controller with some function U which maps the current
state X of the network to a finite, non-negative number
corresponding to the amount of utility derived from the
network when it is in state X. For example, if we consider
our network as being a swarm of several types of robots
tasked with surveying and defending an area, we should only
care that the total performance of the team is maximized.
As such, we may chose U(X) =

∑
i∈[nd],`∈L αg(i)`X

`
i ,

where αg` is some nonnegative constant denoting how much
utility can be derived from a device of type g currently in
compartment `, and we use the notation g(i) to denote a
function which maps the index i to its group membership
(in this example, the type of robot of device i). Similarly, if
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we are concerned with responding to a Distributed Denial-
of-Service (DDoS) attack, we should chose U to ensure that
the amount of traffic experienced by the targeted server is
below its maximum operating capacity, while also attempting
to keep as many network devices operational as possible. We
can accomplish this by choosing

U(X) = I{∑i∈[nd],`∈L
βg(i)`X

`
i≤θ}

∑
i∈[nd],`∈L

αg(i)`X
`
i ,

where I{·} is a 0/1 indicator function, βg` is the amount of
traffic generated by a device in group g in compartment `,
and θ is the targeted server’s traffic capacity.

Notice that these two choices of utility functions exhibit
a particular kind of symmetry, which we refer to as count
symmetry. More precisely, let C be the vector function

Cg`(X) ,
∑
i∈g

X`
i , (5)

i.e. Cg`(X) denotes the count of the devices in group g
currently in compartment ` of the malware model. If it
holds that U(Y ) = U(Z) for all Y and Z in X such that
Cg`(Y ) = Cg`(Z) holds for all device groups g and every
compartmental label `, we say that U is count symmetric. As
can be seen from the examples above, count symmetry can
be found in practice where groups of statistically identical
devices are involved. This makes such functions an appro-
priate object of study; we assume U is count symmetric in
the sequel.

D. Problem Statement
In this paper, we concern ourselves with optimizing the

λ-discounted expected return of the control policy π,

Jπ,λ(X) , Eπ
∞∑
τ=0

U(X)λτ , (6)

where λ ∈ (0, 1), and π is a non-anticipating control policy
which maps observations of the process state {X(t)} to
device reset actions a ∈ A. We consider the problem of
computing an optimal reset policy π, i.e. the solution to the
optimal control problem

max
π∈Π

Jπ,λ(X), (7)

for all states X ∈ X , where Π is the set of all non-
anticipating control policies which map observations of X
to device reset actions a ∈ A, and we assume the utility
function U used to define J is count symmetric (as detailed
in Section II-C).

Because {X(t)} is a Markov chain we control by applying
one of a finite set of actions A, and we observe the states
and utility, the optimal control porblem (7) is a Markov
decision process (see, e.g., [17, Chapter 3] for background).
As such, there are standard tools for computing a solution,
both in the case where the transition probabilities are known
(e.g. value iteration; see, e.g., [18, Chapter 1]), and when
they are not (e.g. Q-learning; see, e.g., [18, Chapter 6]).
However, the complexity of these methods are a function
of the size of the process’ state and action space. Since
{X(t)} evolves on a state space with 3nd elements and
we may apply 2nd different actions at each state, it should
be anticipated that (7) is in general difficult to solve. As

such, the body of the paper is devoted to studying whether
or not the structural assumptions placed on {X(t)} and U
in Sections II-A through II-C suffice to make (7) efficiently
solvable. We develop a model reduction technique in Section
III that enables (7) to be solved in polynomial time. Using the
developed model reduction technique, we study the behavior
of optimal reset policies in Section IV by simulation.

III. A MODEL REDUCTION TECHNIQUE

In this section, we demonstrate that (7) can be solved in
polynomial time. Principally, we proceed by developing a
model reduction technique. We demonstrate how to compute
a lumped representation of (7), such that a solution from
the lumped problem can be used to compute a solution
to (7) itself. To gain an intuition for why this might be
possible, note that the count symmetry of U implies the
existence of a function V which maps the vector C(X) to
U(X). Moreover, because the devices within each group are
statistically identical, we might believe that {C(X(t))} is
itself a controlled Markov process, where actions can be
modeled as specifying the number of devices to be reset
in each group and compartment, instead of identifying each
device to be reset explicitly by its label. It happens to be the
case that this intuition is correct.

To be more precise, let rνg`(X) denote the number of
devices of group g in compartment ` that are forced to
initiate a reset when the network is in state X under the
reset policy ν. Define eνg`(X) as the number of devices in
group g and compartment ` which are eligible to undergo a
compartmental membership transition due to some stochastic
event (as opposed to being forced to undergo a reset), i.e.

eνg`(X) , Cg`(X)− rνg`(X). (8)

The count of susceptible devices in group g then evolves as

CgS(X+) =

eνgS(X)∑
k=1

W̃gk(C(X)) +

eνgI(X)∑
k=1

Z̃I→Sgk +

CgR(X)∑
k=1

Z̃R→Sgk ,
(9)

where the random variables {W̃gk(C(X))} form a collection
of independent, identically distributed random variables
which have the same distribution of Wi(X), for i ∈ g,
and the random variables {Z̃`→`′gk } form a collection of
independent, identically distributed random variables with
the same distribution of Z`→`

′

i for i ∈ g. Note that it is
possible to construct {W̃gk(C(X))}, since Wi(X) can be
written as a function of C(X) by setting

Wi(C(X)) = (1− Yi0)
∏
g∈G

CgI(X)∏
k=1

(1− Ỹig,k), (10)

where when CgI(X) = 0, we take
∏CgI(X)
k=1 (1− Ỹig,k) = 1,

and we define the random variables {Ỹig,k} as a collection
of identical, independent random variables taking the same
distribution of Yij for j ∈ g. Likewise, the dynamics of
CgI(X) can be written as

CgI(X+) =

eνgS(X)∑
k=1

1−W̃gk(C(X))+

eνgI(X)∑
k=1

1−Z̃I→Sgk , (11)
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and the dynamics for CgR(X) can be written as

CgR(X+) = rνgS(X) + rνgI(X) +

CgR(X)∑
k=1

1− Z̃R→Sgk . (12)

By inspection of (9)-(12), it can be seen that {C(X)} is a
function only of number of devices forced to initiate a reset
at any particular state C(X), and not the particular identity
of the devices involved. This suggests that we can compute
an optimal control policy which acts on observations of
states X ∈ X and gives actions a ∈ A by computing
an optimal control policy µ which acts on observations of
compartmental membership counts C(X), and gives actions
which specify only the number of devices to be reset in each
group and compartment, as opposed to the particular devices.

This is useful, because the set of all possible compart-
mental membership counts has substantially fewer than 3nd

elements, and the number of different device counts to be
reset can be selected is substantially smaller than 2nd . To be
more precise, define V as a function which maps C(X) to
U(X). Consider the lumped optimal control problem

max
µ∈M

Vµ,λ(C(X)), (13)

with Vµ,λ(X) , Eµ
∑∞
τ=0 V(C(X))λτ , and whereM is the

set of all non-anticipating control policies which map C(X)
to a particular count of devices to be reset in each group,
compartment pair. Optimal solutions of (13) can be used to
compute an optimal solution of (7), as the following certifies.

Theorem 1 (Equivalence of Solutions) Let µ? be an optimal
solution to (13). Then, the policy πµ? , which upon observing
C(X) assigns exactly min{rµgS(C(X)), CgS(X)} susceptible
devices of group g to be reset uniformly at random and exactly
min{rµgI(C(X)), CgI(X)} infected devices of group g to be
reset uniformly at random for each group g ∈ G, is an optimal
solution of (7).

Since (13) is a Markov decision process, it can be solved
in polynomial time with respect to the number of states of the
system, and actions in the action set (see, e.g., [19, Theorem
1]), provided the transition probabilities are known. This is
important, because the complexity of representing (13) is
substantially less than the complexity of representing (7). To
demonstrate this precisely, consider the following result:

Lemma 1 (A Combinatorial Identity) Let Φp(m) be the set
of all combinations of exactly p natural numbers which sum to
m, and let φp(m) denote the cardinality of Φp(m). We have

φp(m) =
(m+ p− 1)!

m!(p− 1)!
. (14)

Moreover, for each fixed p, φp(m) grows as O( m
p−1

(p−1)! ).

Since for each group g, the count of nodes taking mem-
bership in each of the three model compartments must
equal ndg, we have that C(X) evolves on the state space
×g∈GΦ3(ndg). From Lemma 1, this set contains exactly
×g∈G (ndg+2)!

ndg !2! elements, and as such grows as O(nd
2ng ).

This grows polynomially for a fixed number of device
groups, as opposed to X , which grows as 3nd .

Likewise, we may use Φ3(ndg) to encode all possible ways
of assigning devices to be reset in a particular group g. In

particular, for any C(X) we must have that rµgS(C(X)) +
rµgI(C(X)) ≤ ndg, as there are only ndg devices in group
g total. As such, for any particular d ∈ Φ3(ndg), we can
assign d1 = rµgS(C(X)), d2 = rµgI(C(X)), and d3 = ndg −
rµgS(C(X))− rµgI(C(X)). Hence, the set of possible actions
of (13) grows as O(nd

2ng ), which is substantially less than
2nd elements needed to represent A.

Considering this, it seems that (7) may itself be solvable
in polynomial time. Indeed, all that is left to show to
demonstrate this is an efficient method of constructing the
transition probabilities Pr(C(Y )|C(X), d) for for all d ∈
D , ×g∈GΦ3(ndg). This is not trivial. Indeed, a naı̈ve ap-
proach to this computation would involve summing over the
exponentially large set of possible events which could cause
the transition C(X) → C(Y ) when the action d is applied.
Our next result demonstrates that, provided the distributions
(i.e. success probabilities) of the contact random variables
{Yij} and internal transition random variables {Z`→`′i } are
known for each group, then each entry to the table of values
for Pr(C(Y )|C(X), d) can be computed in polynomial time.

Proposition 1 (Computing Transition Probabilities) Con-
sider the model detailed in Section II-B. If the distributions
for the random variables {Ygg′} and {Z`→`′g } (denoted PYgg′
and PZ`→`′g

, respectively) are known for each g, g′ ∈ G and
`, `′ ∈ L, then each transition probability Pr(C(Y )|C(X), d)
can be computed in O(ngnd

6) time. Consequently, all such
probabilities can be computed in O(ngnd

6ng+6) time.

Proof: Since the transitions of nodes within each
group are conditionally independent given the counts of
compartmental memberships of nodes in all groups of the
graph, we can decompose the probability into the product

Pr(C(Y )|C(X), d) =
∏
g∈G

Pr(Cg(X)→ Cg(Y )|C(X), d).

Hence, if we can compute the values Pr(Cg(X) →
Cg(Y )|C(X), d) in polynomial time, we can compute
Pr(C(Y )|C(X), d) in polynomial time as well. To de-
monstrate how this is possible, we decompose the event
{Cg(X)→ Cg(Y )}.

If the action d is applied, then min{dgS , CgS(X)} suscep-
tible nodes and min{dgI , CgI(X)} infected nodes of group
g are forced to initiate a reset. Hence, there are cXS ,
CgS(X) − min{dgS , CgS(X)} susceptible nodes, cXI ,
CgI(X) − min{dgI , CgI(X)} infected nodes, and cXR ,
CgR(X) removed nodes from group g which will make a
stochastic transition. To result with a node count Cg(Y ) after
the transition occurs, we must have that the number of no-
des which transition to susceptibility stochastically to equal
cY S , CgS(Y ), the number of nodes which transition to in-
fected stochastically to equal cY I , CgI(Y ), and the number
of nodes which transition to recovered stochastically to equal
cY R , CgR(Y )−min{dgS , CgS(X)} −min{dgI , CgI(X)}.

Let Ψg|d(X,Y ) be the subset of ZL×L≥0 such that∑
`′∈L ψ``′ = cX` holds for all ` ∈ L and

∑
`∈L ψ``′ = cY `′

holds for all `′ ∈ L. So defined, each ψ in Ψg|d(X,Y )
defines one way for the random transitions to occur, such
that the transition Cg(X)→ Cg(Y ) occurs. As such, we have

{Cg(X)→ Cg(Y )} = ∪ψ∈Ψg|d(X,Y ){∩`,`′∈Lψ``′}, (15)
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where we use the shorthand notation ψ``′ for the event that
exactly ψ``′ devices currently in compartment ` transition to
compartment `′ due to random events. Since the elements of
Ψg|d(X,Y ) are disjoint, we have by additivity that

Pr(Cg(X)→ Cg(Y )|C(X), d)

=
∑

ψ∈Ψg|d(X,Y )

Pr(∩`,`′∈Lψ``′ |C(X)), (16)

where we have dropped the dependence on d in the right-
hand side expression to emphasize that all nodes considered
in this calculation were not chosen to be reset. From condi-
tional independence, we have

Pr(∩`,`′∈Lψ``′ |C(X)) =
∏
`∈L

Pr(∩`′ψ``′ |C(X)). (17)

Since all nodes in a particular group which are also in
the same compartment are statistically identical, we may
compute the probability

Pr(∩`′∈Lψ``′ |C(X))

=

(
Cg`(X)

{ψ``′}`′∈L

) ∏
ψ``′>0

Pr(X`
g → X`′

g |C(X))ψ``′ (18)

where
(Cg`(X)
{ψ``′}

)
is the multinomial coefficient, and we define

Pr(X`
g → X`′

g |C(X)) as the probability of a device in group
g and compartment ` transitioning to compartment `′, given
the current compartmental membership count C(X), i.e.

Pr(X`
g → X`′

g |C(X)) ,

(1− PYg0)
∏
g′∈G(1− PYgg′ )

Cg′I(X) ` = S, `′ = S

1− (1− PYg0)
∏
g′∈G(1− PYgg′ )

Cg′I(X) ` = S, `′ = I

1− PZI→Sg
` = I, `′ = I

PZI→Sg
` = I, `′ = S

1− PZR→Sg
` = R, `′ = R

PZR→Sg
` = R, `′ = S.

(19)
Note that the validity of (19) can be verified by studying
(1)-(4), and noting the independence of the random variables
{Yij} and {Z`→`′i }. Note also that the use of the multino-
mial coefficient in (18) accounts for the number of ways
the Cg`(X) devices can be assigned to make the required
transitions {ψ``′} occur.

Assembling this calculation, we have

Pr(Cg(X)→ Cg(Y )|C(X), d) =∑
ψ∈Ψg|d(X,Y )

∏
`∈L

(
Cg`(X)

{ψ``′}`′∈L

) ∏
ψ``′>0

Pr(X`
g → X`′

g |C(X))ψ``′ .

(20)
Since there are three elements in L, Ψg|d(X,Y ) is a subset
of (Φ3(ndg))

3. Hence, Lemma 1 implies that evaluating
(20) takes at most O(ndg

6) time. Computing the transition
probabilities for each group individually and then computing
their product to obtain the joint probability takes at most
O(ngnd

6) operations, and as there are O(nd
6ng ) entries in

the table of transition probabilities, we can compute the
entire table in O(ngnd

6ng+6) time, as claimed.
Note that this complexity analysis is quite conservative,

as the set Ψg|d(X,Y ) will have less than O(ndg
6) elements,

and there are many transitions which occur with probability
zero, and so need not be explicitly computed (e.g., consider
any transition in which dgS + dgI < CgR(Y ) − CgR(X)).
However, this argument alone is enough to verify that (7)
can be represented as a Markov decision process with state
and action spaces which grows polynomially with respect to
nd, and this representation can be computed in polynomial
time. Since Markov decision processes can be solved in
polynomial time (see, e.g., [19, Theorem 1]), we then have
that (7) is a polynomial-time problem. This is an important
result in principle, as it demonstrates that under broad
assumptions, optimal reset policies can be computed without
explicitly using the state space representation X , or action
set representation A, and so may be computed efficiently.

IV. AN EXAMPLE APPLICATION

We study an example in this section. We consider a case
where the network consists of nd = 20 devices, all of one
type. Time advances at six increments per minute, i.e. every
time step is ten seconds in duration. Infected devices spread
malware to unaffected devices with probability 0.5 at each
time step, i.e. PYij = 0.5 for all (i, j) ∈ [nd]

2. The attacker
infects an uninfected node with probability 0.05 at each
time, i.e. PYi0 = 0.05. This corresponds to the attacker re-
installing malware on vulnerable devices once approximately
every three minutes. We set PZR→Si

= 0.167, which corre-
sponds to a reset taking approximately one minute. As a
utility function, we take

U(X) = I{∑i∈[nd]
XIi ≤10}

∑
i∈[nd]

XS
i + 0.95XI

i .

This function captures a scenario in which infected devices
can still perform their required task when a malware attack is
happening, but at a slightly reduced capacity. However, if too
many devices become infected (here, more than 10), some
critical system component becomes inoperable. This is pre-
cisely what happens when DDoS attacks are launched using
security cameras: the quality of the camera’s surveillance
capability declines negligibly, but after sufficiently many
become infected, they can launch a sufficiently strong attack
to shut down a web server [20]. To finish specifying the
problem, we set the discount factor λ = 0.99.

Note that the space X contains 320 u 3.5× 109 elements,
while the space A contains 220 u 1×106 elements. As such,
directly solving (7) would be prohibitively expensive. In the
lumped representation developed in Section III, C(X) takes
only 231 distinct values, and the action set D contains only
231 distinct actions. In principle, our model reduction techni-
que enables the specified problem to be solved efficiently.

We use the computation outlined by (20) to compute
the transition probabilities for the lumped problem, and use
value iteration to solve (13) (see [18, Chapter 1] for relevant
background, and [21] for a freely available software package
which can perform the relevant computations). Figure 1
provides a depiction of the optimal control policy computed.
Studying this figure reveals that the structure of the computed
optimal policy is complicated. There are regions of the state
space in which susceptible devices are reset preemptively,
and regions in which several infected devices are not reset.

It is not clear that such a policy can be anticipated
intuitively. However, it is worth investigating the perfor-
mance of a heuristic policy, to determine if we have gained
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(a) A depiction of the structure of an optimal policy of the example
studied in Section IV. The axes marked CS(X) and CI(X) denote
the count of susceptible and infected nodes in a particular state. The
vertical axis denotes the number of susceptible nodes forced to initiate
a reset under the optimal policy.
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(b) A depiction of the structure of an optimial policy of the example
studied in Section IV. The axes marked CS(X) and CI(X) denote
the count of susceptible and infected nodes in a particular state. The
vertical axis denotes the number of infected nodes less the number
of infected nodes forced to initiate a reset under the optimal policy.

Fig. 1: Optimal reset policy of the problem studied in Section IV.

(a) Simulation of Optimal Reset Policy

(b) Simulation of Heuristic Reset Policy

Fig. 2: A comparison of the performance of the process under the
optimal control policy µ? (Figure 2a) and a policy which imme-
diately resets all infected nodes and never resets any susceptible
devices (Figure 2b). The dark lines are the sample expectation, the
dark shaded and light shaded regions contain the middle 80% and
98% of the sample trajectories, respectively.

substantial performance by computing an optimal policy.
Figure 2 studies this, where the performance of the heuristic
policy in which all infected devices are forced to reset, and no
susceptible devices are forced to reset. Ten thousand sample
trajectories were generated. It can be readily seen that the
optimal policy significantly outperforms the heuristic policy.

V. CONCLUSIONS AND FUTURE WORK

We have studied the design of optimal reset strategies
for protecting networked systems against malware attacks.
We have demonstrated that optimal reset strategies may be
efficiently computed, provided the network to be managed is
comprised of a small number of groups of identical devices.

Directly, the methods discussed here can be applied to
managing networks to be both secure and efficient. Indirectly,

our technical approach applies more broadly. We hope the
discussion provided here inspires epidemic control resear-
chers to incorporate similar thoughts into their own work.
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