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Abstract— In this paper, we introduce the problem of motion
planning with secrecy guarantees. A robot is tracking a desired
trajectory, which is transmitted on-line by a planner, e.g. a base
station or a mobile station. The communication between the
robot and the planner is organized in packets and takes place
over a wireless channel, which is susceptible to eavesdropping
attacks. Our goal is to design secure communication codes
in order to encode the trajectory information and hide it
from any eavesdroppers. Meanwhile, the robot should be able
to recover the trajectory and the planner should be able to
estimate the robot’s motion. We introduce a novel coding
scheme that creates secrets between the robot and the planner
based on i) the randomness of the robot’s motion and ii) the
imperfection of the communication channel. We show that every
time the planner receives the corresponding packet while the
eavesdropper misses it, a new secret is created, which can be
used as a key to encode the information about the motion intent.
If the motion-planning is random enough, one occurrence of
this event makes the eavesdropper lose track of the trajectory;
even if the eavesdropper has unlimited computational power.
We apply our framework to the problem of way-point tracking,
where the robot should visit some target positions one after the
other. We illustrate the theoretical results in simulations.

I. INTRODUCTION

Autonomous and remotely controlled agents have been
developed for deployment in dangerous or mundane applica-
tions [1], [2]: from emergency response vehicles in hazardous
environments to item sorting machines in industrial settings,
and smart thermostats in Internet-of-Things applications.
In many cases, an agent has to interact wirelessly with a
supervisor, in order to exchange critical and confidential in-
formation about its operation. However, the wireless medium
is vulnerable to eavesdropping attacks [3] and attacks that
include tampering with the packets [4], such as denial-of-
service attacks [5] and data-integrity attacks [6]–[10]. Here,
we focus on the problem of confidentiality from eavesdrop-
pers, which has been studied under various settings.

Encryption methods [11] offer confidentiality guarantees
without requiring any mathematical model of the physical
components, i.e. the source or the channel. However, their
effectiveness is based on the assumption that the adversaries
are computationally bounded, and introduce the issue of key
management [12], [13]. On the other hand, physical layer
security approaches [14]–[17] employ information theoretic
tools, introduced in Shannon’s seminal work [18], and exploit
the channel model to develop codes in the physical layer
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of the wireless medium. The provided secrecy guarantees
are provable, and independent of the eavesdropper’s com-
putational capability. However, constructing such codes is
challenging and requires knowledge of the eavesdropper’s
channel model. In the case of packet erasure channels, more
practical codes can be designed [19].

In this work, we introduce the problem of motion planning
with secrecy guarantees. A robot is tracking a trajectory
online as directed by a motion planner, e.g. the cloud or a
base-station. This trajectory carries sensitive data about the
robot’s mission and should be kept confidential. Our goal is
to design coding schemes to encode and hide the trajectory
information from any eavesdroppers, while the robot is able
to decode it. One of the challenges in such a problem is that
a predictable motion cannot be hidden well; an eavesdropper
can infer much information about the trajectory even under
the most secure protocol [20]. The trajectory itself is an extra
design parameter that affects secrecy.

A. Contributions

We propose a general coding scheme that exploits the
inherent randomness of the robot’s motion and the random
erasures of the packet drop channels to create secrets between
the robot and the planner. Contrary to the aforementioned
approaches, we assume that the eavesdropper has unlimited
computational power and there is no knowledge about the
eavesdropper’s channel. Based on this coding scheme, we
explore how much information is leaked to the eavesdropper
depending on the trajectory parameters. Then, we apply our
framework to the problem of way-point tracking, where the
robot should visit some target positions one after the other.

The main contributions are the following:

• We design a two-way coding scheme that creates new
shared secrets between the mobile agent and the cloud
planner, exploiting the inherent randomness in the robot
and channel. It requires no previously shared secrets.

• Under our coding scheme, we study conditions on the
trajectory such that its secrecy is protected.

• In the case of way-point tracking, under the condition
that the way-points are independent, we guarantee se-
crecy for the desired reference sequence by using the
proposed coding scheme.

Finally, we provide numerical simulations to exhibit the
behavior of the proposed architecture and coding scheme
and discuss the limitations and performance of such coding
schemes. The proofs can be found in the Appendix.
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B. Related work

Several works considering the secrecy of the current state
transmitted over lossy, eavesdropped channels, have been
addressed in [21]–[26]. There, it is assumed that the system
evolves around a set-point, which is known to all entities. In
this work, we focus on achieving the confidentiality of not
only the current state, but of the whole state trajectory. Also,
we do not want the eavesdropper to learn about any set-
points; the reference trajectory should be kept confidential.

Recently, distortion-based security was considered in [27]
to protect the confidentiality of the whole state history of a
mobile agent as it communicates with a legitimate receiver.
The problem there is different since the receiver only esti-
mates the state of the robot and does not transmit anything
back to the robot, and the communication is assumed to
be lossless. Using a pre-shared key, the robot confuses an
eavesdropper by sending either the true trajectory or its
mirror image with respect to an affine sub-space. The distor-
tion guarantees are near-optimal but with high probability
the eavesdropper knows the trajectory exactly under the
mirroring scheme.

II. PROBLEM FORMULATION

The considered architecture with the robot, the channel,
the eavesdropper and the planner is shown in Figure 1. First,
we present the model for every component. Then, we present
the goal of the paper–see Problem 1.

A. Robot model

The robot is modeled as a single integrator:

xk = xk−1 + uk + wk,

where xk ∈ Rn is the position vector, uk is the velocity
control input and wk ∈ Rn is the process noise, modeled as
i.i.d. Gaussian with zero mean and covariance Q. Suppose
that the robot is required to track a reference trajectory rk.
In this case, it applies a control input of the form:

uk = K(xk−1 − rk−1) + rk − rk−1.

Hence, if we define ek = xk − rk, the state equation of the
robot becomes:

ek = (In +K)ek−1 + wk, (1)

where In is the n×n identity matrix and the control gain K is
designed such that the matrix In+K has eigenvalues inside
the unit circle. We assume that the initial state, trajectory
and error are zero and known to all involved entities:
x0 = r0 = r1 = e0 = 0. At the beginning of round k, the
robot first applies the control uk, then observes ek. Then,
based on ek, it calculates an encoded message zk and
transmits it to the planner. At the end of round k, it receives
and decodes an encoded message yk from the planner, which
contains information about the next reference rk+1.

Fig. 1: The robot applies a control input uk to track trajectory
rk and transmits a signal zk containing information about ek
to the planner, over a packet-dropping channel. The planner
computes the new reference rk+1 and sends its encoded ver-
sion yk back to the robot over a reliable channel. Meanwhile,
an eavesdropper tries to intercept these messages.

B. Channel model

Communication between the robot and the planner follows
the packet-based paradigm commonly used in networked
control systems [28]–[30]. The robot transmits the mes-
sages zk to the planner over a packet dropping channel with
two outputs/receivers as shown in Figure 1. The first output
hp,k is the authorized one to the planner, while the second
he,k is the unauthorized one to the eavesdropper. Commu-
nication with the planner is unreliable, i.e. packets might
be dropped. Moreover, communication is not secure against
the eavesdropper, i.e., the latter may intercept transmitted
packets. We denote by γp,k ∈ {0, 1} the outcome of the
planner packet reception at time k, and by γe,k ∈ {0, 1}
the outcome of the eavesdropper’s packet interception. If
γp,k = 1 (or γe,k = 1), then the reception (interception,
respectively) is successful. Otherwise, the respective packet
is dropped. The outputs of the channel are modeled as:

hp,k =

{
zk, if γp,k = 1

ε, if γp,k = 0
, he,k =

{
zk, if γe,k = 1

ε, if γe,k = 0
(2)

where symbol ε is used to represent the “no information”
outcome. The channel outcomes {γp,k, γe,k}k=0,1,... are ran-
dom and assumed to be independent of the error ek, and the
reference rk for k = 0, 1, . . . . The joint distribution of the
channel outcomes is assumed to be arbitrary.

In addition to the forward channel, the planner sends
encoded trajectory information yk back to the robot via the
reverse channel. For clarity of exposition, we assume that
the reverse channel is both reliable and totally unsecured, i.e.
both the robot and the eavesdropper always receive yk. The
case of unreliable reverse channel is discussed in Section VI.

C. Trajectory planner

We assume that the planner updates the reference trajec-
tory rk+1 in a linear way:

rk+1 = Ark +B vk+1 (3)

where A, B ∈ Rn×n are matrices to be designed and
vk ∈ V := [−V1, V1]×. . . [−Vn, Vn] are the planner’s control
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signals, for some Vi ∈ R, i = 1, . . . , n. The bounds on Vi
can represent the boundary of the workspace or constraints
on how fast the robot’s trajectory can change. The term Ark
captures the dependency between the references across time
and acts as a smoothing factor; it makes the motion less
rough such that the robot can move without using large
control effort. We assume that the inputs vk, hence also rk,
are independent of the error ek. For clarity of exposition,
we postpone the details on how to incorporate dependency
on ek in Section VI. We assume that V is discretized in 2N

uniform regions so that the high-level input signals vk can
be encoded using N bits. The discretized space is denoted
by Vd. For simplicity, we ignore quantization errors in this
paper and we assume that vk are directly selected from Vd.
Finally, after updating the trajectory, the planner computes
yk, an encoded version of rk+1 and transmits it to the robot.

D. Eavesdropper

The eavesdropper is assumed to be powerful: it has un-
limited computational power, knows all system parameters
Q,K,A,B, all initial states r1 = r0 = e0 = 0 and all
the robot-planner channel outcomes γp,k. Furthermore, the
eavesdropper is stealthy, i.e., the robot and the planner do
not have any knowledge about the eavesdropper’s channel
and intercept successes γe,k.

E. Coding class

Here we define the class of the encoders which compute
the encoded messages zk and yk. We will use the batch vector
notation ak1:k2 = {ak1 , . . . , ak2} to denote the collection of
some vectors ak for k = k1, . . . , k2. We also use the notation

z0:k(γ) = {zt, for all γt = 1, t ≤ k} ,

where γ is a sequence in {0, 1}N. We define the coding class
of the robot encoder as follows:

zk = fenc,k(ek, z0:k−1(γp), y0:k−1)

ek = fdec,k(zk, z0:k−1(γp), y0:k−1),
(4)

where fenc,k, fdec,k are functions of appropriate dimensions.
Similarly, we define the coding class of the planner encoder:

yk = genc,k(rk+1, z0:k(γp), y0:k−1)

rk+1 = gdec,k(z0:k(γp), y0:k),
(5)

where genc,k, gdec,k are functions of appropriate dimensions.

F. Problem

The robot needs to know rk+1 at the end of every round k
in order to apply its control law uk+1 at round k+ 1. Thus,
the robot should be able to decode the message yk. The
planner’s goal is to infer the error ek of the robot as well
as transmit the trajectory information rk+1 in a secure way
at every round k. Meanwhile, the eavesdropper tries to infer
trajectory rk+1 based on the intercepted messages.

The inference of every entity depends on the information
that each one of them possesses. Fix a channel outcome
sequence {γp,0:∞, γe,0:∞} =: γ. Based on this event, the
robot’s information Iγr,k at the end of round k includes

past and present values of the error e0:k, and encoded
messages z0:k, y0:k:

Iγr,k = {e0:k, y0:k, z0:k} . (6)

The information of the eavesdropper Iγe,k at the end of
round k consists of the intercepted messages, the planner’s
channel outcomes γp,0:k, and the encoded messages y0:k:

Iγe,k = {z0:k(γe), γp,0:k, y0:k} . (7)

Finally, the planner’s information Iγp,k at the end of round k
includes the received messages, the trajectory r0:k+1, and the
encoded messages y0:k:

Iγp,k = {z0:k(γp), r0:k+1, y0:k} . (8)

Ideally, the security goal is trajectory secrecy, i.e. the
eavesdropper should not learn anything about rk at any time
k ≥ 0. However, this definition of secrecy is too restrictive.
For example, if the eavesdropper intercepts information about
just one non-zero reference, e.g. r2, then, since

rk = Ak−2r2 +

k∑
i=3

Ak−iBvi,

some information about the future trajectories will be leaked
unless A = 0. Also, most of the information about the goal
of the planner is included in the second term

∑k
i=3A

k−iBvi.
For this reason, we seek secrecy of the inputs vk, which can
be viewed as secrecy of the motion’s intent. Besides, if A is
stable, then input secrecy leads to trajectory secrecy in the
long-term, see Corollary 1.

Conditioned on an arbitrary channel outcome γ, we will
use the conditional entropy H(vk|Iγe,k)1 to quantify how
much information is leaked to the eavesdropper.

Definition 1 (Input Secrecy): Fix a channel outcome se-
quence {γp,0:∞, γe,0:∞} =: γ. Input secrecy at time k is
achieved if the eavesdropper does not gain any information
about about the planner input vk at any other time k′:

H(vk|Iγe,k′) = H(vk), for all k′ ≥ 0.

Before we formally describe the problem that this pa-
per addresses, we summarize the assumptions, which hold
throughout the paper.

Assumption 1: Matrices K,Q,A,B and e0 = r0 =
r1 = 0 in (1), (3) are known to all entities, i.e. to the robot,
planner and eavesdropper. The noise process wk, k ≥ 0 is
independent of the planner’s input sequence vk, k ≥ 0. �

Assumption 2: The robot and the planner do not have
any prior shared secret beforehand. �

Assumption 2 allows us to cover a large range of ap-
plications where an a priori secure communication and key
were not established. Furthermore, this confers flexibility to
our scheme, since the secrets can be refreshed during the
execution time, as described in Section III, rather than having
the secret fixed from the beginning for all the duration of the

1The collection of elements in the set Iγe,k changes for different γ. Thus,
H(vk|Iγe,k) also changes with γ.
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problem. However, since the robot and planner do not have
a pre-shared secret, we cannot guarantee input secrecy from
the beginning of the motion planning k ≥ 0, regardless of
the coding scheme used – see Theorem 1-ii). For this reason,
we require it to occur eventually from some point on k ≥ k0.

Problem 1: Given system (1), trajectory (3), with chan-
nel model (2) and under Assumptions 1, 2, design coding
schemes for zk, yk in class (4), (5) and find conditions on
vk such that for any channel sequence {γp,0:∞, γe,0:∞} = γ:

i) the robot always knows rk+1 at the end of step k:

H(rk+1|Iγr,k) = 0;

ii) the planner knows ek whenever the transmission is
successful at time k:

H(ek|Iγp,k) = 0, if γp,k = 1;

iii) input secrecy is achieved for k ≥ k0, for some k0:

H(vk|Iγe,k′) = H(vk), for all k′ ≥ 0, k ≥ k0.

III. CODING SCHEME

In this section, we propose an encoding scheme that can
achieve the secrecy goals defined in Problem 1 under certain
conditions. The main idea is that the robot and the planner
can create secrets between them by exploiting the random
packet erasures of the channel as well as the process noise
of the dynamical system. Then, they use these secrets to
encode and decode the planner inputs vk.

We define the reference time tk to be the time of the most
recent successful reception at the planner before time k:

tk = max {t : 0 ≤ t < k, γp,t = 1} . (9)

Until the first successful transmission, we define tk = 0. At
every time step, the robot transmits the noise wk along with
the necessary noise information from tk+1 up to k − 1, if
tk < k − 1:

zk =

{
wk, if tk = k − 1,{
wk, ek−1 −Ak−1−tketk

}
, if tk < k − 1.

(10)

Using the above coding scheme, the planner can always
calculate ek with zero error, when the transmission is suc-
cessful. The reason why the robot sends wk separately when
tk < k − 1 is explained in Remark 1.

Notice that under Assumption 1, the noises wk are i.i.d.
and assumed independent of the planner’s inputs vk. Hence,
if the eavesdropper misses some of the packets, then those
values can potentially be used as secret keys between the
robot and the planner. Also, even if the eavesdropper in-
tercepts information about ek, this does not reveal anything
about rk, according to (1). However, we have to solve two
problems: i) wk are not uniformly distributed and ii) we do
not exactly know which packets the eavesdropper has missed.

To solve the former problem, the planner applies a function
F : Rn →

{
0, . . . , 2N − 1

}
, which is publicly known, such

that w̄k = F (wk) is quantized and uniformly distributed on

{
0, . . . , 2N − 1

}
. For example, for w ∈ Rn Gaussian with

zero mean and covariance Q, we can define:

w̄ = F (w) , QN

[
Φ

(
1/
√
n

n∑
i=1

[
Q−1/2w

]
i

)]
, (11)

where Φ is the standard normal cumulative distribution
function and QN : [0, 1] →

{
0, . . . , 2N − 1

}
is a uniform

quantization function. Notice that the variable:

w̃ := 1/
√
n

n∑
i=1

[Q−1/2w]i

has the standard normal distribution N (0, 1). Thus, Φ (w̃) is
uniformly distributed on [0, 1] (see [31], exercise 1.2.4). As
a result, applying QN on w̃ yields a w̄ which is uniformly
distributed on

{
0, . . . , 2N − 1

}
.

After computing w̄k, the planner calculates a value sk
at time k by XORing the binary representation of all the
previously received quantized noises:

sk =
⊕
t∈Pk

F (wt) , with Pk = {t ≤ k : γp,k = 1} , (12)

where ⊕ is the XOR operator and Pk is a set containing
the times of successful reception up to time k. Until the first
successful transmission (Pk is empty), we define sk = 0.
Finally, the planner uses sk as a key to encode the trajectory
information. In particular, it XORs the new input vk+1

with sk. It also appends the information about the channel
outcome γp,k using an extra bit; this guarantees that the robot
and the planner agree on the correct value of tk.

yk = {vk+1 ⊕ sk, γp,k} . (13)

Upon receiving yk, the robot uses the knowledge about
γp,k and the same quantizer F to compute sk and recover
vk+1. Since matrices A, B are public, the robot has all the
necessary information to compute the reference at time k+1,
where r′k is the previously decoded reference value and yk(1)
is the first part of yk (without the acknowledgement bit):

r′k+1 = Ar′k +B

[
yk(1)⊕

(⊕
t∈Pk

w̄t

)
︸ ︷︷ ︸

sk

]
,

As long as the eavesdropper keeps intercepting all the
packets that the planner receives, it can compute sk and
recover vk+1. However, due to the channel randomness,
eventually the eavesdropper will miss some of those packets.
Suppose this happens at time k0, with γp,k0 = 1, γe,k0 = 0.
Then, sk0 will act as a secret between the planner and
the robot, in fact, a one-time pad [11, Ch. 2] for the
message vk+1. The eavesdropper will not be able to compute
the secret sk0 in (12), since it has missed wk0 permanently;
from (10), the noise wk0 does not appear again in any of
the future messages zk once the planner receives zk0 . Under
some independence conditions on the inputs vk, the future
messages yk, zk will not leak any information about the
secret sk0 , despite the reuse of the one-time pad, and the
eavesdropper will be unable to decode vk+1, for k ≥ k0.
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This is why we call the event γp,k0 = 1, γe,k0 = 0 (when
the user receives the packet while the eavesdropper misses
it) a critical event at time k0. Every time it occurs, a new
secret between the planner and the robot is created.

Remark 1: When tk < k − 1, we send wk along with
xk−1−Ak−1−tkxtk . The planner has to know wk separately
for the secret creation procedure. Meanwhile, it also needs
the additional information from time tk + 1 up to k − 1 in
order to estimate ek accurately. This introduces an additional
communication overhead when tk < k − 1. If the robot
would send only wk every time and omit the information
from time tk+1 up to k−1, this would impair the planner’s
estimation scheme. However, since the matrix In + K is
stable, if the channel is good (γp,k = 1 occurs often), then
the estimation error of the planner would be nonzero but
small if that information was omitted. �

The next theorem states that input secrecy can be achieved
if the planner’s inputs vk are independent over time, under
just one occurrence of the critical event.

Theorem 1 (Input secrecy): Consider system (1), trajec-
tory (3) with channel model (2) and coding scheme (10)
and (13). Let γ be a fixed channel outcome sequence.

i) The robot decodes the reference rk+1 at every time
step k, while the planner accurately estimates ek, when
γp,k = 1:

H(rk+1|Iγr,k) = 0 (14)

H(ek|Iγp,k) = 0, for γp,k = 1 (15)

ii) Let k0 be the time that the first critical event occurs.
No code within the classes (4), (5) can achieve input
secrecy before k0.

iii) Assume that the planner’s inputs vk are i.i.d., uniformly
distributed on Vd ⊂ V, with |Vd| = 2N . If the critical
event occurs at some k0 then input secrecy is achieved
for all k ≥ k0 + 1:

H(vk|Iγe,k′) = H(vk), for all k′ ≥ 0. (16)

�
Remark 2: The result of Theorem 1 implies that we can

enhance security not only by designing secure communi-
cation protocols but also by making the trajectory more
unpredictable, i.e. have i.i.d. inputs or at least design them
to look like i.i.d. from the perspective of the eavesdropper.

Remark 3: The i.i.d. uniform requirement restricts the
trajectories the robot can follow. If it is not satisfied, then the
eavesdropper might be able to infer the secrets sk. In [27],
although a different coding scheme is used, the main result
(Theorem 4.4) also requires the inputs to be independent
(since they are independent of the trajectory). This is an
inherent limitation of the problem if information theoretic
secrecy is sought; the independence and uniform distribution
of vk are crucial for the secrecy of a scheme that reuses
one-time pads. In fact, this can also be seen as the messages
v1, . . . , vk acting as one-time pads for the key sk. �

In the following section, we show how this result can still
be useful even if we have some mild dependence; the idea

is to only encode the new random part of vk. The main
computational burden is computing the quantized noise at
every time step w̄k. Nevertheless, for Gaussian noise, as in
our model, this computation is cheap. If the inputs follow
another known distribution, then we can make them uniform
using a similar technique as in (11). However, transforming
a multivariate distribution which is not already Gaussian or
uniform can be computationally heavy.

The following corollary shows that in the long-term,
input secrecy makes the eavesdropper lose track of the
trajectory. Its minimum mean square error (mmse) estimate
E
{
rk|Iγe,k

}
converges to the trivial estimate E {rk}, when

the eavesdropper receives no information.
Corollary 1: Under the conditions of Theorem 1-iii), if

matrix A is stable we obtain:∥∥∥E{rk|Iγe,k}− E {rk}
∥∥∥ a.s.→ 0

exponentially fast with rate ρ(A), where ρ(A) represents
the spectral radius of A. Here a.s. denotes almost sure
convergence with respect to vk, wk. �

If A is smaller the motion becomes more rough and
unpredictable and the security guarantees are achieved with
a faster rate. Moreover, if A = 0, then trajectory secrecy is
achieved immediately: H

(
rk|Iγe,k′

)
= H (rk), for all k, k′

such that k ≥ k0 + 1, k′ > 0.

IV. WAY-POINT TRACKING

In this section we show how to employ our coding scheme
in the case of way-point tracking, defined as follows. Assume
that there is a set of points

{
x1d, x

2
d . . . , x

M
d

}
∈ V, for some

M ≥ 1, that the robot should visit successively. For this
reason, the planner uses a stable matrix A and B = In −A
as parameters and applies:

vk+1 = xid, if (i− 1)T ≤ k < iT. (17)

In other words, we want the robot to visit a different point
every T time steps. Notice that the inputs are piecewise
dependent, so the previous result does not apply directly.
However, we can reduce it to the previous case if the
points

{
x1d, x

2
d . . . , x

M
d

}
∈ V are independent. In order

for the robot to be able to receive the relevant reference
information, it is sufficient and necessary to encode and send
only v(i−1)T+1 = xid for every i, instead of transmitting vk
every time:

yk = {vk+1 ⊕ sk, γp,k} , if k = (i− 1)T

yk = γp,k, otherwise.
(18)

This guarantees that the eavesdropper is not able to decode
the key. Otherwise, if vk+1 ⊕ sk is sent every time, security
would be compromised. For example, if the critical event
occurs at (i− 1)T < k0 < iT and the eavesdropper receives
both sk0−1 ⊕ xid, sk0 ⊕ xid, this is equivalent to knowing
sk0−1 ⊕ sk0 = F (wk0). In other words, sk0 would not be a
secret despite the critical event occurring. The next theorem
states that if the points are independent, then their secrecy is
achieved after the critical event under the modified coding
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scheme (18). The proof is omitted as it is similar to the one
of Theorem 1.

Theorem 2 (Point stabilization): Consider the sequen-
tial point stabilization problem of system (1), with chan-
nel model (2), trajectory (3) with (17), and coding
scheme (10), (18). Assume that the desired points xid are
i.i.d., uniformly distributed on Vd ⊂ V, with |Vd| = 2N .
If the critical event occurs at some k0, then input secrecy is
achieved for k ≥ (i0−1)T , with i0 = dk0/T e+1. Moreover,

H(xid|Ie,k′) = H(xid), for all i ≥ i0, k′ ≥ 0. �
Notice that there is some trade-off between control perfor-

mance and security. The planner’s control vk changes every
T time steps. We just need the critical event to occur within
T instead of one step to protect the next updated input. In
this sense, the larger the T , the higher the chance that the
sequence of points will be secure. For instance, if the channel
outcomes are Bernoulli i.i.d. with p1,0 = P(γp,k = 1, γe,k =
0), then the probability that point xid is protected is:

1− (1− p1,0)T (i−1).

A larger T makes the probability of leakage smaller. At the
same time, a larger T also makes the motion slower.

Remark 4: It is possible to incorporate other types of
dependency between the desired points as well, by decoding
only the random part of the new information. For exam-
ple, suppose that two consecutive points should be close:∥∥xid − xi−1d

∥∥
∞ ≤ R, for some radius R. Then, if xid is

uniformly distributed on the box B(xi−1d , R), instead of
sending xid, we can just encode xid − xi−1d . It is subject
of future work to generalize this idea to other types of
dependencies, i.e. Markov chains.

V. SIMULATIONS

Let us consider an instance of the way-point stabilization
problem with a sequence of 5 points to visit in a box with
bounds V1 = V2 = 10, shown in Figure 2. The trajectory
parameters used are A = 0.98 I2, B = I2 − A. Let the
channel outcomes be Bernoulli i.i.d., characterized by the
following probabilities:

p1,1 = 0.9, both receive the packet
p0,0 = 0.05, both drop the packet
p1,0 = 0.025, only the planner receives the packet
p0,0 = 0.025, only the eavesdropper receives the packet.

As depicted in Figure 2a, a robot (black) moving according
to (1) follows the reference dictated by the planner (blue)
according to (3), (17). Due to the channel unreliability,
critical events occur for the eavesdropper (the planner re-
ceives the packet from the robot, but the eavesdropper
drops it), and their occurrence is depicted with red. The
small probability of the user receiving the packet and the
eavesdropper dropping it means that critical events are less
likely to occur. However, as proved in Theorems 1 and 2,
only one critical event is sufficient for the eavesdropper to
lose track of the true reference.
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(a) Desired trajectory, actual trajectory and occurrence
of critical events for the eavesdropper.
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(b) Comparison between the true reference sequence
and the eavesdropper’s estimated reference sequence.

Fig. 2: Example of a sequence of reference points imposed
by a planner for a robot to follow, under a coding scheme that
ensures the confidentiality of the planner’s sequence from a
computationally unbounded eavesdropper.

We implemented the coding scheme from (10), (18) for the
robot and the planner, with N = 16 bits, T = 114 time steps.
We select the latter such that ρ(A)T < 0.1; this guarantees
that riT is close to xid. In Figure 2b, the true reference
sequence (blue), imposed by the planner, is compared to
the eavesdropper’s minimum mean square error estimate
re,k = E

{
rk|Iγe,5T

}
(red). Notice that the first critical

event occurs in the second leg of the reference sequence
in Figure 2a. The eavesdropper receives all the messages in
the first leg, and can determine x1d. The eavesdropper also
receives some messages in the second leg and it can infer
the second reference point. However, after the critical event,
the eavesdropper is not capable of estimating the rest of the
trajectory and its estimation goes to zero.

The previous results were for a specific sample of chan-
nel outcome and a specific set of desired points. Next,
we perform Monte Carlo simulation for 10000 samples
of channel outcomes and sets of points. We simulate the
eavesdropper’s minimum mean square error (mmse) esti-
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Fig. 3: The simulated mmse of the eavesdropper converges to
the simulated upper-bound mmse, i.e. when the eavesdropper
receives no information. For most channel outcomes, the
critical event occurs within the first T time steps. Hence, the
eavesdropper’s simulated mmse starts increasing after k = T .

mate E
{
‖rk − re,k‖22

}
for every k. We compare it with

E
{
‖rk‖22

}
, which is the largest error for the eavesdropper,

achieved when it has no information–see Figure 3. The
comparison shows that the eavesdropper’s simulated mmse
converges to the largest possible value.

VI. EXTENSIONS AND FUTURE WORK

In previous sections, we used some simplifying models for
the clarity of the exposition. In this part, we provide details
about how the simplifying assumptions can be dropped.

A. Unreliable acknowledgments

The planner should always agree with the robot about
the messages they share, hence, they should agree on tk.
Otherwise, a critical event might occur for the planner too.
This implies that we should deal with the case of unreliable
acknowledgments. Suppose that the reverse channel is also a
packet dropping one. Let γr,k ∈ {0, 1} denote the reverse
channel outcome at time k. If γr,k = 1, then the robot
successfully receives the respective packet, otherwise it does
not. Then, we can redefine the reference time to be:

t̄k = max {t : 0 ≤ t < k, γp,tγr,t = 1} ,

where we require both transmissions to be successful in order
to update the reference time. To make sure that the user
knows t̄k, the robot should also transmit t̄k at every time
step. Assume also that the trajectory rk+1 is updated only
if the previous yk−1 was received by the robot. Then, if we
define γ̄p,k := γp,kγr,k, the results of this paper still hold if
we replace γp,k by γ̄p,k.

B. Dependence of reference on the state error

In some cases, the reference rk+1 can incorporate a feed-
back from the state error ek. We can depict this dependency
in a linear way and assume that:

rk+1 = Ark +B vk+1 + C ek, (19)

where again vk are assumed independent of wk. In our
scheme, the eavesdropper has knowledge about C ek, since it

can compute ek before the critical event occurs, and after the
critical event k0, it can compute ek0+1 up to wk0 uncertainty.
However, this quantity acts as a disturbance to the motion
planning. The information that the eavesdropper is interested
in is still included in vk as stated in Problem 1 and the
eavesdropper cannot successfully use C ek to retrieve rk+1.

C. Future work

Our coding scheme offers a way to create secrets between
the robot and the planner. Those secrets can be used to hide
the trajectory as long as the planner’s new control input can
be encoded independently of the previous ones, as a result of
the limitation of reusing one-time pads. It is also required that
the model (3) of the trajectory is known to the robot. In future
work, it would be interesting to consider the case where the
model of the trajectory, e.g. A,B and the distribution of vk,
is unknown to both the robot and the eavesdropper.

APPENDIX

Lemma 1: Assume X,Y1, . . . , Yk are i.i.d. uniformly dis-
tributed on

{
0, . . . , 2N − 1

}
for some N . Then, the same is

true for (X,X⊕Y1, . . . , X⊕Yk) and (Yj , X⊕Y1, . . . , X⊕
Yk) for all j = 1, . . . , k. �

Proof: The proof is standard but we include it for
completeness. We show that the joint distribution (X,X ⊕
Y1, . . . , X ⊕ Yk) is uniform on

{
0, . . . , 2N − 1

}k+1
. The

proof for the other cases is identical. Let j, i1, . . . , ik be
arbitrary values ∈

{
0, . . . , 2N − 1

}
. Then

P(X = j,X ⊕ Y1 = i1, . . . , X ⊕ Yk = ik) =

P(X = j, Y1 = i1 ⊕ j, . . . , Yk = ik ⊕ j) =

P(X = j)P(Y1 = i1 ⊕ j) . . .P(Yk = ik ⊕ j) = 2−N(k+1).

The next elementary information theoretic inequality can
be found in [32], p.23, 29.

Lemma 2: Assume X,Y, Z are discrete random vari-
ables. Then:

H(X|Z)−H(X|Y,Z) = I(X;Y |Z) ≥ 0. �

Proof of Theorem 1

Proof of i) It follows by construction of the code. Since
the robot receives γp,k, it knows Pk at every time k, where
Pk is defined in (12). The robot’s information also includes
w0:k. Thus, the secrets s0:k and consequently also v0:k+1 are
functions of its information Iγr,k. Finally, since r0 = 0, the
trajectory rk+1 is a function of v0:k+1. Thus, rk+1 can be
computed from Iγr,k and (14) is satisfied.

Equation (15) follows by induction. Assume that the
planner knows ek, γp,k = 1. Let k′ be the time that the
next reception occurs: tk′ = k, γp,k′ = 1. If k′ = k + 1, the
planner knows ek and can compute ek from (1). If k′ > k+1,
the planner can first compute ek′−1 by adding Ak

′−1−kek.
The induction base case is similar, since e0 = 0 is known.

Proof of ii) If k < k0, then z0:k(γp) ⊆ z0:k(γe), i.e. the
eavesdropper has received all the packets that the planner
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has. Furthermore, the eavesdropper knows all messages y0:k.
Thus, from (5), we obtain that H

(
vk+1|Iγe,k

)
= 0.

Proof of iii) We analyze the case k′ ≥ k0. The other case
follows from the independence properties of the processes
w0:k, v0:k. Fix a k ≥ k0 + 1. Recall the definition of w̄k′ =
F (wk′) in (11). Since the critical event occurred at k0, the
eavesdropper does not know wk0 : wk0 , w̄k0 6∈ I

γ
e,k′ , for any

k′. Let the augmented information of the eavesdropper be:

Īγe,k′ = Iγe,k′ ∪ {w1, . . . , wk0−1, wk0+1, . . . , wk′} ,

where we add the information about every other noise wt.
By two applications of Lemma 2, we obtain:

H(vk|Īγe,k′) ≤ H(vk|Iγe,k′) ≤ H(vk).

It is sufficient to show that H(vk|Īγe,k′) = H(vk). We have:

H(vk|Īγe,k′)
a)
=

H(vk|w1:k0−1, wk0+1:k′ , v1:k0 , w̄k0 ⊕ vk0+1, . . . w̄k0 ⊕ vk′+1)

b)
= H(vk|w̄k0 ⊕ vk0+1, . . . , w̄k0 ⊕ vk′+1),

where a) follows from the fact that Pk′ is known to the
eavesdropper and (st⊕rt+1, w1:k0−1, wk0+1:k′) is equivalent
to (wk0 ⊕ rt+1, w1:k0−1, wk0+1:k′), for t ≥ k0. Further, b)
follows from eliminating the independent variables.

From Lemma 1, we obtain that the sequence (vk, w̄k0 ⊕
vk0+1, . . . , w̄k0 ⊕ vk′+1) is i.i.d. uniformly distributed on{

0, . . . , 2N − 1
}

, which implies:

H(vk|w̄k0 ⊕ vk0+1, . . . , w̄k0 ⊕ vk′+1) = H(vk).

Proof of Corollary 1

From Theorem 1-iii), we have that after k0 + 1, it holds
that H(vk|Iγe,k) = H(vk). Hence, E

{
vk0+1:k|Iγe,k

}
=

E {vk0+1:k}, equivalent to:

E
{
rk|Iγe,k

}
− E {rk} = Ak−k0

(
E
{
rk0 |I

γ
e,k

}
− E {rk0}

)
Since the inputs vk are bounded (V is bounded), rk0 will be
almost surely bounded. Thus,

∥∥∥E{rk|Iγe,k}− E {rk}
∥∥∥ a.s.→ 0

exponentially fast with rate ρ(A).
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