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Abstract— Most coordinated tasks performed by teams of

mobile robots, require reliable communications between the

members of the team. Therefore, task accomplishment requires

that robots navigate their environment with their collective

movement restricted to formations that guarantee integrity of

the communication network. Maintaining this communication

capability induces physical constraints on trajectories but also

requires determination of communication variables like routes

and transmitted powers. In this paper, we address this problem

using a distributed hybrid approach, where continuous motion

controllers based on potential fields interact with discrete

distributed optimization of the communication variables to

result in a muti-robot network that ensures integrity of commu-

nications. Our definition of network integrity is defined as the

ability of a network to support desired communication rates.

I. INTRODUCTION

Mobile robot networks have recently emerged as an inex-
pensive and robust way to address a wide variety of tasks
ranging from exploration, surveillance and reconnaissance,
to cooperative construction and manipulation. Efficient in-
formation exchange and coordination between members of
the team are critical for successful completion of these tasks.
E.g., recent work on distributed consensus and state agree-
ment has strongly depended on multi-hop communication for
convergence and performance guarantees [1].

Multi-hop communication in multi-robot systems has typ-
ically relied on constructs from graph theory, with proximity
graphs gaining the most popularity. This is consistent with
early approaches to wireless networking that used disk
models to abstract the physical layer [2]. In this context, com-
munication becomes equivalent to topological connectivity,
defined as the property of a graph to transmit information
between all pairs of its nodes. Preservation and control of
topological connectivity has recently gained increased atten-
tion with approaches that strictly maintain communication
links [3, 4] being followed by least restrictive ones that
allow links to be lost [5]. In terms of solution techniques,
these are centralized [4] or distributed [3, 5] and have been
successfully applied to multi-robot control coordination [3].

Although graphs provide a simple abstraction of inter-
robot communications, it has long being recognized that
since links in a wireless network do not entail tangible
connections, associating links with arcs on a graph can
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be somewhat arbitrary. Indeed, topological definitions of
connectivity start by setting target signal strengths to draw
the corresponding graph. Even small signal variations might
result in dramatic differences in network topology [6].

In this paper, we employ a simple, yet effective, modi-
fication that relies on weighted graph models with weights
that capture the packet error probability of each link [7].
When using reliabilities as link metrics it is possible to model
routing and scheduling problems as optimization problems
that accept link reliabilities as inputs [8]. The key idea
proposed in this paper is to define connectivity in terms of
communication rates and to use optimization formulations to
describe optimal operating points of wireless networks [8].
In particular, we decompose control in the communication
and physical domains, so that the communication variables
are updated in discrete time based on distributed dual de-
composition techniques, while robot motion is regulated in
continuous time by means of appropriate barrier potentials
that maintain desired communication rates. Composition of
the above, results in a distributed multi-robot hybrid system
for which we show that desired communication rates are
always guaranteed. The challenge we need to address is
that dual decomposition ensures feasibility of the primal
variables only asymptotically. This precludes verbatim use of
those variables in barrier potentials in the physical domain
and gives rise to an infeasibility gap, which results in
approximate communication guarantees.

II. OPTIMAL WIRELESS COMMUNICATIONS

Consider a mobile network composed of J robots and
a fixed infrastructure with K access points (APs). The
robots move throughout an area of interest to accomplish an
assigned task for which it is necessary to maintain reliable
communications with the infrastructure. Due to, e.g., power
constraints or an adverse propagation environment, robots
collaborate to maintain a multihop network with the APs.
Denote as xj for j = 1, . . . , J the position of the robots and
xj for j = J+1, . . . , J+K the position of the APs. The set
of all positions x := {xi}J+K

i=1 is referred to as the spatial
configuration of the network. We model communication by
a link reliability metric R(x,y) denoting the probability that
a packet transmitted from a terminal located at position x is
correctly decoded by a terminal at position y. This function
determines the probability Rij � R(xi,xj) with which a
packet transmitted by node i is correctly decoded by node
j. Node j is a robot if j ≤ J or an AP otherwise.

We further denote as ri the average rate at which robot
i delivers information to the APs. If robot i can reach
some of the APs, packets are directly conveyed to the
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Fig. 1. Robotic network consisting of two access points (AP) and three
robots (R). Shown are the packet rates ri generated by every robot as well
as the rates TijR(xi,xj) sent from robot i and successfully decoded by
robot j, where Tij is the probability that robot i routes packets to robot j
and R(xi,xj) is the reliability of the channel between robots i and j.

corresponding AP. Otherwise, packets are routed to another
robot for subsequent transmission. We model this process
through the introduction of routing probabilities Tij denoting
the probability with which robot i selects node j, a robot or
an AP, as a destination of its transmitted packets; see Fig. 1.

Between the time of their generation or arrival from
another robot and their transmission packets are stored in
a queue. To ensure stability of these queues it suffices to
require the average rate at which packets arrive at the ith
queue to be smaller than the average rate at which packets
leave this queue. Thus, our interest is to determine routing
probabilities Tij and rates ri that satisfy the inequality

ri +
�J

j=1
TjiR(xj ,xi) ≤

�J+K

j=1
TijR(xi,xj). (1)

Any set of variables {ri}∀i and {Tij}∀i,j that satisfy the
inequalities in (1) ensures information delivery. A basic
requirement is that all robots can communicate with the
infrastructure APs at least at a basal rate of ri0 packets per
time unit. When this happens we say that we have network
integrity as we formally define next.

Definition 1 (Network integrity) For configuration x and

basal rates ri0, network integrity implies not only existence

but also availability of rates {ri}∀i and routing variables

{Tij}∀i,j for which the inequalities in (1) hold and ri ≥ ri0.

For a given spatial configuration {xi}J+K
i=1 there might be

various sets of variables that ensure network integrity. To
select an element of this set we introduce strictly concave
optimality criteria Ui(ri) and Vij(Tij) measuring the value
associated with variables ri and Tij respectively. The operat-
ing point is then selected as the solution of the optimization
problem

Px = max
Tij

�J

i=1
Ui(ri) +

�J

i=1

�J+K

j=1
Vij(Tij) (2)

s.t ri +
�J

j=1
TjiR(xj ,xi) ≤

�J+K

j=1
TijR(xi,xj),

ri ≥ ri0,
�J

j=1
Tij ≤ 1,

where the constraints are required for all i ∈ {1, . . . ,K}. To
ensure network integrity for configuration x, we need to find
optimal routing probabilities Tij that solve the optimization

problem in (2). This yields basal rates ri0 for all terminals,
while assigning the remaining resources in a manner that is
optimal in terms of utilities Ui(ri) and Vij(Tij).

A. Distributed Optimal Communication

Solving (2) at a central designated node entails a large
communication cost to convey the network’s topology and
disseminate the optimal operating point. This cost can be
avoided by devising a distributed solution based on the sep-
arability of the Lagrangian dual of (2). To do so consider the
optimal communication problem in (2), associate Lagrange
multipliers λi with each of the routing constraints in (1), and
define the Lagrangian as

Lx(λ,T, r) =
�J

i=1
Ui(ri) +

�J

i=1

�J+K

j=1
Vij(Tij)

+ λi

��J+K

j=1
TijR(xi,xj)− TjiR(xj ,xi)− ri

�
. (3)

The dual function is then defined as the maximum of the
Lagrangian with respect to primal variables, i.e.,

gx(λ) = argmax ri≥ri0,
�J

j=1 Tij≤1 Lx(λ,T, r). (4)

The dual problem is finally defined as the minimization of
the dual function, Dx = minλ≥0 gx(λ). Since for fixed
spatial configurations x, the problem in (2) is convex it holds
that Dx = Px implying that we can work with the dual
problem in lieu of the primal problem in (2). In particular,
a distributed algorithm can be obtained by implementing
gradient descent in the dual domain.

To implement dual gradient descent we compute the gradi-
ent of the dual function using primal Lagrangian maximizers,
see e.g., [9]. For given λ define the primal Lagrangian
maximizers as

{ri(λ)}∀i, {Tij(λ)}∀i,j := argmax
ri≥ri0,�J
j=1 Tij≤1

Lx(λ,T, r). (5)

The components of the dual function’s gradient are then
given by the constraint slack associated with {ri(λ)}∀i and
{Tij(λ)}∀i,j , i.e.,

[∇gx(λ)]i=
J+K�

j=1

Tij(λ)R(xi,xj)−Tji(λ)R(xj ,xi)−ri(λ).

(6)
A key observation here is that the Lagrangian in (3) can be
written as a sum of local Lagrangians that depend only on
variables ri and {Tij}∀i. Indeed, it suffices to reorder terms
in (3) to realize that upon defining local Lagrangians

Li(λ,T, r) = Ui(ri)− λiri +
J+K�

j=1

TijR(xi,xj)
�
λi − λj

�
,

(7)
it is possible to write

L(λ,T, r) =
�J

i=1
Li(λ,T, r). (8)

The local Lagrangian Li(λ,T, r) is defined so that all
summands of the global Lagrangian L(λ,T, r) that involve
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primal variables ri and {Tij}J+K
j=1 for given i appear in, and

only in, Li(λ,T, r) [cf. (3) and (7)]. Therefore, to find the
variables ri(λ) and {Tij(λ)}J+K

j=1 that maximize the global
Lagrangian as per (5) it suffices to find the arguments that
maximize the local Lagrangian in (7).

Introduce now an index n and consider times tn at which
variables are updated. We can use the observation in (9) to
write the following distributed gradient descent algorithm for
the dual function:

Primal iteration For given Lagrange multipliers λ(tn)
compute Lagrangian maximizers ri(tn) and {Tij(tn)}J+K

j=1
as

ri(tn), {Tij(tn)}J+K
j=1 = argmax

ri≥ri0,�J
j=1 Tij≤1

Li(λ(tn),T, r). (9)

Dual Iteration. Use the primal variables ri(tn) and
{Tij(tn)}J+K

j=1 in (9) to update the dual variables as

λi(tn+1) = P

�
λi(tn)− (10)

�

��J+K

j=1
Tij(tn)R(xi,xj)−Tji(tn)R(xj ,xi)−ri(tn)

� �

where the operator P [·] denotes projection on the nonnega-
tive reals.

Letting variables ri(tn), {Tij(tn)}J+K
j=1 , and λi(tn) be asso-

ciated with terminal i, algorithm (9)-(10) can be implemented
in a distributed manner. The maximization in (9) requires
access to local multipliers λi and multipliers λj from those
terminals for which R(xi,xj) �= 0. Since these terminals
can communicate with i, these multipliers can be conveyed
to let i compute its primal variables of interest. Likewise, the
dual update in (10) requires access to local primal variables
{Tij(tn)}J+K

j=1 and primal variables from terminals that can
communicate directly with i.

III. DISTRIBUTED MOTION & COMMUNICATION
CONTROL

In Section II, we showed that for fixed robot position
xi, the reliabilities R(xi,xj) are fixed and the problem
in (2) attains a simple convex form. However, this is not
the case for mobile robots that are supposed to move to
accomplish their assigned task. In particular, we consider
single integrator robots whose positions xi(t) react to control
inputs ui(t) according to the first order differential equations

ẋi(t) = ui(t;σi(tn)), ∀ t ∈ [tn, tn+1), (11)

for all i = 1, . . . , J , where

σi(t) =
�
ri(t), {Tij(t)}J+K

j=1

�
∪ {Tji(t)}Jj=1

denotes the collection of communication variables that are
either locally computed at robot i by the primal-dual iteration
(9)–(10), i.e., the rates ri(t) and routes {Tij(t)}J+K

j=1 , or are
received by robot i’s neighbors via communication, i.e., the
routes {Tji(t)}Jj=1. In (11), {tn}∞n=0 denotes the sequence
of time instants when these updates and receptions take

place. In the above formulation, the communication variables
and Lagrange multipliers are piecewise constant functions
of time, so that Tij(t) = Tij(tn), ri(t) = ri(tn) and
λi(t) = λi(tn) for all t ∈ [tn, tn+1) and all indices i and
j, and so is the switching signal σi(t). To the contrary, the
channel reliabilities R(xi(t),xj(t)) are continuous functions
of time that depend on the robot positions x(t) in (11).

To design motion controllers ui(t;σi(tn)) for the robots,
we classify them in “leaders” and “relays” so that leaders are
assigned a task that they need to complete, while relays only
relay the information that the leaders generate in the network.
Let φ̂i : RJd → R+ be an artificial potential function with

φ̂i(t;σi(tn)) �
�

γi(t)
βi(t;σi(tn))

, if i is a leader robot
1

βi(t;σi(tn))
, if i is a relay robot

,

where γi : Rd → R+ is a task potential that drives, for
example, a leader robot to its target and βi : RJd → R+

with

βi(t;σi(tn)) �
�J+K

j=1
Tij(tn)R(xi(t),xj(t)) (12)

−
�J

j=1
Tji(tn)R(xj(t),xi(t))− ri(tn)

is a potential that measures satisfaction of the queue balance
constraint associated with the queue at robot i. Since φ̂i can
grow unbounded as the queue balance constraints tend to
become violated, i.e., as βi → 0, we further introduce a
diffeomorphism ψ : [0,∞] → [0, 1] with ψ(y) = y/(1 + y)
that “squashes” the image of φ̂i from [0,∞] to [0, 1]. Let
φi : RJd → [0, 1] denote the resulting potential such that

φi = ψ ◦ φ̂i =

� γi

γi+βi
, if i is a leader robot

1
1+βi

, if i is a relay robot , (13)

and for every robot i, whether a leader or a relay, let

ui(t;σi(tn)) = −k∇xiφi(t;σi(tn)), (14)

for all t ∈ [tn, tn+1), denote the control law, where k > 0
is a positive gain to regulate the robot speed.

A. Distributed Integration

The proposed distributed primal-dual iteration (9)–(10)
to solve problem (2) only ensures feasibility of the primal
variables in the limit, which presents practical difficulties in
ensuring that βi > 0 in (12) without bringing the system
(robots) to an almost complete halt. For this, we propose an
integration scheme where the queue balance constraints (1)
are satisfied approximately, with some bounded error.

Problem 1 Determine a sequence of communication vari-

ables {σi(tn)}∞n=0 and a set of distributed motion controllers

ui(t;σi(tn)) for all robots i so that communication rates

ri(t) approximately exceed ri0 along the trajectories of the

closed loop system (11), at all times.

In other words, Problem 1 implies that ri(t) ≥ ri0−ei(tn)
for all time t ≥ 0 and for a small positive error ei(tn) >
0 that, in general, may depend on the sequence {tn}∞n=0.
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The error ei(tn) > 0 essentially captures the feasibility gap
in the queue balance constraints (1) after a single primal-
dual iteration (9)–(10) at time tn. This feasibility gap is also
introduced in the motion controllers ui(t;σi(tn)) defined in
(14) via the barrier potential functions

β̃i(t;σi(tn)) � βi(t;σi(tn)) + ei(tn), (15)

where βi(t;σi(tn)) is defined as in (12). Integration of the
closed loop system (11)–(14) for motion control with the
primal-dual iterations (9)–(10) for optimal communication
leads to a distributed motion and communication control
algorithm. The algorithm consists of the primal-dual iteration
(9)–(10) that updates the communication variables, and an
update in the robot positions via the closed loop system (11)–
(14). At times {tn}∞n=0 communication between neighbors
takes place to provide robots with the variables that are
necessary in their updates.

IV. ALGORITHM PERFORMANCE

To simplify presentation introduce a vector t stacking the
rows of the transmission probability matrix T and a matrix
Ax with dimensions J × J(J + K) so as to write the
constraints in (1) as Axt − r ≥ 0. Using this definition
we can rewrite (2) as

Px = max f0(r, t), s.t. Axt− r ≥ 0, (16)

where constraints ri ≥ ri0 and
�J

j=1 Tij ≤ 1 are implicit.
Similarly, we using this notation we can rewrite the optimal
distributed communication algorithm in (9) and (10) as

t(tn), r(tn) = argmaxLi(λ(tn), t, r),

λ(tn+1) = P
�
λ(tn)− �

�
Ax(tn)t(tn)− r(tn)

��
. (17)

In a static setting, i.e., for fixed robot positions, dual
variables λ (tn) approach the optimal multipliers λ∗

x(tn).
Provided some technical conditions, convergence of the
primal variables t(tn) and r(tn) to the optimal network
operating point t∗x(tn), r

∗
x(tn)

follows as a consequence [9].
In the dynamic setting considered here, the primal and
dual variable updates in (17) bring the network closer to
its optimal operating point. However when terminals move
as per (11)–(14), the optimal operating point drifts away
towards t∗x(tn+1)

, r∗x(tn+1)
. Our goal is to determine the

optimality of the operating point t(tn), r(tn) with respect
to the optimal operating point t∗x(tn), r

∗
x(tn)

for the current
team configuration x(tn).

Characterizing operating point t(tn), r(tn) concerns de-
termination of feasibility and optimality. Throughout the
subsequent analysis we make the following assumptions on
the dual functions gx(λ):

(A1) The dual functions gx(λ) are strongly convex for all
x with strong convexity parameter m,

gx(µ) ≥ gx(λ) +∇gx(λ)
T (µ− λ) +

m

2
�λ− µ�2. (18)

(A2) The gradients of the dual functions gx(λ) are Lipschitz
continuous with Lipschitz constant M

�∇gx(λ)−∇gx(µ)� ≤ M�λ− µ�. (19)

(A3) The 2-norm of the dual gradients ∇gx(λ) are uni-
formly bounded for all λ and all x,

�∇gx(λ)� ≤ Gmax. (20)

(A4) The 1-norm of the optimal Lagrange multipliers λ∗
x

are uniformly bounded for all x

�λ∗
x�1 ≤ λmax. (21)

These assumptions are mild, technical, and commonly re-
quired in the analysis of gradient descent algorithms. Since
the iteration in (17) implements dual gradient descent, the
main result in this section describes the distance between the
current Lagrange multiplier λ (tn) and the current optimal
Lagrange multiplier λ∗

x(tn) as stated next 1.

Theorem 1 Let x(tn) denote the configuration at iteration

n, λ∗
x(tn) the corresponding optimal dual variable and λ (tn)

the dual iterate obtained through iterative application of

(17). Assume the step size in (17) is bounded as � ≤ 1/M
and that the difference between reliabilities at subsequent

configurations is absolutely bounded by δ > 0, i.e.,

|Rij(x(tn+1))−Rij(x(tn))| ≤ δ. (22)

If assumptions (A1)-(A4) hold, the distance between the dual

iterate λ (tn) and the optimal multiplier λ∗
x(tn) satisfies

�λ (tn)−λ∗
x(tn)� ≤ βn�λ(t0)−λ∗

x(t0)�+
2λmaxJ

m(1− β)
δ, (23)

where the constant β is defined as β :=
�

1/(1 +m�).

Theorem 1 dictates that dual iterates λ (tn) converge
linearly to a neighborhood of the optimal multiplier λ∗

x(tn).
The volume of this neighborhood is determined by problem-
specific constants and can be made arbitrarily small by
reducing δ, which can be controlled by modulating the
velocity of the robots. Results of interest for the primal
variables follow as corollaries of the result in Theorem 1.
The feasibility gap of t(tn), r(tn) is bounded in Corollary
1 and a similar bound for the optimality gap is presented in
Corollary 2.

Corollary 1 With the hypotheses and definitions of Theorem

1, the norm of the constraint violation can be bounded as

�P (r(tn)−Ax(tn)t(tn))� ≤ Mβn�λ(t0)− λ∗
x(t0)�

+
2MλmaxJ

m(1− β)
δ. (24)

Corollary 2 Let f0(tn) := f0(t(tn), r(tn)) denote the pri-

mal objective corresponding to the communication variables

at time tn. With the same hypotheses and definitions of

Theorem 1, the optimality gap can be bounded as

Px(tn) − f0(tn) ≤ (Gmax + λmaxM)βn�λ(t0)− λ∗
x(t0)�

+
2(Gmax + λmaxM)λmaxJ

m(1− β)
δ (25)

1Proofs are available in the journal version of this paper.
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A. Network integrity

Theorem 1 and Corollaries 1 and 2 guarantee that the
communication variables are close to optimality and fea-
sibility at sampling times tn. This proximity depends on
the disturbance |Rij(x(tn+1)) − Rij(x(tn))| = δ > 0
introduced in (2) due to robot mobility between consecutive
communication updates at times tn and tn+1. To extend these
results to all time t ≥ t0 let

S � {x(t) ∈ RJd | β̃i(t;σi(t)) > 0, ∀ i = 1, . . . , J},

where β̃i(t;σi(t)) is defined as in (15), denote the set of
robot configurations x(t) that ensure communication rates
ri(t) that exceed desired basal rates ri0 with some error
ei > 0, i.e., ri(t) > ri0−ei, as required in Problem 1. More-
over, assume that the channel reliabilities R(xi(t),xj(t)) are
purely a function of the inter-robot distances and let MR =

maxi,j
����dRij(x)

d�xij�2

���
�

, where xij = xi − xj , denote their
absolute maximum slope. Let also Mφ = maxi {�∇xiφi�2}
denote the maximum robot speed. Then, we have the result:

Theorem 2 If x(t0) ∈ S, then x(t) ∈ S for all time t ≥ t0.

Moreover, the approximation error satisfies

ei ≤ 2k∆tMRMφ
2MλmaxJ

m(1− β)
, (26)

for all time t ≥ t0, where ∆t = maxn{tn+1 − tn}.

Clearly, the error upper bound in Theorem 2 can be made
arbitrarily small by appropriately tuning the robot speed gain
k > 0 and the frequency of communication tn+1 − tn. The
smaller this bound is, the closer to optimality will every
primal-dual iteration (9)–(10) be. Since the frequency of
communication is typically subject to practical constraints,
this implies that the speed gain k > 0 might need to be
sufficiently small to realize the desired bounds.

V. INTEGRATION WITH ROBOT TASKS

In this section we illustrate our approach in a nontrivial
scenario where communication integrity of the robot net-
work needs to be preserved. For this, we employ channel
reliabilities Rij = R(xi,xj) that are twice differentiable
and monotonically decreasing functions of xij � xi − xj

between 1 and 0. We consider a scenario where reliable
communication is necessary between K = 2 access points
(APs) and two service point (SP) in R2. This task is
implemented by a team of J = 15 robots, two of which are
leaders responsible for serving the SPs. The task potentials
γi are identically set to 1 for all robots except for the leader
robots for which γi � 1

2�xi − xd
i �22, where xd

i denotes the
location of each service point. Finally, the minimum rates
ri,0 are identically zero for all robots except for the leaders
for which ri,0 = 0.95. These values are consistent with
the classification of robots into relays and leaders. Leaders
collect measurements and generate data, while relays forward
this information to the APs. Results are shown in Fig. 2. We
observe that the leader robots (labeled as 3 and 4) move
towards the SPs and force the network to stretch in order to
achieve reliable communication between the SPs and APs.
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Fig. 2. Mobile robot network consisting of 15 robots (dots), 2 service
points (SP) and 2 access points (AP). The grey lines represent channel
reliabilities R(xi,xj) and the red lines represent routing of information
TijR(xi,xj), between pairs of robots. The thickness of each line represents
the magnitude of these quantities. The network is randomly initialized and
involves 2 leaders (stars), labeled 3 and 4, that move towards the upper and
lower service points, respectively.

VI. CONCLUSIONS

In this paper we considered the problem of ensuring com-
munication integrity in networks of mobile robots. Our ap-
proach relied on introducing weights on the communication
links to capture channel reliabilities, which then allowed to
model routing by means of optimization problems that accept
link reliabilities as inputs. The key idea proposed in this
work was the joint control of mobility and communications
in a hybrid scheme with the discrete-time routing variables
being the switching signal in the continuous-time motion
controllers. We provided communication guarantees within
a bounded error of optimality.

REFERENCES

[1] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proc. of the IEEE, vol. 95,
no. 1, pp. 215–233, January 2007.

[2] K. Pahlavan and A. H. Levesque, Wireless Information Networks. New
York, NY: John Willey & Sons, 1995.

[3] M. Ji and M. Egerstedt, “Coordination control of multi-agent sys-
tems while preserving connectedness,” IEEE Transactions on Robotics,
vol. 23, no. 4, pp. 693–703, August 2007.

[4] M. M. Zavlanos and G. J. Pappas, “Potential fields for maintaining
connectivity of mobile networks,” IEEE Transactions on Robotics,
vol. 23, no. 4, pp. 812–816, August 2007.

[5] ——, “Distributed connectivity control of mobile networks,” IEEE

Transactions on Robotics, vol. 24, no. 6, pp. 1416–1428, December
2008.

[6] H. Lundgren, E. Nordstrom, and C. Tschudin, “The gray zone problem
in ieee 802.11b based ad hoc networks,” ACM SIGMOBILE Mobile

Computing and Communications Review, vol. 6, no. 3, pp. 104–105,
July 2002.

[7] D. DeCouto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput
path metric for multihop wireless routing,” in Proc. ofInternational

ACM Conference on Mobile Computing and Networking, San Diego,
CA, September 2006, pp. 134–146.

[8] A. Ribeiro, N. D. Sidiropoulos, and G. B. Giannakis, “Optimal dis-
tributed stochastic routing algorithms for wireless multihop networks,”
IEEE Transactions on Wireless Communications, vol. 7, no. 11, pp.
4261–4272, November 2008.

[9] N. Z. Shor, Minimization Methods for Non-Differentiable Functions.
Berlin, Heilderberg, Germany: Springer-Verlag, 1985.

240


