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Abstract— We consider the problem of designing controllers
for nonholonomic mobile robots converging to the source (min-
imum) of a field. In addition to the mobility constraints posed
by the nonholonomic dynamics, we assume that the field is com-
pletely unknown to the robot and the robot has no knowledge of
its own position. Furthermore, the field is randomly switching.
In this paper, we combine ideas from stochastic approximations
and nonholonomic control, in order to address this challeng-
ing problem. In particular, we develop a rotation-invariant
and forward-sided version of the simultaneous-perturbation
stochastic algorithm, which is much more suitable for sensor-
free navigation. Based on this algorithm, we design source
seeking controllers for nonholonomic robots and prove conver-
gence to the unknown source with probability 1. The proposed
controllers are demonstrated by numerical simulations.

I. INTRODUCTION

Source seeking is a mixed problem of search and naviga-

tion as shown in Fig. 1: when a mobile robot is placed in

an environment where an unknown signal field is introduced,

find a controller steering the robot to the source (the unknown

maximizer) without the position information. The field could

express the spacial distribution of magnetic force, heat, or

chemical concentration. The robot is navigated by only using

the measurements of the signal at the positions.

Unlike the existing results, e.g., [1]–[5], we are interested

in the stochastic source seeking, which involves a randomly

switching field, and we want to solve it for a general class of

mobile robots. This is motivated by two facts. First, though

switching fields appear in many applications, they have never

been handled so far. An example with a switching field is the

base station placement for wireless communication, which is

to find the best location in terms of the terminal density. In

this case, the signal field corresponds to the radio field made

by a number of terminal units, which randomly switches

depending on their usage. Next, to our best knowledge, there

is no solution dealing with various types of robots in a unified

way. In fact, the existing results have focused on specific

robots, e.g., integrators in [3], nonholonomic unicycles in

[2], [4], [5], and underwater vehicles [1].

This paper addresses the stochastic source seeking prob-

lem for mobile robots in the general form ẋ = G(x)u.

Our approach is to generate a stochastic trajectory converg-

ing to the unknown source and to steer the robot along

the trajectory. Here, the idea of a stochastic optimization
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Fig. 1. Source seeking problem.

technique, called the simultaneous-perturbation stochastic

approximation (SPSA) [6], is utilized to obtain the trajectory.

The contributions of this paper are as follows. First, we

extend the SPSA algorithm to an appropriate form for the

source seeking by mobile robots. Since the original algorithm

generates a trajectory based on the world coordinate frame, it

is impossible to drive the robot along the trajectory without

a position sensor. In contrast, the new algorithm provides a

trajectory in a time-varying coordinate frame, which fits the

sensor-free navigation. Based on this, source seeking con-

trollers, which drive the robot to the source with probability

1, can be characterized by the combination of point-to-point

controllers. Second, simple source seeking controllers are

presented for the unicycle by exploiting a special structure.

This shows that the stochastic source seeking is achieved by

very simple movements.

Notation: Let R, R+, and N be the real number field, the

set of positive real numbers, the set of nonnegative integers,

respectively. We denote by 0 and I the zero matrix and the

identity matrix of appropriate dimensions. For θ ∈ R,

R2(θ) is the two-dimensional rotation matrix. We use ‖x‖ to

express the Euclidian norm of the vector x. Finally, for the

scalar-valued function f : Rn → R, the gradient is denoted

by ∇f(x), i.e., ∇f(x) := [∂f(x)/∂x1 · · · ∂f(x)/∂xn]⊤ ∈
R

n where xi is the ith element of the vector x ∈ R
n.

II. STOCHASTIC SOURCE SEEKING PROBLEM

A. Problem Formulation

Consider the feedback system in Fig. 2.

The robot P is given by

P :







ẋ(t)

θ̇(t)

φ̇(t)






= G(x(t), θ(t), φ(t))u(t) (1)

where x(t) ∈ R
n1 and θ(t) ∈ R

n2 are the translational

and orientational positions in the world coordinate frame,

φ(t) ∈ R
n3 is the internal posture relative to the absolute

position (x(t), θ(t)), u(t) ∈ R
m is the control input, and

G : R
n1 ×R

n2 ×R
n3 → R

(n1+n2+n3)×m is a nonlinear

function describing the dynamics. We assume that P is in a
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Fig. 2. Control system for source seeking.

two- or three-dimensional space, i.e., n1 ∈ {2, 3} and n2 ∈
{1, 2, 3}. An example of P is the nonholonomic unicycle in

Fig. 3, which is described by





ẋ1(t)

ẋ2(t)

θ̇(t)



 =





cos θ(t) 0

sin θ(t) 0

0 1



u(t) (2)

where x1(t), x2(t), θ(t) ∈ R. Note that the state variable φ
is not required for the unicycle but will be used for more

complicated robots such as a four-wheeled vehicle.

The signal field S is a stochastic transducer from the

information on x to a scalar signal, which is given by

S : y(t) = fσ(t)(x(t)) (3)

where y(t) ∈ R expresses the signal strength (but assume

that a smaller value expresses a stronger signal level) and

fσ : R
n1 → R are thrice differentiable strictly con-

vex functions. Furthermore, σ(t) ∈ {1, 2, . . . , N} is the

piecewise constant random signal, given as σ(t) = σi on

the time interval [iη, (i + 1)η) where i ∈ N, η ∈ R+,

and σi is the i.i.d. random variable from a probability

distribution q : {1, 2, . . . , N} → [0, 1]. An example of S
is shown in Section IV-C. We denote by E[fσ(x)|x] the

conditional expected value for σ, and we call the translational

position argminx∈Rn1E[fσ(x)|x] the source. The minimum

of E[fσ(x)|x] expresses the strongest signal level in the

expectation sense. Due to the convexity of fσ , E[fσ(x)|x] is

a strictly convex function of x.

The controller K is a (causal) dynamical system, whose

inputs are φ and y. So, in K, the information on the internal

posture φ is available by internal sensors of P (e.g., poten-

tiometers), but that on the absolute position (x, θ) is not.

Then we consider the following problem.

Problem 1 (Stochastic Source Seeking): For the feed-

back system in Fig. 2, suppose that P and S are given,

but assume that S (i.e., fσ and q) is unknown. Then find

a controller K seeking the source, that is, satisfying

lim
t→∞

y(t) = min
x∈Rn1

E[fσ(x)|x] w.p.1. (4)

Note that we have no information on S except for a few

assumptions (e.g., the convexity of fσ). This implies that two

challenging issues are involved in the problem. First, even if

we focus on only the static optimization problem

min
x∈Rn1

E[fσ(x)|x], (5)

x1

x
2

θ

Fig. 3. Unicycle.
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(a) Step 1: Feedback exploration. (b) Step 2: Controller extraction.

Fig. 4. Proposed solution framework to Problem 1.

typical methods, based on the explicite form of E[fσ(x)|x]
or its gradient, cannot be employed. Second, in the feedback

system in Fig. 2, it is impossible to estimate the absolute

position of P through y. In fact, S and θ are completely

unknown to K. Thus K has to generate the control input

with no position information.

So we often use the body fixed coordinate frame. The

frame at time τ is denoted by Σ(τ), i.e.,

Σ(τ) :





z(t)
ψ(t)
ϕ(t)



 =





Rn1
(−θ(τ))(x(t)− x(τ))

θ(t)− θ(τ)
φ(t)



 (6)

where t expresses a future time after time τ .

B. Solution Framework for Problem 1

The solution framework proposed here is outlined in

Fig. 4. As easily imagined, Problem 1 is consists of two is-

sues: the exploration of the solution to the static problem (5),

and the control of the robot. So we decompose Problem 1

into the following problems.

Problem 2 (Feedback Exploration): Consider the feed-

back system in Fig. 4 (a), composed of the signal field S and

a dynamical system L. For a given S (but unknown), find a

set L of systems L satisfying (4) under any initial state.

Problem 3 (Controller Extraction): For the robot P ,

suppose that a solution L to Problem 2 is given. Then find a

controller K such that the feedback connection of P and K
in Fig. 4 (b) is equivalent to a system L∗ ∈ L in the sense

of the y-x relation.

Problem 2 is to find systems L which asymptotically solve

the problem (5) with the measurements of y. Problem 3 is to

decompose a system L into the robot P and a controller K,

where the system in Fig. 4 (a) is regarded as that in Fig. 2.

It is clear that the resulting K is a solution to Problem 1.
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III. FEEDBACK EXPLORATION BY SIMULTANEOUS-

PERTURBATION STOCHASTIC APPROXIMATION

To solve Problem 2, we employ the idea of a stochastic ap-

proximation technique, called the simultaneous-perturbation

stochastic approximation (SPSA) [6]. Since, as stated in

Section I, the original SPSA algorithm is not applicable to

our source seeking problem, we extend the SPSA algorithm

to a more appropriate version.

A. Generalized Simultaneous-Perturbation Stochastic Ap-

proximation for Source Seeking

A general form of the stochastic approximation algorithm

is given by

xk+1 = xk − akdk(xk, ckξk, εk) (7)

where xk ∈ R
n is the state, ak, ck ∈ R+ are the gains, ξk ∈

R
n is the random variable with the probability distribution

pk : Rn→ [0, 1], εk ∈R
l is the random noise, and dk : Rn

×R
n×R

l → R
n is the search direction. The algorithm cor-

responds to the steepest decent if dk(xk, ckξk, εk) = ∇f(xk)
for an objective function f : Rn → R.

For algorithm (7), we propose the search direction

dk(xk, ckξk, εk) :=

Tk













(f(xk+ck1Tkξk)+εk+)−(f(xk−ck2Tkξk)+εk−)

(ck1 + ck2)ξk1
...

(f(xk+ck1Tkξk)+εk+)−(f(xk−ck2Tkξk)+εk−)

(ck1 + ck2)ξkn













(8)

where f : R
n → R is a function, ξki ∈ R is the ith

element of the random vector ξk, and εk+, εk− ∈ R are

the noise terms on εk (i.e., εk := εk+ − εk−), ck1, ck2 ∈
{0} ∪R+ are the gains, and Tk ∈ R

n×n are matrices. For

ck := max{ck1, ck2}, we assume

ck > 0. (9)

Here, f , εk+, and εk− are the problem parameters, that is,

depending upon the problem to be solved, while ak, ξk (i.e.,

pk(ξk)), ck1, ck2, and Tk are the design parameters of the

algorithm. We call the algorithm by (7) and (8) the gen-

eralized simultaneous-perturbation stochastic approximation

algorithm or simply the G-SPSA algorithm.

Under several conditions, the G-SPSA algorithm solves

the static optimization problem

min
x∈Rn

f(x). (10)

This fact is formalized in Propositions 1 and 2.

Proposition 1: Consider the search direction

dk(xk, ckξk, εk) in (8). If

• the conditions on the problem parameters:

(A1) f is thrice differentiable,

(A2) E[ εk | (x0, x1, . . . , xk), ξk ] = 0 w.p.1 for all

k ∈ N,

• the conditions on the design parameters:

(B1) (a) the probability distributions pk (k = 0, 1,
. . .) are symmetric about zero (i.e., E[ξk] =

0), and |ξki| and |ξ−1
ki | are bounded w.p.1

for all (k, i) ∈ N× {1, 2, . . . , n},

(b) ξki and ξkj are independent for all (k, i,
j) ∈ N× {1, 2, . . . , n}2 such that i 6= j,

hold, then

E[ dk(xk, ckξk, εk) | xk ] = TkT
⊤
k ∇f(xk) +O(c 2k )

(as ck→0), (11)

where the left hand side expresses the expected value with

respect to ξk and εk.

Proof: See Appendix.

Proposition 1 implies that, under several assumptions, the

expected value of dk(xk, ckξk, εk) is nearly equal to the

product of the time-varying matrix TkT
⊤
k and the gradient

of f(xk). So if

T1T
⊤
1 = T2T

⊤
2 = · · · = T∞T

⊤
∞ = T (12)

holds for some nonsingular matrix T , the algorithm given by

(7) and (8) is an approximation of the so-called fixed-point

iteration for finding a root of T∇f(x) = 0. Furthermore,

since the roots of T∇f(x) = 0 are identical to those of

∇f(x) = 0, it is expected that the algorithm finds a root of

∇f(x) = 0. This conjecture is justified as follows.

Proposition 2: For the SPSA algorithm given by (7) and

(8), assume that there exists a root x∗ ∈ R
n of the equation

∇f(x) = 0. If

• the conditions on the problem parameters: (A1), (A2),

and

(A3) E[ f(xk ± ckξk)
2 ] is bounded for all k ∈ N,

(A4) E[ε2k+ ] and E[ε2k− ] are bounded for all k ∈ N,

• the conditions on the design parameters: (B1) and

(B2) limk→∞ ak = 0,
∑∞

k=0 ak = ∞,

limk→∞ ck = 0, and
∑∞

k=0 a
2
k/c

2
k <∞,

(B3) the random vectors ξk (k = 0, 1, . . .) are mutu-

ally independent, and xk and ξk are mutually

independent for all k ∈ N,

(B4) E[ ξ−2
ki ] is bounded for all (k, i) ∈ N ×

{0, 1, . . . , n},

(B5) Tk (k = 0, 1, . . .) satisfy (12) for some nonsin-

gular matrix T ,

• the coupled conditions on the problem and design

parameters:

(C1) x∗ is an asymptotically stable equilibrium of

ẋ(t) = −T∇f(x(t)), where the stability is in

the Lyapunov sense and T is given in (B5),

(C2) there exists a compact set S ⊆ R
n such that the

following conditions hold for every x0 ∈ S: (a)

ẋ(t) = −T∇f(x(t)) with x(0) = x0 results

in x(∞) = x∗; (b) xk ∈ S infinitely often for

almost all sample points of ξk (k = 0, 1, . . .),
(C3) supk∈N

‖xk‖ <∞ w.p.1

hold, then

lim
k→∞

xk = x∗ w.p.1. (13)
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Proof: In a similar way to [6], this is proven by the

Robbins-Monro Algorithm (see, e.g., [7]).

Therefore, under some conditions, a local minimum of the

problem (10) is given by the SPSA algorithm.

The above conditions are fairly standard in stochastic

approximation [6], [7]. Conditions (A1)–(A5) are concerned

with the function f and the noise term (εk+, ǫk−). (A1)

implies that f is smooth enough and (A2) resembles the

common martingale difference noise assumption. (A3) and

(A4) prescribes the second order moments of the function f
with the random perturbation by ξk and of the noise term.

Next, (B1)–(B5) are imposed for the parameters designed by

users, and then they will be a guideline. A typical parameter

choice of ak, ck1, ck2, pk(ξk), and Tk will be

ak :=
a

(k + 1)α
, ck1 :=

c

(k + 1)γ
, ck2 := −ck1, (14)

pk(ξk) :=
n
∏

i=1

B(ξki), Tk = I (15)

where a, α, c, γ ∈ R+ are arbitrarily given so that α ≤ 1
and α − γ > 0.5, and B is the probability distribution

for Bernoulli trial with outcome ±1 and equal probabilities.

(C1)–(C3) are technical conditions to guarantee the conver-

gence. (C1) is common for decent-type algorithms. (C2) and

(C3) are challenging to check, but it is known that they are

not restrictive conditions in practice, as addressed in [6], [7].

Similar to the original SPSA algorithm [6], the G-SPSA

algorithm has the following two features. First, the algorithm

solves the problem (10) when neither f nor ∇f is known,

and instead, only noisy measurements of f are available.

Next, the number of measurements to determine the search

direction is only two and is independent of the dimension

n of x. This merit can be understood by the fact that the

number of measurements for the difference approximation

of ∇f = [∂f(x)/∂x1 · · · ∂f(x)/∂xn]⊤ grows with n.

The proposed algorithm is equivalent to the original SPSA

algorithm in [6] if

ck1 ≡ ck2, Tk ≡ I (16)

in (8). Basically, the proposed algorithm is an extention by

the coordinate transformation, while the following difference

should be stressed:

• the search direction (8) is based on unequal two-sided

perturbations ck1Tkξk 6= ck2Tkξk, while the original

version is of equal perturbations ck1Tkξk = ck2Tkξk.

• the direction (8) is a time-varying function of

(xk, ckξk, εk) (by the time-dependent matrices Tk) un-

like the time-invariant original one.

These play a key role in solving the source seeking problem.

B. SPSA Based Solution to Problem 2

Now, we present a solution to Problem 2 based on the

SPSA algorithm given by (7) and (8). For the signal field S,

let us introduce the random variable

ε(t) := fσ(t)(x(t))− E[ fσ(t)(x(t)) | x(t) ], (17)

whose conditional expected value is zero, i.e.,

E[ ε(t) | x(t) ] = 0 ∀(t, x(t)) ∈ [0,∞)×R
n1 . (18)

By (3) and (17), S is expressed as

y(t) = E[ fσ(t)(x(t)) | x(t) ] + ε(t). (19)

Then by regarding x(t), E[fσ(t)(x(t))|x(t)], and ε(t) as xk,

f(x), and εk in the SPSA algorithm, we obtain a solution to

Problem 2.

Theorem 1: For the feedback system in Fig. 4 (a), sup-

pose that S is given. Let x∗ ∈ R
n denote the root of the

equation ∇f(x) = 0 (x∗ is uniquely determined by the

definition of fσ). Let also L be the set of stochastic systems

L such that

(i) SPSA condition (k = 0, 1, . . . ,∞)






x(tk1) = x(tk0) + ck1Tkξk,
x(tk2) = x(tk0)− ck2Tkξk,

x(t(k+1)0)= x(tk0)−akTkd̂(y(tk1), y(tk2), (ck1+ck2)ξk),
(20)

(ii) Boundness condition (k = 0, 1, . . . ,∞)

‖x(t)−x(tk0)‖
≤ rmax{‖ckTkξk‖, ‖akTkd̂(y(tk1), y(tk2), (ck1+ck2)ξk)‖}

∀t ∈ [tk0, t(k+1)0] (21)

hold for some

• monotonically nondecreasing time sequence (t00, t01,
t02, t10, t11, t12, . . .) such that (a) tij → ∞ as i → ∞
and (b) ti(j+1) − tij > η and t(i+1)0 − ti2 > η for all

(i, j) ∈ {0, 1, . . .} × {0, 1},

• parameters ak, ck1, ck2, pk, Tk (k = 1, 2, . . .) satisfying

(B1)–(B5) (and (9)),

• number r ∈ [1,∞),

where

d̂(y(tk1), y(tk2), (ck1+ck2)ξk) :=









y(tk1)−y(tk2)
(ck1+ck2)ξk1

...
y(tk1)−y(tk2)
(ck1+ck2)ξkn









. (22)

Then if (C2) and (C3) hold, the set L is a solution to

Problem 2.

Proof: Consider a system L ∈ L. Equation (19) and

the first two equations of (20) give y(tk1) = f(x(tk0) +
ck1Tkξk)+ε(tk1) and y(tk2) = f(x(tk0)−ck2Tkξk)+ε(tk2).
This implies that the third equation of (20) is the same as the

G-SPSA algorithm given by (7) and (8). Furthermore, by the

definitions of σ, fσ, and (17) and by the conditions (C3) and

(b) imposed for the time sequence, it is clear that (A1)–(A4)

and (C1) hold for f(x) := E[fσ(x)|x], εk+ := ε(tk1) and

εk− := ε(tk2). This and Proposition 2 prove

lim
k→∞

x(tk0) = x∗ w.p.1. (23)

On the other hand, limk→∞ d̂(y(tk1), y(tk2), (ck1 +
ck2)ξk) = 0 holds w.p.1 subject to (23). Thus, under (B1),

(B3), and (23), the right hand side of (21) converges to zero
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as k → ∞. This implies the convergence of the inter-sample

behavior, i.e., limt→∞ x(t) = limk→∞ x(tk0) w.p.1. This

and (23) imply (4). Hence, L is a solution to Problem 2.

IV. STOCHASTIC SOURCE SEEKING CONTROLLERS

This section gives a solution to Problem 3.

A. A General Solution to Problem 3

We can transform the condition (20) into














z(tk1) = ck1Rn1
(−θ(tk0))Tkξk,

z(tk2) = −ck2Rn1
(−θ(tk0))Tkξk,

z(t(k+1)0) = −akRn1
(−θ(tk0))Tk

× d̂(y(tk1), y(tk2), (ck1+ck2)ξk)

(24)

in the body fixed frame Σ(tk0). Here, let us choose ck1 := 0
and Tk := Rn1

(θ(tk0)) (k = 1, 2, . . .) by noting that they

do not violate (9) and (B6) and that TkT
⊤
k ≡ I . We then

have z(tk1) = 0, z(tk2) = −ck2ξk, and z(t(k+1)0) =

−akd̂(y(tk1), y(tk2), ck2ξk). This is a condition excluding

the position information of θ(tk0) in the world coordi-

nate frame and thus is suitable in the sensor-free situation.

In addition, for td ∈ R+, ∆z ∈ R
n1 , ∆ψ ∈ R

n2 , and

r ∈ [1,∞), we denote by

v

(

t, td, 0 →
[

∆z
∆ψ

]

, r

)

an input trajectory on the time interval [tc, tc + td] such

that, in the body fixed frame at time tc, P is steered

from [z(tc) ψ(tc)]
⊤ = 0 (the current position) to [z(tc +

td) ψ(tc + td)]
⊤ = [∆z ∆ψ]⊤ keeping ‖z(t)‖ ≤ r‖∆z‖

where tc is the time when v is applied to P . This expresses

a finite point-to-point controller for P .

Then our solution to Problem 3 is presented as follows.

Theorem 2: For the robot P and the set L in Theorem 1,

suppose that the following tuning parameters are given:

• monotonically nondecreasing time sequence (t00, t02,
t10, t12, . . .) such that (a) tij → ∞ as i → ∞ and

(b) ti(j+1) − tij > η and t(i+1)0 − ti2 > η for all

(i, j) ∈ {0, 1, . . .} × {0, 1},

• ak, ck2, pk (k = 1, 2, . . .) satisfying (B1)–(B5) subject

to ck1 ≡ 0,

• ∆ψki ∈ R
n2 (k = 1, 2, . . . ,∞, i = 1, 2),

• r ∈ [1,∞).

Then the controller K such that

u(t)=











































v

(

t, tk2 − tk0, 0 →
[

−ck2ξk
∆ψk1

]

, r

)

if t ∈ [tk0, tk2],

v

(

t, t(k+1)0 − tk2,

0→
[

ck2ξk − akd̂(y(tk1), y(tk2), ck2ξk)
∆ψk2

]

, r

)

if t ∈ [tk2, t(k+1)0]

(25)

for every k = 0, 1, . . . ,∞ is a solution to Problem 3.

Proof: For the feedback system in Fig. 4 (b), suppose

that K is given by (25). Then it is obvious that the two

conditions in Theorem 1 hold for ck1 := 0 and Tk :=
Rn1

(θ(tk0)).

From Theorems 1 and 2 and the relation TkT
⊤
k ≡ I , our

answer to the stochastic source seeking problem is presented.

Theorem 3: For the feedback system in Fig. 2, suppose

that P and S are given. If (C2) and (C3) hold for the G-

SPSA algorithm with the parameters ak, ck2, pk specified in

Theorem 2, ck1 := 0, and Tk := Rn1
(θ(tk0)), the controller

K in Theorem 2 is a solution to Problem 1.

We comment on how to obtain the point-to-point control

inputs v in (25). A unified method to obtain them is to

utilize the so-called Lie bracket motion (see, e.g., [8]). By

applying some periodic input, the robot P is steered into

a direction in the translational space R
n1 . The moving

direction is determined by the input period, the initial state,

and the accessibility distribution. Under some controllability

assumptions, we can find a period and an amplitude of the

periodic input which drives P to a desired position in R
n1 .

B. Source Seeking Controllers for Unicycle

Now, we focus on the unicycle in Fig. 3 and show that

there exist very simple source seeking controllers.

When ξk ∈ {−σ, σ}n for σ ∈ R+, the vector Tkξk is

linearly dependent on dk(xk, ckξk, εk) in (8). Using this fact,

we obtain the following result.

Theorem 4: For the feedback system in Fig. 2, suppose

that P is the unicycle (2) and S is given. Let K be the

discrete-time stochastic controller


















































ypre[τ+1] = y[τ ],

u[τ ] =







































[

0
1
h
δ[τ ]

]

if τ=0, 3, 6, . . . ,

[

−λ
h
ck

0

]

if τ=1, 4, 7, . . . ,

[

λ
h

(

ck − ak
ypre[τ ]−y[τ ]

ck

)

0

]

if τ=2, 5, 8, . . .

(26)

where τ ∈ N is the discrete time for the sampling pe-

riod h ∈ (η,∞) (η is the switching time period for fσ),

ypre[τ ] ∈ R is the state to save y(tk1), δ[τ ] is an i.i.d

random number drawn from the uniform distribution on

{π/4, 3π/4,−3π/4,−π/4}, λ ∈ R+ is given as λ :=
√
2,

and ak and ck (k = 0, 1, . . .) are arbitrarily given sequences

satisfying (B2). If (C2) and (C3) hold for the G-SPSA

algorithm with ak, ck1 := 0, ck2 := ck, the Bernoulli-

type distribution pk in (15), and Tk := Rn1
(θ(tk0)), K is a

solution to Problem 1.

The controller K steers the robot P as shown in Fig. 5.

Three steps on a line segment are repeated: the random

turn, the forward movement, and the forward or backward

movement. The first and second steps correspond to the first

input in (25). The final step does to the second input, and

its moving direction is determined by whether the slope

y(tk1)− y(tk2) is positive or not.
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(a) Step 0: Current position. (b) Step 1: Random turn.
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(c) Step 2: Forward move. (d) Step 3: Forward or backward

move.

Fig. 5. Robot motion by proposed controller in Theorem 4 (by repeating
these steps, the robot is guided to the source).

C. Example

Consider Problem 2, where the robot P is the unicycle (2)

and the signal field S is given by the functions

f1(x)=

([

x1
x2

]

−
[

110
80

])⊤[

0.01 −0.005
−0.005 0.01

]([

x1
x2

]

−
[

110
80

])

,

f2(x)=

([

x1
x2

]

−
[

90
90

])⊤[

0.01 0.001
0.001 0.003

]([

x1
x2

]

−
[

90
90

])

,

f3(x)=

([

x1
x2

]

−
[

109
110

])⊤[

0.02 0.003
0.003 0.01

]([

x1
x2

]

−
[

109
110

])

and the probability distribution q(1) = 0.15, q(2) = 0.15,

and q(3) = 0.7. Its source is argminx∈R2E[fσ(x)|x] ≃
[109.13 103.54]⊤. The controller K is given by Theorem 4

for h := 1 and the parameters ak and ck are given by (14)

with a := 15, α := 0.55, c := 10, and γ := 0.03.

Fig. 6 illustrates the contour plot of E[fσ(x)|x] and the

moving trajectory of P from the initial state (x(0), θ(0)) :=
([182 41]⊤, 10), where the isosceles triangles express

(x(tki), θ(tki)) (k = 0, 1, . . . ,∞, i = 0, 1, 2). We see that

the robot P is guided to the source by the simple controller.
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APPENDIX: PROOF OF PROPOSITION 1

Notation: Let ei be the ith standard basis of R
n. For

the thrice differentiable function f : R
n → R, let

f (1)(x) := (∇f(x))⊤ and f (j)(x) := [∂f (j−1)(x)/∂x1 · · ·
∂f (j−1)(x)/∂xn] ∈ R

1×nj

(j = 2, 3). Using this, f(x+ y)
is expressed by Taylor’s theorem as f(x + y) = f(x) +
f (1)(x)y + (1/2)f (2)(x)(y ⊗ y) + (1/6)f (3)(x̄)(y ⊗ y ⊗ y)
where ⊗ expresses the Kronecker product and x̄ is a vector

on the line segment between x and x+ y.

x
1

x
2

0 50 100 150 200
0

50

100

150

200

Fig. 6. Moving trajectory of unicycle by G-SPSA based controller.

Proof: Noting (A1), we apply Taylor’s theorem to the terms

f(xk + ck1Tkξk) and f(xk − ck2Tkξk) in (8). Then

f(xk + ck1Tkξk)− f(xk − ck2Tkξk)

(ck1 + ck2)ξki

= f (1)(xk)Tk
ξk
ξki

+
(ck1−ck2)

2
f (2)(xk)(Tk ⊗ Tk)

ξk ⊗ ξk
ξki

+
1

6

(

c3k1
ck1+ck2

f (3)(x̄k1) +
c3k2

ck1+ck2
f (3)(x̄k2)

)

× (Tk⊗Tk⊗Tk)
ξk⊗ξk⊗ξk

ξki
(27)

where x̄k1 and x̄k2 are vectors on the line segment between

xk + ck1Tkξk and xk − ck2Tkξk. Here, from (B1) (b) and

the fact that (B1) (a) implies E[ξ−1
ki ] = 0, the relations

E[ξk/ξki] = ei and E[(ξk ⊗ ξk)/ξki] = 0 hold, which gives

E

[

f(xk + ck1Tkξk)− f(xk − ck2Tkξk)

(ck1 + ck2)ξki

∣

∣

∣

∣

xk

]

= f (1)(xk)Tkei +O(c 2k ) = e⊤i T
⊤
k ∇f(xk) +O(c 2k ).

Therefore, by applying this and (A2) to the expected value

of the right hand side of (8), we get (11).
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