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Abstract

The fundamental notion of bisimulation equivalence for concurrent processes, has escaped the
world of continuous, and subsequently, hybrid systems. Inspired by the categorical framework of
Joyal, Nielsen and Winskel, we develop novel notions of bisimulation equivalence for dynamical
systems as well as control systems. We prove that these notions can be captured by the abstract
notion of bisimulation as developed by Joyal, Nielsen and Winskel. This is the first unified notion of
system equivalence that transcends discrete and continuous systems. Furthermore, this enables the
development of a novel and natural notion of bisimulation for hybrid systems, which is the final goal
of this paper.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Embedded computing devices have fostered the paradigm of digital programs interact-
ing with an analog world. Examples include portable accessories such as mobile phones
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and PDAs; medical equipment such as defibrillators, dialysis machines and MRIs among
many other systems. These embedded computing devices interact with the continuous en-
vironment reacting to external stimuli while regulating the behavior of several continuous
processes. Hybrid systems have recently emerged as a mathematical model for embedded
computing devices interacting with the continuous environment, see for exfp|24]

for an introduction to hybrid systems. The interaction between discrete and continuous com-
ponents creates enormous difficulties in the analysis and design of this class of complex
engineered systems. In particular, a major challenge in the research area of hybrid systems
is how to define notions of equivalence enabling the development of compositional analysis
and design techniques.

Bisimulation is a notion of system equivalence that has become one of the primary tools
in the analysis of concurrent processes. When two concurrent systems are bisimilar, known
properties are readily transferred from one system to the other. For purely discrete systems
these problems are now reasonably well understood and for every notion of concurrency
or process algebra there has been a different notion of bisimulation and frequently several
competing notions. In [12], Joyal, Nielsen and Winskel proposed the notigpeanf of open
mapsin an attempt to understand the various equivalence notions for concurrency in an
abstract categorical setting. They also showed that this abstract definition of bisimilarity
captures the strong bisimulation relation of Milner [19]. Subsequently in [7] it was shown
that abstract bisimilarity can also capture Hennessy’s testing equivalences [9], Milner and
Sangiorgi's barbed bisimulation [20] and Larsen and Skou'’s probabilistic bisimulation [16].
More recently, in [4], a bisimulation relation for Markov processes on Polish spaces was
formulated in this categorical framework, extending the work of Larsen and Skou. Other
attempts to formulate the notion of bisimulation in categorical language, include the coal-
gebraic approach of [11,23]. We will further discuss these methods in Section 7 where we
compare our approach to those in the literature.

Despite the plethora of bisimulation notions in concurrency, the notion of bisimulation has
escaped the world of continuous and dynamical systems, as noted in [29,28]. Furthermore,
the lack of bisimulation notions for continuous systems has impeded developing bisimu-
lation equivalence for hybrid systems. Inspired by the abstract framework in [12], in this
paper we transcend from the discrete to the continuous world and develop novel notions of
bisimulation equivalence for dynamical systems, control systems, and subsequently hybrid
systems.

Despite the existence of traditional notions of equivalence in dynamical systems and con-
trol theory [13], the notion of bisimulation offers two novelties even in the more traditional
setting of continuous systems. Dynamical systems are deterministic systems for which
bisimulation equivalence is equivalent to trajectory equivalence. For control systems, how-
ever, one can think of the control input as producing nondeterministic system behavior,
and therefore bisimulation equivalence is a finer notion of equivalence for nondetermin-
istic dynamical systems than trajectory equivalence. Furthermore, system equivalence by
bisimulation relation is a notion of equivalence that does not require control systems to be
of minimal dimension or even of the same dimension.

There has been very recent work by the second and the third authors, characterizing the
notion of bisimulation for dynamical and control systems in a functional setting, that is, the
bisimulation relation is a functional relation [21,27]. In [8], we have extended this notion
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to relational setting and further have shown that this equivalence relation is captured by
the abstract bisimulation relation fif2]. In this paper, we also develop novel and natural
notions of bisimulation for hybrid systems, and show that this notion is also captured in the
framework of [12]. In addition to providing novel notions of system equivalence for dynam-
ical and control systems, unifying the notion of bisimulation across discrete and continuous
domains, our results also extend the applicability of the categorical framework to the do-
main of hybrid dynamical systems. This completes our program of unifying bisimulation
notions for discrete, continuous, and hybrid systems.

Our choice to work with path objects and path categories a la Joyal, Nielsen and Winskel
is due to the fact that in this approach, the flow of the system is made explicit and the
notion of abstract bisimulation has the idea of paths and trajectories built into the definition
through thé?-open maps. We have found this approach very beneficial in trying to formulate
a notion of bisimulation for dynamical and especially for hybrid systems where it provided
us with an idea as to what the abstract notion of time should be for a hybrid system. The
approach oP-open maps generalizes from the context of labeled transition systems, where
they were first introduced, to that of dynamical, control and hybrid systems.

The rest of the paper is organized as follows: In Section 2, we briefly review the abstract
formulation of the notion of bisimilarity as developed in [12]. Section 3 provides the main
application of this method in concurrency theory and recalls that the abstract bisimilarity
captures Milner’'s strong bisimulation relation. Section 4 reviews our recently developed
notions of bisimulation for dynamical systems and Section 5 does the same for control
systems. The main results of the paper are contained in Section 6 where we introduce and
discuss bisimulation relations for hybrid systems. Section 7 briefly reviews the coalgebraic
approach to bisimulation and discusses the reasons for our choice of working within the
framework of [12]. We also review some other categorical approaches to the modeling
of hybrid systems and compare those to our models. Finally in Section 8 we conclude
our study while presenting some future research directions. Given that the sections on
dynamical, control and hybrid systems use definitions and facts from differential geometry,
we have included an appendix that reviews as much of this background material as we need
to develop our work.

2. Bisimulation and open maps

The notion of bisimilarity, as defined in [19], has turned out to be one of the most
fundamental notions of operational equivalences in the field of process algebras. This has
inspired a great amount of research on various notions of bisimulation for a variety of
concurrency models. In order to unify most of these notions, Joyal et al. gave in [12] an
abstract formulation of bisimulation in a category theoretical setting.

The approach of [12] introduces a category of models where the objects are the systems
in question, and the morphisms are simulations. More precisely, it consists of the following
components:

e Model categoryThe categoryv of models with objects the systems being studied, and
morphismsf : X — Y in M, that should be thought of as a simulation of syskm
systemn.
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e Path category The categoryP, a subcategory o1, of path objectswith morphisms
expressing path extensions.

The path category will serve as an abstract notion of time. Since the path caleipoay

subcategory of the catega of models, time is thus modeled as a (possibly trivial) system

within the same categoiM of models. This allows the unification of notions of time across

discrete and continuous domains.

Definition 1. A path or trajectoryin an objectX of M is a morphismp : P — X in M
whereP is an object irP.

Let f : X — Y be a morphism irM, andp : P — X be a path inX, then clearly
fop: P — YisapathinY. Note that a path is a morphismi and so is the mapand
hencef o p is a map inM. This is the sense in which simulates Xany path (trajectory)
pin X is matched by the patfio pinY.

The abstract notion of bisimulation jh2] demands a slightly stronger version of simu-
lation as follows: Lein : P — Q be a morphism ifP and let the diagram

s

~
~

\Q

3
Q~—"

commute inM, i.e., the pathf o p in Y can be extended via to a pathg in Y. Then we
require that there exist: 9 — X such that in the diagram

S
Q~——
l@\ lm
~

<~

both triangles commute. Note that this means that thegadim be extended viato a path
r in X which matcheg. In this case, we say thgt: X — Y is P-open It can be shown
thatP-open maps form a subcategoryMf

Proposition 2. Let M be a category and® be the subcategory of path objects. Then
P-open maps itM form a subcategory d¥l.

Proof. Let X be an object iV, we first show thaidy : X — X is aP-open map. Let
p:P— Xandg: Q — Xandm : P — Q,whereP andQ are path objects iR. Assume
also thatidyp = gm. Thenletr = ¢ : Q — X:idxr = idxqg = g andgm = p. Now
supposef : X — Y andg : Y — Z areP-open maps, lep : P - X andg : Q — Z,
andm : P — Q. Also assume thaigf)p = gqm.Asg : Y — Z is aP-open map, there
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exists arr : Q — Y such that the triangles in the following diagram commute:

fop

q

and asf : X — Y is P-open, there exists a map: 9 — X making the triangles in the
following diagram commute:
p

P >

7

Now (gf)s = g(fs) = gr = g, using the second and the first diagrams for the last two
equalities, respectively. Alson = p from the second diagram abovel]

The definition ofP-open maps leads to the notionRbisimilarity. We say that objects
X1 andX» of M areP-bisimilar, denoted\; ~p X» iffthereis a spanX, f1, f2) of P-open
maps as shown below:

X
N
X1 X5

The relation ofP-bisimilarity between objects is clearly reflexive (identities Brepen)
and symmetric. Itis also transitiy@ovided the model categoM has pullbacksdue to the
fact that pullbacks oP-open morphisms afe-open (se¢l2] for a proof). Indeed suppose
X1 ~p X2 andXz ~p X3, thenX; ~p X3 as can be seen from the following diagram.

Y
B
X X’
¥oN
X1 X5 X3

Note that givenX1 andX» in M, if there exists @&-open morphisny : X1 — X», or aP-
open morphisng : X, — X1, thenX; andX; areP-bisimilar. The spans a1, idx,, f)
and(Xy, g, idx,), respectively.

Not all model categories that we consider have pullbacks of all morphisms. In particular
the category of smooth manifolds and smooth mappings does not have pullbaaks of
morphisms. We discuss the solution to this problem in the sections below.
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3. Labelled transition systems

We briefly recall the definitions and results[it?] for labeled transition systems. We
will also refer to these definitions and results later, when we discuss hybrid dynamical
systems.

Definition 3. A labeled transition systeffi = (S, i, L, —) consists of the following:

e A setSof states with a distinguished stdte S called theinitial state. Note that we do
not requireSbe finite.

e A setlL of labels.

e Aternary relation~C § x L x S.

The model category, of transition systems has labeled transition systems as objects and
a morphismf : 71 — T with Ty = (81, i1, L1, —1) andT> = (82, i2, L2, —2) IS given
by f = (g, A) wheres : S1 — So with o(i1) = ip andl : L1 — Ly is a partial function
such that
Q) (s,a,s") e—~1andA(a) defined, impliega(s), A(a), o(s")) e—» and
(2) (s,a,s") e—1andA(a) undefined, implies(s) = a(s’).
In order to discuss the usual bisimilarity of transition systems we need to restrict our model
category to the subcategary of transition systems with the same labellsahd morphisms
of the form f = (g, id) which preserve all the labels. The categdny has both binary
products and pullbacK42].

Definition 4. Given transition systems, = (S1, i1, L, —1) andTy = (S2,i2, L, —2) in
T, we define their product = (S, i, L, —) as follows:

e § =51 x S2 with projectionsp; : S — Sy andp, : S — S2,

o [ = (i1,12),

o ((s1,52),a, (s, 55 €= iff (s1,a,s7) e>1and(s2, a, s5) €.

It is straightforward to show that", (p4,id 1), (p,, id.)) is a product in the categorfly;..

Definition 5. Given f1 = (o1,idy) : T1 — U and f2 = (g2,idr) : T» — U morphisms
in Ty with Ty = (S1,i1, L, —1) andT> = (S2, i2, L, —>2). We define the pullback of;
andf, as(T, f{, fy) with f{ : T — T>, f;: T — Ty as follows:
e T =(S,i,L,—) where,

o 8§ ={(s1,52) | 01(s1) = 02(s52)} S S1 X S2,

o i = (i1, i2),

o ((s1,82), a, (s7,59)) €~ iff (s1,a,s]) e—>1and(s2, a,s;) €e—>2
e f] = (p,, idr) wherep, : S — S is the projection map.
e f5=(py1,id.) wherep, : § — Sj is the projection map.

We define the path categoBran as the full subcategory ;. of all synchronization
trees with a single finite branch (possibly empty). Now a path in a transition sylstem
T, is a morphismp : P — T in T, with P an object inBran. Clearly this simply
means that we look at the traces of the transition systemBfée; -open maps i ; are
characterized as follows:
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Proposition 6. TheBran-open morphisms off ; are morphismso, id;) : T— T’ with
T,T' € Tt such that
If 6(s) — s"in T, then there exists € S, s — u in T anda(u) = s’

We now recall the strong notion of bisimulation introduce(flif]. Let 73 and7>» be two
transition systems ii 7, as in Definition 5 above.

Definition 7. A binary relationR C S§; x S is astrong bisimulatiorif (s, ) € R implies,
foralla € L:

(1) Wheneves —51 s’ then, there is’, t =5, ¢ and(s’, ') € R,

(2) Whenever —55 ¢ then, there is’, s =1 s’ and(s’, ') € R.

Transition system®; and7» are called strongly bisimilar, writtefy, ~ 7>, if (i1,i2) € R
for some strong bisimulation relatidg. The following theorem, proven {12], shows that
the abstract notion dBran ; -bisimilarity coincides with the traditional notion of strong
bisimulation.

Theorem 8(Joyal et al.[12]). Two transition system@ence synchronization treesver
the same labeling set, lare Bran -bisimilar iff they arestrongly bisimilarin the sense of
Milner [19].

In the next sections, we consider the notiofPdfisimilarity in the categories of dynam-
ical, control, and hybrid systems.

4. Dynamical systems

The material in this and the subsequent sections require some background knowledge
on differential geometry that we have included in the Appendix for the convenience of the
reader.

We begin with a motivating example. Suppose we would like to describe the evolution of
the temperature inside a car in a cold winter day when we need the heating system turned
on. If we denote by the temperature inside the car andyihe temperature outside, it is
natural to assume that, singe> y, the interior of the car will cool down until reaching
the outside temperature. Such decrease is described by the dergfa‘(w)eof temperature
x(#) which can be described by

%X(t) =c(y —x()), 1

wherec is a positive coefficient describing how well the car is thermally isolated from

the outside. This decrease can, however, be balanced by the car heating system. If heat
is produced at rata we can modify {) to account for the produced heat resulting in the
differential equation:

dx(t)/dt = c(y — x(¢)) + u. (2)
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This is an example of a dynamical systém R — R x Rwith X (x) = (x, ¢(y —x) +u).
Given a value for the temperatux€0) inside the car at time = 0, Eq. ) completely
defines the value of the temperatut@) for all future times € R.

A dynamical system or vector field on a manifditlis a smooth section of the tangent
bundle onM, that is, a smooth maj : M — TM such thatry X = idy, wherery, :
TM — M is the canonical projection of the tangent bundle onto the manifold

We proceed to define the model categbmn of dynamical systems. The objectsiyn
are dynamical systems : M — TM whereM is a smooth manifold. A morphism Dyn
from objectX : M — TM to objectY : N — TN is a smooth mag : M — N such that
the diagram

v LN

xl lY
™ L N

commutes. Thus related systems are said tbrbated[14]. The identity morphisms and
composition are induced by those in the cateddan of smooth manifolds and smooth
mappings.

We proceed to define the path categéras the full subcategory dyn with objects
P : I — TI,whereP(t) = (¢t,1) andl is an open interval dR containing the origin. Note
thatl is a manifold since it is an open set and it is also parallelizable (trivializable), that is,
T1=1 x R. Observe thaP represents the differential equation(d)/ds = 1 modeling a
clock running on the intervdl at unit rate. Note that any other choi®é : I — T with
P'(t) = (¢, ¢), 0 # ¢ € R, for path object is isomorphict® : I’ — TI'via f : P/ — P
with f(¢) = tc. Herel’ = {t/c|t € I}.

Definition 9. A path or trajectoryin a dynamical systenX : M — TM is a morphism
¢ : P — X inDyn, wherePis an object irP. More explicitly, apatitisamapc : I — M
such that the following diagram commutes.

I —+ M

|

Tl — T™M

This means that a path lis a smooth map : I — M for some open intervdlsuch that
c'(t) = X(c(1)) forall t € I. Thus, a path irX is just an integral curve iM. Observe that
givenapaticin X, andf : X — Y, f ocis a path inY. This is the sense of simulating
or over-approximating X

The next issue to understand is the meaning of path extension. Suppoge— T1
andQ : J — TJ are objects irP with 1, J open intervals irk containing the origin, and
m : P — Q. Thenmis a smooth map frorhto J, such thain’(t) = 1 orm(¢) = ¢ — 1o for
somerg € Rand forallr € 1.
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We now introduce the following notation: léty (x1, x2, r) denote the predicate that is
true iff systemX evolves from state; to statexs in time |z|. Hence,@y (x1, x2, 1) is true
iff there is an open intervdlin R containing the origin and an integral curwe I — M
such thate(0) = x; andc(t) = x»2. The following important result will be central to the
characterization oP-open maps ibyn.

Theorem 10(Boothby[5]). Let X be a smooth vector field on a manifold M and suppose
p € M. Then there is a uniquely determined open intervaRofl (p) = (a(p), f(p))
containingr = 0 and having the properties
(1) there exists a smooth integral cur¢&r) defined o/ (p) and such that"(0) = p;
(2) given any other integral curvé (1) with G(0) = p, then the interval of definition of G

is contained in/ (p) and F (1) = G(¢) on this interval

The characterization d?-open maps is given by the following proposition.

Proposition 11. Given the dynamical systems X on M and Y orfN X — Y is P-open
if and only if
For any stater; of X (x1 € M) andr € R, if ¢y (f(x1), y2, 1), then there exists, € M
such thatp y (x1, x2, 1) wherey, = f(x2).

Proof. Supposef : X — Y is aP-open map andy (f(x1), y2,t). Then there exists a
pathd; : J1 — N such thatd1(0) = f(x1) anddi(r) = y2. Then, by the existence and
uniqueness theorem for vector fields there exists agatii — N with J maximal such
thatd(0) = f(x1) and thus/; C J andd1(r) = d(r) forall ¢ € J;. On the other hand, there
is a pathc : I — M with ¢(0) = x1 for some open intervdlof R. Thus f¢(0) = f(x1).
By maximality,/ € J and f¢(r) = d(¢) for all r € 1. Thus the following diagram (with
the inclusion map) commutes:

I —S+m

1,7

J —— N
TheP-openness df then implies that there exists J — M suchthati = candfr =d.
Hence we havei(0) = ¢(0) = x1 and fr(t) = d(t) = y». Letxy = r(¢), then clearly we
have established y (x1, x2, 1).

Conversely, suppose that the condition of Propositibholds and giveR, Q,m : P —
QO,withp: P - X andqg : Q — Y, the equationfp = gm holds. Note that as was
observed earlierwitt? : I — TI andQ : J — TJ, m(t) =t — o for somery € R.
Consider the poinp(0) € M, by Theorem 10 there exists an integral cufvel — M
with I maximal such thaf(0) = p(0). We will show that for every € J, ¢t + 1 € I.
Suppose there existstas J such that + 79 ¢ 1. Note thatq is aDyn-morphism, so we
havedy (¢(—t0), q(t), to+1), butdy (q(—10), q(1), to+1) = Py (g(m(0)), (1), 1o +1) =
oy (f(p(0)), q(1), 1o + t) where the latter equality follows from assumption. Hence, there
exists a pointt € M such thatpy (p(0), x, 1o + t) with f(x) = ¢(¢). Hence, there exists
an integral curve: : I. — M with ¢(0) = p(0) andc(t +10) = x, andt + 19 € I. \ I
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contradicting the maximality of. Now definer by r (1) = 7 (s + o) for all t € J. Clearlyr
is aDyn-morphism and is well defined. Nowyn (0) = r(—19) = 7(0) = p(0) and hence
rm = p. On the other handfr(—t) = f7(0) = fp(0) = gm(0) = g(—19) and hence
fr=gq.

Intuitively, this condition simply requires thgt(s) be extendible on both sides if
necessary to a solutiotir) of X that matches the solutianof, i.e., f (r(t)) = ¢(¢) for all
teJ. O

In the special case where vector fields eoeplete that is solutions exist for all time
(i.e., for allz € R), the previous proposition takes the following form.

Proposition 12. Let X and Y be complete vector fields on manifolds M and N respectively.
Then anyf : X — Y is P-open

Proof. Note that for complete vector fields any integral curve is defined on the whole of
R. Supposep : P — X andq : Q — Y are paths and thatp = gm. Recall that

m : P — Qis given bym(t) = t — g for somerg € R. Consider the poinp(0) € M,

then by Theoreml0 and completeness Xf there exists an integral curde: R — M such
thatd(0) = p(0), definer : J — M byr(t) = d( +tp) forall € J. Clearlyr is a
Dyn-morphism. Now,fr(—t9) = fd(0) = fp(0) = gm(0) = q(—1o) and hencefr = g.
Similarly, rm(0) = r(—t9) = d(0) = p(0) and hencem = p. O

Recall that by the general definition in Section 2, two objetisand X, in the model
category aré>-bisimilar if there is a span d?-open maps, that is, an obje¢with P-open
mapsf1 : X — Xiandf> : X — Xp. TheP-bisimulation relation has to be an equivalence
relation and for that purpose one requires the existence of pullbacks in the underlying model
category, to ensure transitivity. However, as it is well known in differential geometry [1,14],
in the categoryMan of smooth manifolds and smooth mappings, arbitrary pullbacks do not
exist. Structure needs to be imposed on the maps in order to guarantee that pullbacks exist.

Definition 13. Given smooth manifolds andN, a smooth magf : M — N andx € M,
letT, f : T\M — TN be the differential of. We say that:

() fis animmersionatx if and only if the mapr, f is injective.

(iiy fis asubmersioratx if and only if the magr, f is surjective.

Definition 14. Let M, N be smooth manifolds anfl: M — N be a smooth mapping and

P be a submanifold oi. The magf is transversalon P iff for eachx € M such thatf (x)
lies in P, the composite

T f
T,(M) = Try(N) = Tray(N)/ T (P)
is surjective.

In particular, if for everyx € M, T, f is surjective, that is, if is a submersion o,
then the composite in the definition above will be surjective and hence every submersion
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f : M — N is transversal on every submanifdtbf N. The importance of transversality
is that one can prove submanifold property, that is, gifem/ — N a smooth transversal
map on a submanifol@ of N, f~1(P) is a smooth submanifold o{l.

Definition 15. Given smooth mapg : M — P andg : N — P, we say thaf andg are
transversal iff x g : M x N — P x P is transversal on the diagonal submanifdlg of
P x P.

Proposition 16 (Abraham et al[1]). Let M and N be smooth manifolds ajidc M — N
a smooth mapthen graplif) is a smooth submanifold af x N.

Proposition 17. The categorjMan has transversal pullbacks

Proof. SupposeM, N, P are smooth manifolds angy : M — P andf, : N — P are
smooth transversal maps. Form the fiber produdiaindN on P, denotedM xp N =
{(x,y) e Mx N | fi(x) = f2(y)}.As f1andf> are transversal f1 x f2) 14p = M xp N

is a submanifold of\f x N, the smooth structure is induced by thatdéfx N, for more
details sed14]. The rest of the proof consists of checking the universal property of the
pullback which follows from the set theoretical constructiofl

Obviously transversality is a sufficient condition and hence there are other pullbacks in
the categoryMan. In view of this proposition we have the following result.

Proposition 18. Pullbacks of submersions existsMan. Moreover the pullback of any
submersion is a submersion

Proof. Firstnote thatthe transversality condition foragivén M — Pandf, : N — P

is equivalent to the following condition: for any € P such thatp = f1(x) = f2(y) for
somex € M andy € N, im(Ty f1) +im(Ty fo) = T, P [14]. In other words, the tangent
spaces on the left together must span the whol&,dt. Now given thatf; and f> are
submersions, we conclude thai(T, f1) = im(7y f2) = T, P and hence transversality
follows. To prove the second statement, recall that the pullback morphisms are projec-
tions restricted taM xp N, let g1 : M xp N — N be the pullback off; (see the
diagram below)Tg1 : T(M xp N)=TM x7p TN — TN. Given any(x, y) € M xp N,
Tix,81 2 TeM X7y p TyN — TyN iS surjective asf; is a submersion. Hengg is a
submersion.

g

After all these preliminary results in the categdfgan of manifolds, we can finally get
to our desired goal in the category of dynamical systems.
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Proposition 19. The categonDyn has binary products and transversal pullbacks

Proof. Given the dynamical system¥ : M — TM andY : N — TN, defineX x Y :
M x N — TM x TN=T(M x N) by (X x Y)(x,y) = (X(x), Y(y)). The projections
m: X xY — Xandnp: X x Y — Y are morphisms iDyn as can be easily seen from
the definition.

Let X, Y andZ be dynamical systems on the manifoltds N, P respectively andf1 :
X > Zandf,: Y — Z.Byassumptionthe mapg : M — Pandf, : N — P are
transversal, s8¢/ x p N is a smooth submanifold af x N.We define the dynamical system
W:MxpN—T(MxpN)TM xrp TN, denotedX xp Y by W = X X Y|y« ,n. FOr
this definition to be well-defined one has to ensure that for every oint) € M xp N,
(X x Y)(x,y) € TM x7p TN, in other words one has to show that the vector fi€lg Y
is tangent to the submanifold x p N. We proceed by proving the equivalent statement:
forany(x, y) € M x p N the flow of (x, y) alongX x Y at any timet (for which the flow
is defined), denoteBIl XY (x, y) isin M xp N.

(Zo f1)(x) =(Zo f2)(y), as(x,y) €M xpN,

T, f1X(x) = Ty f2Y (y), as f1, f» areDyn-morphisms
(Lx f)lx = (Ly 2y, Lie derivative

J1FIX () = f2(FI) (), by integration

FIX*Y(x,y) e M xp N, by definition

The fact thatM xp N is a pullback in the categoriylan implies thatW is a pullback
inDyn. O

In this case, as we have seen above, we can only guarantee the transversal pullbacks.
Hence we modify the definition fd?-bisimulation to ensure that it becomes an equivalence
relation. That is, we require that there be a spaR-open surjective submersions.

Definition 20. We say that two dynamical systenXy and X, are P-bisimilar, denoted
X1 ~p X, if there exists a spa(Z, f1 : Z — X1, fo : Z — X>2) of P-open surjective
submersions.

Note that if there exists B-open surjective submersigh: X — Y, thenX ~p Y with
the span X, idy, f).

Proposition 21. The relation ofP-bisimilarity is an equivalence relation on the class of
all dynamical systems.

Proof. Reflexivity follows from the fact thaid y is a P-open surjective submersion for

any dynamical systerX. Symmetry is trivial. For transitivity, suppose th&t ~p X»

and X2 ~p Xsz. Then, there are the spagi, f1 : Z1 — X1, f2 : Z1 — X>2) and

(Z2 : g1 : Z2 — X2,82 : Z2 — X3). The pullback off, and g1 exists as these are
submersions, denote these pullbacksfhyndg;, respectively. We also know thg§ and

g1 areP-open surjective submersions, as pullback preserves all these properties. Moreover,
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the composition oP-open surjective submersions i®apen surjective submersion. Thus
we have the span ¢#-open surjective submersiong, fig; : Z — X1,82f5: Z — X3)
whereZ is the vertex of the pullback squarel]

We proceed with a definition of bisimulation for dynamical systems, for this we need
a notion of a well-behaved relation. We will show that bisimulation &doisimulation
coincide. The following definition which seems to be new, is inspired by a relevant definition
for equivalence relations on manifolfils 25].

Definition 22. Let M andN be smooth manifolds aril@ be a relation fronM to N, that is
to say,R € M x N.We say thaR is regulariff

e R is a smooth submanifold dff x N,

o the projection maps; : R — M andny : R — N are surjective submersions.

Proposition 23. Let M, N and P be smooth manifolds a®iC M x N andS € N x P
be regular relations. Thel§ o R € M x P is a regular relation

Proof. As R andS are regular relations the following pullback exists
f2

RXNS—>

4

R — 12
Note thatR xy S = {(r,s) |m1(s) = m2(r)} = {(x,y,Y,2)|y = y'}. Now consider

RxNS "2 M x P, thenSoR = (m1 x m2) (R x v S). However,t; x o is a submersion

and hence an open map. TI8iSR is an open subset 8f x P and so a smooth submanifold

of M x P. Furthermoren; : SoR — M isgivenbyR xy S A R 5 M which is a
surjective submersion. Similarly far, : So R — P. U

Definition 24. Given two dynamical system$on M andY on N, we say that a relation
R € M x N is abisimulationrelation iff
(1) R is aregular relation,
(2) forall (x,y) e M x N, (x,y) € Rimplies for allz € R,
o if ¢y (x,x’, 1), there exists’ € N such thaipy (v, y', 1) and(x’, y") € R,
o if ¢y (v, 1), there exista’ € M such thatpy (x, x’, 1) and(x’, y') € R.

We say that two dynamical systemXsandY on manifoldsM and N, respectively are
bisimilar if there exists a bisimulation relatioR € M x N.

Theorem 25. Given dynamical systems X and Y on manifolds M and N respeciivehd
Y are bisimilar iff they ard>-bisimilar.

Proof. Suppose thak ~p Y and(Z, f : Z — X,g : Z — Y) is the span where
Z : P — TP. Note thatgraph(f) € P x M andgraph(g) € P x N are regular
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relations. Consider the converse relatigraph( /) and letR = graph(g) o graph(f).
It can be shown thagraph(f) is regular. Also, note that by the proposition aboRejs
regular. Let(x, y) € R and ¢y (x,x’, 1), then there exists a € P such that(x, z) €
graph(f) and (z, y) € graph(g), sox = f(z). Asfis aP-open map, then there exist
7/ € P such thatp,(z,7/,1) and f(z') = x/, i.e. (z/,x") € graph(f). Lety’ = g(z’),
thenoy (g(2), g(z). 1) = ¢y (y,y', 1) and(x’, y’) € R. Similarly, the other bisimilarity
condition is satisfied.

Conversely, suppose thdtandY are bisimilar andr is the bisimulation relation. AR
is regular, it is a smooth manifold. Consider the dynamical systenR — TR defined
by Z = (X x Y)|r. Note that as in Propositioh9 for Z to be well defined, one has to
show thatX x Y is tangent to the submanifol®@. We prove: for any pointx, y) € R,
FIXY (x,y) = (FIX(x), FIY () € R. Let FIX(x) = x/, then¢y(x,x',1) and asR
is a bisimulation relation, there exist$ such thatpy (v, y',#) and(x’, y’) € R, where
y = FIY(y). Alson; : R — M is a surjective submersion, &is regular. We need to
show thatry is P-open. Letoy (m1(x, y), x", 1) = ¢x(x, x', 1), then there exists’ such
thatdy (v, y', 1) and(x’, y") € R, s0¢,((x,y), (x',y"),t) andni(x’, y') = x/, somny is
P-open. Similarly forr, and hencé€Z,ny : Z — X, np : Z — Y) is a span oP-open
surjective submersions and heri¢e~p Y. [

The above theorem shows that the abstract notioR-bisimilarity coincides with the
expected and natural notion of bisimulation for dynamical systems.
The following gives an example of two bisimilar dynamical systems.

Example 26. Consider the vector field on M = R? defined byi = Ax, where
13
A [4 2} .
SinceM is a Euclidean space we can make the identificafibh= R? x R? andX as a
map fromM to TM is then described b (x) = (x, Ax). Also consider the vector fieNd

onN = R defined byy = 5y. The linear magy : R?> — R defined byf (x1, x2) = x1+x2
is aDyn-morphism fromX to'Y, indeed:

x1 + 3x2

TFX(x)=[1 1] [4x1+2x2

] = 5x1 + 5x2 = 5(x1 + x2) = 5y = Y (f(x)).

As linear vector fields are known to be complgé we have by Proposition 12 théis
P-open. Note thatis a surjective submersion. It then follows tbaandY are bisimilar by
thespanX,id: X - X, f: X —> Y).

We now turn our attention to control systems.

5. Control systems

In this section we extend the treatment in the previous section to control systems. The
extensions are in many cases straightforward and hence we have omitted the proofs of
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some propositions and theorems. On the other hand, we give enough details on product and
pullback constructions.

Before we proceed with the mathematical definitions, we shall motivate the idea of a
control system. Recall the example of a dynamical system in Se¢tidrere we modeled
the temperature change in a car. Assume now that we are inside the car and that we can
change the rate at which heat is generated by the car’s heating system. Having the possibility
of changing the value af leads us to regard, not as a constant, but as an input allowing
to alter the temperature evolution. Eq. (2), that we repeat here for convenience:

%X(I) =c(x() —y) +u, (3)

now defines a control system: R x R — R x Rwith X (x, u) = (x,c(y —x) +u). In

this case, a value for the temperature at time0 does not uniquely define its future values
since by changing over time we can alter the temperature evolution. When the heating
system is automatic we do not need to play directly with the valugarfd only have to
specify a desired value for the temperature. An embedded system will then measure the
temperature inside and outside the car and automatically adjust the valte ofder to

reach the specified temperature as quickly as possible.

We define the model categoGon as follows. Objects o€on are control systems over
smooth manifolds, a control syste¥hover a manifoldM is given by a painUs, X )
whereXy : M x Uy — TM is a smooth map such thaty, Xy, = n1 with 7y, the
canonical tangent bundle projection angd: M x Uy — M, the first projection map.
HereU)y, is a smooth manifold called thieput spaceA morphism inCon from a control
systemX = (Uy, Xm) toY = (Uy, Yy) is given by a paiK¢4, ¢,) of smooth maps with
¢1: M x Uy — N x Uy and¢g, : M — N, such that

MXUMﬂNXUN MXUMEJ‘NXUN

XMJ lYN nll lnl
T¢
™ —"22 . TN M —>¢2 N

both commute. Thus related control systems are said t@pep,)-related22]. Note that
sincer is a surjective mapg, is uniquely determined giveth;. The identity morphism
idx : X — X foran objecin Conis given byidx = (idyxuv,,,idy). Givenf : X - Y
andg : Y — Z, the compositgf : X — Z is given bygf = (g1f1, g2/2).

The path categorly is defined as the full subcategory@bn with objects, control systems
(Ug, Pr) whereUy is the singleton space with trivial topology and thus U; =~ 1 andl
is an open interval oR containing the origin. Hence?; : I — T I which we define as
P@)= (@, 1 foralltr € I. Thus(Uy, Py) is a well-defined control system.

Definition 27. A pathin a control systenX = (Uy;, X ) isthenamorphism = (c1, ¢2) :
Uy, P1) — (Uy, Xy) inConwithey : I — M x Uy andep : I — M such that the
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diagrams
I -4 MxUy I % Mx Uy
P]l lXM id[l lﬂ:l
T
71 22 . ™™ -2 .y
commute.

This means that a pathXis a pairof smoothmapg : I — M xUy;andcy : I — M for
some open intervalwith O € I suchthat’,(r) = X (ca(t), u(r)) forallr € I, whereu(t) =
moc1(t). Let (I, Py) and(J, Q) be two path objects iR andm = (m1, m2) : P — Q be
a path extension. Then from the diagram on the right above we getthatm, : I — J
and then the diagram on the left coincides with the condition we had for dynamical systems.
Thus a path extension = (m1, mp) is of the formmy =my : I — J, m1(t) =t — to for
somerg € Rand for allr € I.

Definition 28. Given controlsystem& = (Uyy, Xp), Y = (Uy, Yy)andZ = (Up, Zp),
f=(f1, f2) : X > Zandg = (g1, g2) : Y — Z are said to beransversalf f> x go:
M x N — P x P is transversal omp and f1 x g1 : (M x Uy) x (N x Uy) —
(P x Up) x (P x Up) is transversal odl p . i/, .

Proposition 29. The categoryCon has binary products and transversal pullbacks

Proof. LetX = (Uy, X)) andY = (Uy, Yn) be control systems on manifold&andN,
respectively. Their product x Y = (Uy x Un, (X X Y)yxn) IS given by

XMXYN

(XxY)pyxn = MxN)x(UyxUy) — MxUp)x(NxUy) 25" TMxTN —
T(M x N).

Suppose now that = (f1, f2) : X — Zandg = (g1,¢2) : Y — Z whereZ =
(Up, Zp) is a control system on a smooth manifétd The pullback off andg is given
by (Q, f/, g’) whereQ is a control system on the manifold x p N with input space
Uy xp Uy = (12 x m2)((f1 x g1)"*4pxy,)) which is a submanifold ot/y; x Uy
due to transversality of; andg; and the fact that, x 72 is an open map. The dynamics
Xy xp Yy is defined by restrictingy; x Yy to (M xp N) x (Upy xp Uy), see the proof
of Proposition19. O

We introduce the following notation: lety (x1, x2, t) denote the predicate that is true iff
the control systenX = (Uy, X ) evolves from state; to statex; in timet, under some
input in Uys. Hence ¢y (x1, x2, t) is true iff there is an open intervlbf R containing the
origin, a morphism = (c1, ¢2) : (U7, P;) — X such that2(0) = x;3 andcy(¢) = x». The
input driving the system is given bwoc1 : I — Uy. Similarly to the case of dynamical
systems, we characterize tReopen maps as follows.

Proposition 30. Given the control systems = (Uy, Xy) andY = (Un, Yw), f =
(f1, f2) : X — Y is P-open iff
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For any statex; of X (x1 € M) andt € R, if ¢y(fa(x1), y2,1), then there exists
x2 € M such thatpy (x1, x2, 1) whereys = fa(x2).

Definition 31. Given control system& = (Uy, X)) andY = (Uy, Yy), @ morphism
f : X — Y is said to be aurjective submersioif both its components; and f> are
surjective submersions.

Definition 32. We say that two control system¥y and X, areP-bisimilar, denoted(; ~p
X, if there exists a spatZ, f1: Z — X1, fo : Z — X2) of P-open surjective submer-
sions.

Proposition 33. The relation ofP-bisimilarity is an equivalence relation on the class of all
control systems.

We define the bisimulation relation for control systems, similarly to the case of dynamical
systems.

Definition 34. Given two control system& = (U, X)) andY = (Uy, Yu), we say that
arelationR € M x N is abisimulationrelation iff
(1) R is aregular relation,
(2) forall (x,y) e M x N, (x, y) € Rimplies, for allt € R,
o if ¢y (x,x’, 1), there exists’ € N such thaipy (v, y', r) and(x’, y") € R,
o if ¢y(y,V', 1), there exista’ € M such thatpy (x, x’, r) and(x’, y') € R.

We say that two control syste{sandY as above arBisimilarif there exists a bisimulation
relationR € M x N.

Theorem 35. Given control system& = (Uy, X)) andY = (Uy, Yy), X and Y are
bisimilar if and only if they ard>-bisimilar.

The above theorem, shows that the categorical notion of bisimulation described in
Section2, also captures the natural notion of bisimulation for control systems.

6. Hybrid systems

A hybrid system is just a family of smooth dynamical systems indexed over the states of
an underlying labelled transition system. The dynamical systems are glued together by the
transitions of the underlying labelled transition system.

Definition 36. A hybrid (dynamica) system Hs a tuple

H = (S, i,L,—, {Xs}seS’ {lnvs}seS» {Gs,a}xzsrc(a),aeL’ {Rs,a}s:src(a),aeL)
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Re,p(y) =y +1

y=y+y’
Y € [_17 1]

R81,a(37) =

o8

Ry, c(2)=2-1

Fig. 1. Hybrid systeni.

where:

e (S,i,L,—)is alabelled transition system,

e X, isasmooth dynamical systeky : M; — TMy, for eachs € S, notice that we do not
require that the dynamical systems be identical, nor do we require that the underlying
manifolds be the same for all stateg S,

e Invy; C My, for eachs € S is calledthe invariant seat states, Inv; is not required to be
a submanifold,

e G, C Iny called theguard of the transitiora € L, for eacha € L, wheresis the
source of the actios, that is, there i$ € S such thats, a, r) e—.

o With (s, a, 1) e, Rs 4 : G54 — Inv; is a function, called theesetfunction.

Note that we have indexed the guard and the reset functions on a sulfsetloflue to
the fact that there might be two different edges with the same &bet different source
states and these might very well have different guards and/or reset functions. On the other
hand, identically labeled edges emerging from the same state will have identical guards and
reset functions.

Example 37. We give an example of a hybrid system below, see Eign this example
M,, = Rfori =1, 2,3 and guards are given b, , = [1/2, 1], Gy, » =] — 1, 1] and
ng‘c = {1/4}-

In order to simplify the notation we refer to the underlying transition system in a hybrid
systerH, by T. For a hybrid system as aboe = (S, i, L, —). We will also omit the index
sets, as it will always be clear from the context. We assume that the underlying transition
systems all have the same labellsgthat is,T is an object inT .

Given a hybrid systen®? = (T, X,, Invs, G, 4, Ry 4), the state space &f is defined by
0 = {(s,x)|s € Sandx € Invg} = 4,5 Invy. We next define a transition relation on a
hybrid system as followsy> C Q x (LU{Tr}zeRg) x Q.Fort € [R{(J{, 1, ¢ L aredistinguished

actions used to represent the continuous flow of the system. e Jet= (s, x’) denote

((s, x), a, (s',x")) €e=. Given statess, x), (s', x') in Q, (s, x) = (s, x') iff either one of

the following transitions takes place:

(1) discrete transitionfa € L): s -4 ¢, i.e.,ais a transition inT, andx € G, and
x" = R; 4(x). Note thatx € M; andx’ € My andM; may be different fromV/,.

(2) continuous transitiorfa = t;, 1 € R}): s = s’ andFI;* (x) = x" andFI¥* (x) € Inuy,
forall 0<' <tr.
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R p(z) =2 +1

Rsz,c(y) =Y - 1

Fig. 2. Hybrid systenH .

In other words, the flow in the dynamical syste¥n takesx to x” while satisfying
the invariant at all times in-between, and the discrete state remains the same.

Example 38. Here is an example of a trajectory that can take place in the hybrid sytem
of Example37.

System starts @t1, x(0) = 1/4) and flows continuously for log/2 units of time reaching
(s1, x(log 2/2) = 1/2). At this point the guard is enabled and discrete transii@ccurs
making the system evolve froiy1, 1/2) to (s2, Rs,.4(1/2)) = (s2, 1/4). Now discrete
transitionb takes place and the system jumpsgsig 1/4+4 1) = (s3, 5/4). At this point the
system flows continuously for 1 unit of time until reachi@g, z(log2/2 + 1) = 1/4) and
c takes the system @2, —3/4).

This can be neatly represented as

(51. 1/8) "% (51,1/2) & (52, 1/8) B (53.5/4) 3 (53, 1/4) = (s2. —3/4).

We define the model categoHyb with objects, hybrid systems. A morphishn Hyb
fromH = (T, X,Inv,G,R)to H' = (T, X', Inv/, G', Ry with T = (§,i,L,—) and
T' = (S',i',L,—")isapair(f, { f?}ses) where
e f1:7T — T’ isaT -morphism,

o f2:X, > X}l(s) is aDyn-morphism, for alls € S,

o f2(Invy) C Inv',, , foralls € S, and

o f2(Gsq) C G/fl(s),a foralla € L, s = src(a),

o If ((s,x),a, (1, y)) €= is a transition irH, then(x, y) € Ry, implies (f2(x), f2(y))

€ R}.l(s)!a.
For hybrid system#& = (T, X, Inv, G, R),H' = (T', X/, Inv/, G’, R)andH" = (T", X",
Inv”, G”, R”), the identity morphismd : H — H is defined byidy = (idr, {idx,}s).
Given f : H — H' andg : H — H”, their compositions = g o f is given by
ht=gho frandh? = ¢% (o fZfors e S. It can be easily checked that hybrid systems
and their morphisms form a category.
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Rs, p = (z122, 20 + 1)

.i’l = 4161 — 3372
iQ = X9 + .Ig
T € [—3, —2[

1
T2 € [0’ 5[

Ry e(y) = (=3, —1)

Fig. 3. Hybrid systent’.

Rs b = (122,22 + 1)

Zif1:4£€1—3$2
i’2:$2+$§
r1 € |3, =2
1€ [=3, 2

T € [075[

Ry e(y) = (=3,y = 1)

Fig. 4. Hybrid systent!”.

Example 39. Consider the hybrid systen#s, H' andH” in Figs.2, 3 and 4 respectively.

Note that on the figures we have avoided adding tilde, prime and double prime to the
symbols to avoid notational complexity, instead we make such references to variables in the
text. The guards i, H' and H” will play no role in this example, hence we leave them
unspecified.

We first show that there is a morphism frdii to . Let £ be defined byf1(s}) = 51
and f1(sy) = 32, fsz,l be defined b)g‘sz,l(xl, x2) = x and finallyfszé be the identity map, it is

obvious that the conditions quf, are satisfied. Foff, we note that:
22 21

2 | 4x1—3x2| 2 v 2
Tfsa'[ X2+ x2 ]_XZHZ‘X“fsf

which shows thayfsz, is aDyn-morphism. The remaining conditions are easily checked.
1
Next we show that there are no morphisms fréffi to H. The ff,, component of any
2

morphism fromH” to H needs to be a morphism of dynamical systems and therefore to
satisfy— & f2 = 7f2 . (—1) = —1. This differential equation has solutigif (z) = z + ¢
o2 22 22
for some constant € R. However, for all possible choices ofve haveff,,(lnvsé/) 51 Invg,
02
which violates the definition of morphism. Intuitively, there can be no morphism since
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there are trajectories if” that cannot be simulated b¥ as their image undef

would necessarily be outsidev;, thus contradicting the notion of trajectory that we “next
introduce.

We proceed to define the path categ®ras the full subcategory dflyb with objects
P = (T, X, Inv, G, R) whereT = (S,i, L, —) is a tree with a single (possibly empty)
branch, and for every € S, X; : I, — TI, with I; an open intervaloy, ;) of R
containing the origin, is defined b¥; (r) = (¢, 1). Invg C I, Inv, is a closed interval of the
form [11, t2] for somery, 72, (this includes; = t» possibility) that represents the duration
of the continuous flow and, , = {t2}. SUpposes, a,t) €—, Ry, : Gs.qa — INv, is the
inclusion function.

Definition 40. A pathor trajectoryin a hybrid systenH is a morphismp : P — H in
Hyb, whereP is an object irP.

Any path including a discrete transition will also carry the information of when this
transition takes place. This in turn is captured by the choice of the appropriate path ob-
ject (see the example below). The example below contains the representative cases that
cover all possibilities. We content ourselves with the example as it is sufficiently self
explanatory.

Example 41. Let H be a hybrid system. We will consider 3 path examples that cover all
possible cases.
e Consider a path of the form

(50. 1) =5 (50, ) S (51.9) 2 (52.7) D (s2.2)

so in this case the system flows for durattpstarting at time 0 and then at tinhehe
eventa takes place etc. This path is represented by the path dBjettich has states
lo, I1, I2 as shown below:

a b

lo — 11 — I»

Iy = (0, Bo) I, = (01, 1)

with 0,7 € [;, withO,7r+11 € I I, = (02, f2)
Inv, =10,¢] v, =1[t, ¢t + 1] with 0,7 + 11 € 1),
Gioa = {1} Gy ={t+n} Inv, = {t + 11}

Riga(t) =1t Ryp+n)=t+n

In this case we also spell out the definitionof P — H: pt(;) = s;,j=0,1,2and
Pzzo(o) = xo, plz1 (1) = x1 andplz2 (t + 1) = x2, note that thepzl are integral curves and
thus uniquely determined by these definitions.

e Next consider the path

N

(50, 1) =5 (50, 1) 2 (51, 9) D (52.2) = (52.2)
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The path object for this path is defined as follows, the underlying tree is the same as

the one above and we have:

Ilo = (OC(), ﬁO) 111 = (OCl’ ﬂl)

with O, r € Ijy with O, r € Iy, I, = (a2, f2)
Inv,, = [0, ¢] Inv;, = {r} with 0,7 +11 € I,
Gio.a = {t} Grp = {1} Inv, = [, 1 + 1]
Rig.a(t) =1t Ry p(t) =1

e This last case follows from the one above, but we include it for the sake of clarity. Suppose

we are given the path

a / b
(50, %) = (51,5) = (51, ) = (52, 2)
The path object here too has the same underlying tree as the ones above and

Ly = (20, o) 1, = (21, B1)

with 0 € I, with 0,7 € I, I, = (a2, fy)
Iny;, = {0} Inv, = [0, t] with 0, ¢ € I,
Gip.a = {0} Gu.p = {1} Inv, = {t}
Rlo,a(o) =0 Rll,b(t) =1

Suppose? = (T, X, Inv, G, R)andP’ = (T’, X/, Inv/, G’, R’y andm : P — P’.Then,
m! : T — T’ which simply extends the trékto 7'. For anys € S, mf is a smooth map
from I, to 1,1, such that ddz (msz(t)) =1 ormf.(t) =t — 1o for somerg € R and for all
t e l.

We next characterize thHe-open maps.

Proposition 42. Let H = (T, Xy, Invy, Gy 4, Rs.o) and H' = (T', X§, Invg, G, R )

be hybrid systems with = (S, i, L, —), T = (§',i’, L, —') and underlying state spaces

QandQ’,thenf = (f1, f2): H — H'is P-open iff

(1) forallu € O, w € Q' anda € L, if f(u) = w, then there exists a € Q such that
u = vand f(v) = w, and

() forallu € Q,w € Q' andr € RY,if f(u) = w, then there exists a € Q such that
u = vandf(v) = w.

Proof. Supposef = (f1, fsz) : H — H'isP-open and for a reachable state- (s, x) €
Q anda € L, f(u) = win H'. Letw = (s",x"), then f(u) = (f1(s), f2(x)) and
fHs) =5 57 in T, f2(x) € G i, and (f2(x).x") € Rpig . ASu = (5,x) is
reachable iH, the state € S is reachable froniin T, say through

. a ay
i=s9g—*S51... > S, =39

hence there is a path objgetwhose underlying tree is

a a
lo —31,... 2 g,
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and a pathp : P — H with pl(lo) = so,..., p*(,) = s, and appropnatq;z for
s € {lo, ..., 1,}. The only part of the continuous data ab®utelevant to the proof is the
information at/,, which we will make explicit below. Suppose thgtoccurs at time,, and
consider the following cases:

Casel: No continuous flow takes place at stgtehence we have, say,, 1, )3 (sp, X),
or (sp—1,x") 2 (s,, x) with Ry, | 4, (x) = x. Also I;, = (a,, §,,) containing the origin
andr, andiny;, = {#,}. Define a path objec®’ with underlying tree

R T

The underlying continuous information is the same &3 @xcept that we se¥; , = {1,},
andI; = («, f') containing the origin and, andInv; = {z,}. Also we define the path
qg: P — H by ql(l;) = fiptU;) for j =0,...,n, andg (") = s”. And ¢? = f2p?
foralls € {lj, .... 1.}, andg?(t,) = x”.

Case2: There is a continuous flow &f, say we have

(51-1, %) 3B (50, ) = (5, X)

for somet. The path objecP is as above save fdf, = («,, f5,,) containing the origin, and
t, +t andinv;, = [t,, t, +t]. We define the path obje@ as this new path obje&, except
for Gy o = {tn +1t}, andly = (o, B') containing the origin ang, + ¢ andinvy = {t, +1}.
The morphisny is defined as above except that we@%(tt,, +1)=x".

Clearlyqis a path and witimthe obvious embedding we hay® = qm Asfis P-open
we haver : P’ — H, letv = (r}(1"), r3(t,)) in case 1 and = (r1(I"), (1, + 1)) in the

second case. Clearly=> v and
F) = (O, £, 0F ) = 7, %)

in case 1 and similarly‘(v) = w in case 2.
Now supposef(u) w, with the same notation as above, this means fi&t) = s”

andFl , ¥ “)(fs (x)) = x”. Again we need to distinguish two cases similar to those above:
() There is no continuous flow af. The path objecP is the same as in case 1 above, we
define the path objeadt’:

o =1 ... =1,
asP except that we sdf; = (o, B') containing 0 and, +t Invy = [y, tn + t']. The path
g is defined as in case 1 above except tjfﬁ(lr +1)y=x"

(2) There is continuous flow, say of duratibto reach(s x), in this caseP is the same
as in case 2 above and we defieasP except that), = («/, B to contain the origin and
th +t + ¢ andIinuy = [ty, ty +1 +1'].

Itcan be easily checked that with= (r(1/), rl2 (ta+1')), andv = (r1(1), rli (tn+1+1"))

in cases 1 and 2 respectively, one ha$ v and f (v) = w.
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Conversely, suppose that conditions (i) and (ii) of the proposition hold and that there are
pathsp : P — H andq : P’ — H' withm : P — P’ such thatfp = gm we need to
show thaff is P-open.

Note that the underlying tree @f is either the same as or an extensiopih this case
we repeatedly use condition (i) above to defiheThe argument for the definition of is
the same as ifiL2]. We show the proof on an example, suppBse given by

lo — 11
which maps to
a
S0 —> §1

in H underp and P’ is given by

a ’ b

Iy~ 1y e 1y

which maps to

a b ,

e

underq.

Now apply condition (i) of the proposition to fing such thats; N s2 and define
rl(l}) =s;,j=0,12.
Consider the commutative diagram

Pl
I, —> M,

2 2
™o l 2 J« S0

9
L, —% M
0 50
and use Theorerbl to defme»f,, similarly for r2 As for "12"
1, is the time thab occurs. Then there is no contlnuous row;gand we set (tb) =x2

supposénv,/ = {t,} where

where(sy, x1) :> (s2, x2). On the other hand, if timeelapsed at statg, use (||) above to
find (s, x5) where(sz, x2) =5 (s2, x5) and set2 (1) = x2 andr2 (t, + 1) = x5.
2 2

It is not hard to see that with this definition: P’ — H is a path and that thgr = p’
andrm =p. O

Definition 43. Let H', H” be hybrid systems witl§’ and S” as the state spaces of their
underlying labelled transition systems, respectively. fetH’ — H andg : H” — H
be morphisms of hybrld systems We say thaindg aretransversalf for any s’ € S and

e $” such thatf1(s') = g*(s”) we have that th®yn-morphismsf3 : X/, — X 1.y,

andgs,, X!, — X ¢l(sv) are transversal (see Sectidh
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Definition 44. LetH andH’ be hybrid systems, anfl: H — H’ be a morphism of hybrid
systems. Therf,is said to be aurjective submersioif f2 X, — X' is a surjective

I
submersion, for alf € S.
Proposition 45. The categorHyb has binary products and transversal pullbacks

Proof. Given two hybrid systems
H =T, X,Im',G', R
and
H//= (T// X// Inv// G// R//)

with " = (8, i, L, =) andT” = (8", i”, L, —"), we define their producl = H’' x
H" = (T, X, Inv, G, R) as follows:
T =(S,i,L,—) =T'xT".Note thatthis is the product in the categdnyof transition
systems with label sét (see Sectio® above).
o Fors =(s',s") e § =8 x 8", Xy = X}, x X/, which is a product iDyn.
e Fors = (s',s") € S, Inu; = Inv, x Inv’,, Cartesian product of sets.
e Finally, fors = (s',s") € S, G(Y sa =Gy, x G, andRe 10 =R, , X R, ,
Definition of projection maps is based on those for underlylng transition and dynamical
systems and verification of product property is routine and not included.

LetH’, H” be hybrid systems as above aficd H' — H andg : H” — H be morphisms
of hybrid systems. Now suppogé ¢ are transversal, we define the pullback ahdg as
(H, g, f)whereH = (T, X, Inv, G, R) is given by
e T is the pullback inT, of f1, ¢! (see SectiorB above). Recall that, thes =
(") ] f16") = gHs™)

Fors = (s/,s"”) € S, X is the pullback inDyn of transversal map$52, andgf// (see
Sectiond above). Recall that, = {(x, x”) € M, x M/}, | f2(x") = g2 (x")}.
Fors = (s',s") € S, Invuy = (Inv), x Inv),) N M.
Fors = (s/,s"),t = (t/,t") € § and (x',x"y € My and(y’,y”) € M, such that
(s, 8", x', x") = (¢, 1", y', y") define

Gs.smy.a = x") € (G, x G ) N M | (R ,(x"), Ry ,(x")) € Inu;}.

s/ ,a

® R .0 = (R, a X RY, D6y g, Note that the range oy 4 is in Iny;, for t as
above. This follows from the definition @y 5).a-
Definitions of f/ andg’ follow using the underlying morphisms and verification of pullback

property is routine and not included

Definition 46. We say that two hybrid systent$ and H' areP-bisimilar if there exists a
span(H, f : H— H,g: H— H’) of P-open surjective submersions.

This immediately gives us the following result.

Proposition 47. Pbisimilarity is an equivalence relation on the class of all hybrid systems
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It remains to show that the notion Bfbisimilarity coincides with a natural notion of
bisimulation for hybrid systems, that we now define.

Definition 48. Given two hybrid system& = (T, X, Inv, G, R) andH' = (T’, X', Inv/,
G', R"), with X; and X', defined onM; and M, respectively. LetRl € § x §, and for
each(s, s’) € RY, let RXZ,S, C M, x M/, be a regular relation.

DefineR = (RY, (RZ ,}; s er1) to be the set

{(s,x,5,x)|(s,s) € Rtand(x, x') € Ris,}.

'R is said to be disimulationrelationiiff for all ((s, x), (s’, x’)) € Ox Q’, ((s, x), (s', x")) €

R implies,

e foranya € L if (s, x) = (¢, y), then there exists, y’ such that(s’, x’) = (¢, y') and
((t,y), (', y)) eR,

e foranyr e Ry if (s, x) = (1, y), then there exist, y’ such thats’, x') = (', y') and

((t,y), @, y)N)eR
e Vice-versa.

Remark 49. Notice thatR above is not a relation froiQ to Q’, as it might contain tuples
(s, x,s’,x") with x ¢ Inv; orx” ¢ Inv!,. However, this fact does not pose a problem in our
definition, as hybrid systems always evolve inside the invariant sets.

We say that two hybrid systent$ and H’ are bisimilar if there exists a bisimulation
relationR such that((i, x), (i’, x")) € R for somex € Inv; andx’ € Inv;, (recall thati, i’
are the initial states df and7’, respectively).

The main theorem below shows that the intuitive definition for hybrid system bisimilarity
is captured by the abstract bisimulatid®igisimilarity).

Theorem 50. Let H and H’ be hybrid systems. Then H aifl are bisimilar iff they are
P-bisimilar.

Proof. SupposeH andH’ areP-bisimilar, let the span bg : H — H andg : H — H'.
We define a relatio® = (R%, {Rf }s.s)er1) as follows:

s (s,s

R* = graph(gh) o graph(f1) € § x §".
For (s, s') € RY, define
2 2 T
R{y = ) graph(g$) o graph(f?).

5. 113)=s.g1(3)=s'

Note thatR? , © M 1) x My o = My x Mj,.

Regularity ofRSZS, follows from Propositioni23 and the fact that the disjoint union of
regular relations is regular.
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It remains to show thaR thus defined is a bisimulation relation, but this follows from
f, g beingP-open surjective submersions. Finally, bisimilaritykbfand H’ follows from
the fact thatf! andg?® preserve initial states.

Conversely, supposkl and H' are bisimilar, let the bisimulation relation /e =
(RY, R? ), define a hybrid systeml = (T, X, Inv, G, R) as follows:

o T = (T x T")| g1 which means that we remove all statesTok 7’ not in R, we also
remove the incident transitions on these states. }

o For§ = (s,s) € RY, defineX; : R? , — TR, by X; = (X; x X/)|zz , this is
well-defined by Theorer@5.

o vy = (INvg x INV),)) N R? .

o G(ssha=(Gsax Gl )NR?,, and

* Ry is Obtained fromR; , x R), , by restricting its domain ta5 s .. the well-

definedness oR follows from the fact thaR is a bisimulation.
The mapsf : H — H andg : H — H’ are defined using the projection maps on the
discrete and continuous parts and can be shown #-tgen surjective submersions. The
proof is essentially similar to that of Theore®s. Hence, we have a spa#l, f, g) of
P-open surjective submersions, dddéndH’ areP-bisimilar. [

7. Related work

In this section we compare several aspects of our work with the existing ones in the
literature.

7.1. Categorical approaches to modeling of hybrid systems

As much as the authors are aware the only other work that discusses categorical models
of hybrid systems is the paper [18]. In this work, the authors construct an institution of
hybrid systems and provide a categorical characterization of free aggregation, restriction
and abstraction of such systems, thus providing a basis for compositional specification and
verification of hybrid systems. However, they do not discuss bisimulations. More explicitly,
they show that in the category of hybrid systems free aggregation corresponds to a product,
restriction to a cartesian lifting and abstraction to a cocartesian lifting. Categorically inspired
modeling of heterogeneous systems, consisting of multiple models of computation, is the
primary concern of the tagged-signal model in [17], and more, recently, the trace algebraic
framework in [6].

7.2. Categorical approaches to bisimulation

There has been considerable amount of research on categorical formulations of bisimu-
lation in addition to [12]. We will be more specific on coalgebraic approach to bisimulation.
See [23] for coalgebraic approaches to systems theory in general.

Coalgebraic formulation has been used successfully to model a variety of systems that
include, deterministic systems, deterministic and nondeterministic labeled transition sys-
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tems, supervisory control systeifi$], symbolic dynamical systems, to name a few. More
explicitly a labeled transition systeqs, i, L, —) defined in Section 3 can be viewed as

an F-system(S, ag) with F : Set — Seta functor andF (X) = 2*X for any setX.
Hereas : S — F(S) is given byag(s) = {(a,s')|s 2 ). An F-homomorphism

f :(S,as) — (T,ar)isamapf : S — T such thatF(f)as = oy f which means

thatf both preserves and reflects the transition structure. This fact that a homomorphism
reflectsF-transitions makes it different from the morphisms we have in the catefjary

Now supposé’ : Set— Setis a functor, andsS, «s) and(T, ar) areF-systems, a relation

R € § x T is said to be a bisimulation betwe&andT if there exists arFF-dynamics

agr : R — F(R) such that the projections froRto SandT areF-homomorphisms.

Note thatin the case of dynamical systems we have a functor, the so called tangent functor
T : Man — Man, and one is tempted to view a dynamical systéiwn a manifoldM as
a coalgebraM, X) with X : M — TM. However, this is not the case on the face of it,
recall that a dynamical systemls: M — TM such thatty, X = idy wheremny, is the
canonical projection. On the other hand, clearly one could work in a full subcategory of
COAlg; where the property above is also satisfied.

On amore essential note, our choice to work with path objects and path categories instead
of coalgebraic approach was due to the fact that in coalgebraic approaches one does not
have a direct way of modeling the notion of time and trajectory for the system under study.
However, in path object approach the flow of the system is made explicit and the notion
of abstract bisimulation has the trajectories built into the definition throughPtbpen
maps. As a matter of fact, in trying to formulate a notion of bisimulation for dynamical and
especially for hybrid systems we have benefited greatly from having to first define a path
object. This gave as an idea as to what the abstract notion of time should be for a hybrid
system. As the reader might recall, this is a tree with a single branch with bubbles on every
state, representing clocks working at constant rate 1.

8. Conclusions

In this paper, we developed novel notions of system equivalence for dynamical and
control systems, unified the notion of bisimulation across discrete and continuous domains,
and developed bisimulation notions for hybrid dynamical systems. In all cases, we proved
that this definition is captured by the abstract bisimulation framework introduced in [12].

There are several future research directions. On the one hand there is the well known
connection between abstract bisimulation, and logic and game characterizations of bisimu-
lation and presheaf semantics in the case of concurrency models [30]. This direction can be
exploited for dynamical and hybrid dynamical systems and in this way one obtains specifi-
cation logics for such systems. We are very keen on further exploring the relation between
our models and presheaf semantics.

On the other hand we have to further investigate the use and appropriateness of the no-
tion of bisimulation for dynamical and hybrid systems in the context of real life engineering
applications. The first step in this direction is to find algebraic characterizations of bisim-
ulation for hybrid systems or for at least a class of such systems and hence make a step
forward towards computability issues of such relations. Secondly, our definition might be
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too strong for applications, notice that in our setting, the two bisimilar hybrid systems are
locked in timing, that is, wherever one gets in tittlkee other should also be able to simulate

in the same time duration This condition could be weakened to allow for other equiva-
lence relations similar to weak bisimulation relation in the context of concurrency theory
[19]. Another weaker relation could be obtained by allowing a discrete transitioione
hybrid system to be simulated by pre and post time evolution of the other machine during
the execution of the eveat We plan to study both of these weaker versions of equivalences
and the possibilities of characterizing them in abstract bisimulation framework.

Appendix A. Differential geometry

Our treatment of differential geometry follows that of [10]. For a more thorough intro-
duction to geometry, the reader may wish to consult numerous books on the subject such
as [1,26].

A.1. Differentiable manifolds

Recall that a function : A — B is a homeomorphism iffiis a bijection and both and
h~1 are continuous. In this case, topological spakesdB are called homeomorphic. A
function f : R" — R is called smooth o€ if all derivatives of any order exist and are
continuous. Functiohis real analytic oIC®, if itis C* and for eachx € R" there exists a
neighborhood of x, such that the Taylor series expansiorf aftx converges tg (x) for all
x € U. Amappingf : R" — R™ is a collection(f1, ..., fm) of functionsf; : R* — R.
The mappingf is smooth (analytic) if all functiong; are smooth (analytic).

Definition A.1 (Manifoldg. A manifoldM of dimensiomis a Hausdorff and second count-
able topological space which is locally homeomorphiétto

A manifold, which is of great interest to us,i& itself. A subseN of a manifoldM which
is itself a manifold is called a submanifold bf. Any open subselN of a manifoldM is
clearly a submanifold, since M is locally homeomorphic t&" then so isN. In particular,
an open interval C R is also a manifold.

A coordinate chart on a manifold is a pair(U, ¢) whereU is an open set dl and¢
is a homeomorphism df on an open set dR”. The functiong is also called a coordinate
function and can also be written &84, ..., ¢,) where¢, : M — R. If p € U then

o(p) = (P1(p). ..., ¢, (p)) is called the set of local coordinates in the chaft ¢).

When doing operations on a manifold, we must ensure that our results are consistent
regardless of the particular chart we use. We must therefore impose some conditions. Two
charts(U, ¢) and(V, ) with U NV # @, are calledC*® (C*) compatible if the map

Yodp l:ipUNV)C R — Yy(UNV)C R

isaC® (C?) function. AC* (C®) atlas on a manifolt!! is a collection of chart&U,, ¢,)
with « € A which areC*® (C®) compatible and such that the open sEtscover the
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manifoldM, soM = |
atlas.

14 Uz An atlas is called maximal if it is not contained in any other

Definition A.2 (Differentiable manifolds A differentiable (analytic) manifold is a mani-
fold with a maximal,C* (C®) atlas.

Now that we have imposed this differential structure on our maniblde can perform
calculus onM. In particular letf : M — R be a map. If{U, ¢) is a chart orM then the
function

f=fodtip) R - R

is called the local representative fah the chart(U, ¢). We therefore define the mdyo

be smooth (analytic) if its local representatifés smooth (analytic). Notice ffis smooth
(analytic) in one chart, thenitis smooth (analytic) in every chart since we required our charts
to beC* (C®) compatible and our atlas to be maximal. Hence our results are intrinsic to
the manifold and do not depend on the particular chart we use. Similarly, if we have a map
f: M — N, whereM, N are differentiable manifolds, the local representatiohgi¥en
achart(U, ¢) of Mand(V, ¥) of Nis

f=yofoop™t

which makes sense only ff(U) NV # ¢. Againf is smooth (analytic) iff is a smooth
(analytic) map.

A.2. Tangent spaces

Let p be a point on a manifolt¥ and letC*°(p) denote the vector space of all smooth
functions in a neighborhood pf A tangent vectoX , at p € M is an operator fron@*°(p)
to R which satisfies forf, g € C*°(p) anda, b € R, the following properties:
(1) LinearityX ,(a- f+b-g)=a-X,(f)+b-X,(g).
(2) DerivationX ,(f - g) = f(p) - Xp(g) + Xp(f) - g(p).
The set of all tangent vectors ate M is called the tangent spacelfatp and is denoted
by T, M. The tangent spacg, M becomes a vector space overif for tangent vectors
Xp, Y, and real numbersy, c; we define

(Cl’Xp+CZ'Yp)(f)=Cl'Xp(f)+C2‘Yp(f)

for any smooth functiomin the neighborhood gf. The collection of all tangent spaces of
the manifold,

™= U T,M
peM

is called the tangent bundle. The tangent bundle has a naturally associated projection map
n: TM — M taking a tangent vectd(f e T,M C TMto the pointp € M. The tangent
spacel, M can then be thought of as *(p).
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The tangent space can be thought of as a special case of a more general mathematical
object called a fiber bundle. Loosely speaking, a fiber bundle can be thought of as gluing
sets at each point of the manifold in a smooth way.

Thetangentbundle is a vector bundle and the fiber at eachpe@int is the tangent space
T, M. In particular, the tangent bundléM has dimensionz2, whereM is n-dimensional.

Now let M be a manifold and letU, ¢) be a chart containing the poipt In this chart
we can associate the following tangent vectors

I
3p," " 04,
defined by
0 . Afod™H
aT%-(f) = o

for any smooth functiorf € C*(p). The tangent spacg, M is ann-dimensional vector
space and iU, ¢) is a local chart around then the tangent vectors

0 0
form a basis foiT, M. Therefore ifX , is a tangent vector gtthen
1 0
R
whereay, . .., a, are real numbers. From the above formula we can seeXthaf) is an
operator which simply takes the directional derivativé iof the direction ofas, .. ., a,].

Now letM andN be smooth manifolds anfl : M — N be a smooth map. Let € M
and letg = f(p) € N. We wish to push forward tangent vectors fr@ to T, N using
the magpf. The natural way to do this is by defining a m&pf : T,M — T, N by

(Tp f(Xp))(8) = Xp(go f)

for smooth functiong in the neighborhood of. One can easily check tha@}, /(X ) is a
linear operator and a derivation and thus a tangent vector. Th@pap7,M — Ty, N
is called the push forward map bfThe push forward map, f : T,M — Ty¢,)N is a
linear map, and furthermore jff : M — N andg : N — K then

Tp(go f)=Trp&oTpf,

which is essentially the chain rule.

A.3. Vector fields

A vector field on a manifoldv is a smooth maX which places at each poiptof M a
tangent vector fronT, M. Therefore since a vector field, places at each poipta tangent
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vector X (p) we have that in the cha(U, ¢) the local expression for the vector fieXds

n 0
X(p) = ((p)—.
(P) Ela (p) 3%,

The vector field is smooth (analytic) if and onlydif(p) is C* (C®).

Let I € R be an open interval containing the origin. An integral curve of a vector field
is a curvec : I — M whose tangent at each point is identically equal to the vector field
at that point. Therefore an integral curve satisfies for all/,

c = Tic(t, 1) = X(c).

A vector field is calleccompletdf the integral curve passing through everye M can be
extended for all time, that is we can chodse= R. Integral curves of smooth (analytic)
vector fields are smooth (analytic).

Definition A.3 (f-related vector fields Let X andY be vector fields on manifolds! and
N respectively andf : M — N be a smooth map. Thetandy aref-related iff

T(f)oX=Yof (A1)

If fis not surjective, theXX may bef-related to many vector fields o If, howeverf is
surjective, therX can only be-related to a unique vector field dh
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