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Abstract

The fundamental notion of bisimulation equivalence for concurrent processes, has escaped the
world of continuous, and subsequently, hybrid systems. Inspired by the categorical framework of
Joyal, Nielsen and Winskel, we develop novel notions of bisimulation equivalence for dynamical
systems as well as control systems. We prove that these notions can be captured by the abstract
notion of bisimulation as developed by Joyal, Nielsen and Winskel. This is the first unified notion of
system equivalence that transcends discrete and continuous systems. Furthermore, this enables the
development of a novel and natural notion of bisimulation for hybrid systems, which is the final goal
of this paper.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Embedded computing devices have fostered the paradigm of digital programs interact-
ing with an analog world. Examples include portable accessories such as mobile phones
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and PDAs; medical equipment such as defibrillators, dialysis machines and MRIs among
many other systems. These embedded computing devices interact with the continuous en-
vironment reacting to external stimuli while regulating the behavior of several continuous
processes. Hybrid systems have recently emerged as a mathematical model for embedded
computing devices interacting with the continuous environment, see for example[2,3,24]
for an introduction to hybrid systems. The interaction between discrete and continuous com-
ponents creates enormous difficulties in the analysis and design of this class of complex
engineered systems. In particular, a major challenge in the research area of hybrid systems
is how to define notions of equivalence enabling the development of compositional analysis
and design techniques.

Bisimulation is a notion of system equivalence that has become one of the primary tools
in the analysis of concurrent processes. When two concurrent systems are bisimilar, known
properties are readily transferred from one system to the other. For purely discrete systems
these problems are now reasonably well understood and for every notion of concurrency
or process algebra there has been a different notion of bisimulation and frequently several
competing notions. In [12], Joyal, Nielsen and Winskel proposed the notion ofspan of open
mapsin an attempt to understand the various equivalence notions for concurrency in an
abstract categorical setting. They also showed that this abstract definition of bisimilarity
captures the strong bisimulation relation of Milner [19]. Subsequently in [7] it was shown
that abstract bisimilarity can also capture Hennessy’s testing equivalences [9], Milner and
Sangiorgi’s barbed bisimulation [20] and Larsen and Skou’s probabilistic bisimulation [16].
More recently, in [4], a bisimulation relation for Markov processes on Polish spaces was
formulated in this categorical framework, extending the work of Larsen and Skou. Other
attempts to formulate the notion of bisimulation in categorical language, include the coal-
gebraic approach of [11,23]. We will further discuss these methods in Section 7 where we
compare our approach to those in the literature.

Despite the plethora of bisimulation notions in concurrency, the notion of bisimulation has
escaped the world of continuous and dynamical systems, as noted in [29,28]. Furthermore,
the lack of bisimulation notions for continuous systems has impeded developing bisimu-
lation equivalence for hybrid systems. Inspired by the abstract framework in [12], in this
paper we transcend from the discrete to the continuous world and develop novel notions of
bisimulation equivalence for dynamical systems, control systems, and subsequently hybrid
systems.

Despite the existence of traditional notions of equivalence in dynamical systems and con-
trol theory [13], the notion of bisimulation offers two novelties even in the more traditional
setting of continuous systems. Dynamical systems are deterministic systems for which
bisimulation equivalence is equivalent to trajectory equivalence. For control systems, how-
ever, one can think of the control input as producing nondeterministic system behavior,
and therefore bisimulation equivalence is a finer notion of equivalence for nondetermin-
istic dynamical systems than trajectory equivalence. Furthermore, system equivalence by
bisimulation relation is a notion of equivalence that does not require control systems to be
of minimal dimension or even of the same dimension.

There has been very recent work by the second and the third authors, characterizing the
notion of bisimulation for dynamical and control systems in a functional setting, that is, the
bisimulation relation is a functional relation [21,27]. In [8], we have extended this notion
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to relational setting and further have shown that this equivalence relation is captured by
the abstract bisimulation relation of[12]. In this paper, we also develop novel and natural
notions of bisimulation for hybrid systems, and show that this notion is also captured in the
framework of [12]. In addition to providing novel notions of system equivalence for dynam-
ical and control systems, unifying the notion of bisimulation across discrete and continuous
domains, our results also extend the applicability of the categorical framework to the do-
main of hybrid dynamical systems. This completes our program of unifying bisimulation
notions for discrete, continuous, and hybrid systems.

Our choice to work with path objects and path categories à la Joyal, Nielsen and Winskel
is due to the fact that in this approach, the flow of the system is made explicit and the
notion of abstract bisimulation has the idea of paths and trajectories built into the definition
through theP-open maps.We have found this approach very beneficial in trying to formulate
a notion of bisimulation for dynamical and especially for hybrid systems where it provided
us with an idea as to what the abstract notion of time should be for a hybrid system. The
approach ofP-open maps generalizes from the context of labeled transition systems, where
they were first introduced, to that of dynamical, control and hybrid systems.

The rest of the paper is organized as follows: In Section 2, we briefly review the abstract
formulation of the notion of bisimilarity as developed in [12]. Section 3 provides the main
application of this method in concurrency theory and recalls that the abstract bisimilarity
captures Milner’s strong bisimulation relation. Section 4 reviews our recently developed
notions of bisimulation for dynamical systems and Section 5 does the same for control
systems. The main results of the paper are contained in Section 6 where we introduce and
discuss bisimulation relations for hybrid systems. Section 7 briefly reviews the coalgebraic
approach to bisimulation and discusses the reasons for our choice of working within the
framework of [12]. We also review some other categorical approaches to the modeling
of hybrid systems and compare those to our models. Finally in Section 8 we conclude
our study while presenting some future research directions. Given that the sections on
dynamical, control and hybrid systems use definitions and facts from differential geometry,
we have included an appendix that reviews as much of this background material as we need
to develop our work.

2. Bisimulation and open maps

The notion of bisimilarity, as defined in [19], has turned out to be one of the most
fundamental notions of operational equivalences in the field of process algebras. This has
inspired a great amount of research on various notions of bisimulation for a variety of
concurrency models. In order to unify most of these notions, Joyal et al. gave in [12] an
abstract formulation of bisimulation in a category theoretical setting.

The approach of [12] introduces a category of models where the objects are the systems
in question, and the morphisms are simulations. More precisely, it consists of the following
components:
• Model category: The categoryM ofmodels, with objects the systems being studied, and

morphismsf : X → Y in M , that should be thought of as a simulation of systemX in
systemY.
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• Path category: The categoryP, a subcategory ofM , of path objects, with morphisms
expressing path extensions.

The path category will serve as an abstract notion of time. Since the path categoryP is a
subcategory of the categoryM of models, time is thus modeled as a (possibly trivial) system
within the same categoryM of models. This allows the unification of notions of time across
discrete and continuous domains.

Definition 1. A pathor trajectory in an objectX of M is a morphismp : P → X in M
whereP is an object inP.

Let f : X → Y be a morphism inM , andp : P → X be a path inX, then clearly
f ◦ p : P → Y is a path inY. Note that a path is a morphism inM and so is the mapf and
hencef ◦ p is a map inM . This is the sense in whichY simulates X; any path (trajectory)
p in X is matched by the pathf ◦ p inY.

The abstract notion of bisimulation in[12] demands a slightly stronger version of simu-
lation as follows: Letm : P → Q be a morphism inP and let the diagram

P
p✲ X

Q

m
❄ q✲ Y

f
❄

commute inM , i.e., the pathf ◦ p in Y can be extended viam to a pathq in Y. Then we
require that there existr : Q → X such that in the diagram

P
p✲ X

��
�r ✒

Q

m
❄ q✲ Y

f
❄

both triangles commute. Note that this means that the pathpcan be extended viam to a path
r in X which matchesq. In this case, we say thatf : X → Y is P-open. It can be shown
thatP-open maps form a subcategory ofM .

Proposition 2. Let M be a category andP be the subcategory of path objects. Then,
P-open maps inM form a subcategory ofM .

Proof. Let X be an object inM , we first show thatidX : X → X is aP-open map. Let
p : P → X andq : Q → X andm : P → Q, wherePandQare path objects inP. Assume
also thatidXp = qm. Then letr = q : Q → X: idXr = idXq = q andqm = p. Now
suppose,f : X → Y andg : Y → Z areP-open maps, letp : P → X andq : Q → Z,
andm : P → Q. Also assume that(gf )p = qm. As g : Y → Z is aP-open map, there
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exists anr : Q → Y such that the triangles in the following diagram commute:

P
f ◦ p✲ Y

��
�r ✒

Q

m
❄ q✲ Z

g
❄

and asf : X → Y is P-open, there exists a maps : Q → X making the triangles in the
following diagram commute:

P
p✲ X

��
�s ✒

Q

m
❄ r✲ Y

f
❄

Now (gf )s = g(f s) = gr = q, using the second and the first diagrams for the last two
equalities, respectively. Alsosm = p from the second diagram above.�

The definition ofP-open maps leads to the notion ofP-bisimilarity. We say that objects
X1 andX2 ofM areP-bisimilar, denotedX1 ∼P X2 iff there is a span(X, f1, f2) ofP-open
maps as shown below:

X

✠��
�f1 ❅❅❅

f2
❘

X1 X2

The relation ofP-bisimilarity between objects is clearly reflexive (identities areP-open)
and symmetric. It is also transitiveprovided the model categoryM has pullbacks, due to the
fact that pullbacks ofP-open morphisms areP-open (see[12] for a proof). Indeed suppose
X1 ∼P X2 andX2 ∼P X3, thenX1 ∼P X3 as can be seen from the following diagram.

Y

✠��
�g′

1 ❅❅❅
f ′

2
❘

X X′

✠��
�f1 ❅❅❅

f2
❘ ✠��

�g1 ❅❅❅
g2
❘

X1 X2 X3

Note that givenX1 andX2 in M , if there exists aP-open morphismf : X1 → X2, or aP-
open morphismg : X2 → X1, thenX1 andX2 areP-bisimilar. The spans are(X1, idX1, f )

and(X2, g, idX2), respectively.
Not all model categories that we consider have pullbacks of all morphisms. In particular

the category of smooth manifolds and smooth mappings does not have pullbacks ofall
morphisms. We discuss the solution to this problem in the sections below.
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3. Labelled transition systems

We briefly recall the definitions and results in[12] for labeled transition systems. We
will also refer to these definitions and results later, when we discuss hybrid dynamical
systems.

Definition 3. A labeled transition systemT = (S, i, L,→) consists of the following:
• A setSof states with a distinguished statei ∈ S called theinitial state. Note that we do

not requireSbe finite.
• A setL of labels.
• A ternary relation→⊆ S × L × S.

The model categoryT, of transition systems has labeled transition systems as objects and
a morphismf : T1 → T2 with T1 = (S1, i1, L1,→1) andT2 = (S2, i2, L2,→2) is given
by f = (�, �) where� : S1 → S2 with �(i1) = i2 and� : L1 → L2 is a partial function
such that
(1) (s, a, s′) ∈→1 and�(a) defined, implies(�(s), �(a),�(s′)) ∈→2 and
(2) (s, a, s′) ∈→1 and�(a) undefined, implies�(s) = �(s′).
In order to discuss the usual bisimilarity of transition systems we need to restrict our model
category to the subcategoryTL of transition systems with the same label setLand morphisms
of the formf = (�, idL) which preserve all the labels. The categoryTL has both binary
products and pullbacks[12].

Definition 4. Given transition systemsT1 = (S1, i1, L,→1) andT2 = (S2, i2, L, →2) in
TL we define their productT = (S, i, L,→) as follows:
• S = S1 × S2 with projections�1 : S → S1 and�2 : S → S2,
• i = (i1, i2),
• ((s1, s2), a, (s

′
1, s

′
2) ∈→ iff (s1, a, s

′
1) ∈→1 and(s2, a, s

′
2) ∈→2.

It is straightforward to show that(T , (�1, idL), (�2, idL)) is a product in the categoryTL.

Definition 5. Givenf1 = (�1, idL) : T1 → U andf2 = (�2, idL) : T2 → U morphisms
in TL with T1 = (S1, i1, L,→1) andT2 = (S2, i2, L,→2). We define the pullback off1
andf2 as(T , f ′

1, f
′
2) with f ′

1 : T → T2, f
′
2 : T → T1 as follows:

• T = (S, i, L,→) where,
◦ S = {(s1, s2) |�1(s1) = �2(s2)} ⊆ S1 × S2,
◦ i = (i1, i2),
◦ ((s1, s2), a, (s

′
1, s

′
2)) ∈→ iff (s1, a, s

′
1) ∈→1 and(s2, a, s

′
2) ∈→2

• f ′
1 = (�2, idL) where�2 : S → S2 is the projection map.

• f ′
2 = (�1, idL) where�1 : S → S1 is the projection map.

We define the path categoryBranL as the full subcategory ofTL of all synchronization
trees with a single finite branch (possibly empty). Now a path in a transition systemT in
TL is a morphismp : P → T in TL, with P an object inBranL. Clearly this simply
means that we look at the traces of the transition system. TheBranL-open maps inTL are
characterized as follows:
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Proposition 6. TheBranL-open morphisms ofTL are morphisms(�, idL) : T →T ′ with
T , T ′ ∈ TL such that:
If �(s)

a−→ s′ in T ′, then there existsu ∈ S, s
a−→ u in T and�(u) = s′.

We now recall the strong notion of bisimulation introduced in[19]. LetT1 andT2 be two
transition systems inTL, as in Definition 5 above.

Definition 7. A binary relationR ⊆ S1 × S2 is astrong bisimulationif (s, t) ∈ R implies,
for all a ∈ L:
(1) Whenevers

a→1 s′ then, there ist ′, t a→2 t ′ and(s′, t ′) ∈ R,
(2) Whenevert

a→2 t ′ then, there iss′, s a→1 s′ and(s′, t ′) ∈ R.

Transition systemsT1 andT2 are called strongly bisimilar, writtenT1 ∼ T2, if (i1, i2) ∈ R
for some strong bisimulation relationR. The following theorem, proven in[12], shows that
the abstract notion ofBranL-bisimilarity coincides with the traditional notion of strong
bisimulation.

Theorem 8(Joyal et al.[12] ). Two transition systems(hence synchronization trees) over
the same labeling set L, areBranL-bisimilar iff they arestrongly bisimilarin the sense of
Milner [19].

In the next sections, we consider the notion ofP-bisimilarity in the categories of dynam-
ical, control, and hybrid systems.

4. Dynamical systems

The material in this and the subsequent sections require some background knowledge
on differential geometry that we have included in the Appendix for the convenience of the
reader.

We begin with a motivating example. Suppose we would like to describe the evolution of
the temperature inside a car in a cold winter day when we need the heating system turned
on. If we denote byx the temperature inside the car and byy the temperature outside, it is
natural to assume that, sincex > y, the interior of the car will cool down until reaching
the outside temperature. Such decrease is described by the derivatived

dt x(t) of temperature
x(t) which can be described by

d

dt
x(t) = c(y − x(t)), (1)

wherec is a positive coefficient describing how well the car is thermally isolated from
the outside. This decrease can, however, be balanced by the car heating system. If heat
is produced at rateu we can modify (1) to account for the produced heat resulting in the
differential equation:

dx(t)/dt = c(y − x(t)) + u. (2)
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This is an example of a dynamical systemX : R → R × R with X(x) = (x, c(y −x)+u).
Given a value for the temperaturex(0) inside the car at timet = 0, Eq. (2) completely
defines the value of the temperaturex(t) for all future timest ∈ R.

A dynamical system or vector field on a manifoldM is a smooth section of the tangent
bundle onM, that is, a smooth mapX : M → TM such that�MX = idM where�M :
TM → M is the canonical projection of the tangent bundle onto the manifoldM.

We proceed to define the model categoryDyn of dynamical systems. The objects inDyn
are dynamical systemsX : M → TM whereM is a smooth manifold. A morphism inDyn
from objectX : M → TM to objectY : N → TN is a smooth mapf : M → N such that
the diagram

M
f✲ N

X
� � Y

TM
Tf✲ TN

commutes. Thus related systems are said to bef-related[14]. The identity morphisms and
composition are induced by those in the categoryMan of smooth manifolds and smooth
mappings.

We proceed to define the path categoryP as the full subcategory ofDyn with objects
P : I → T I , whereP(t) = (t,1) andI is an open interval ofR containing the origin. Note
thatI is a manifold since it is an open set and it is also parallelizable (trivializable), that is,
T I�I × R. Observe thatP represents the differential equation dx(t)/dt = 1 modeling a
clock running on the intervalI at unit rate. Note that any other choiceP ′ : I → T I with
P ′(t) = (t, c), 0 �= c ∈ R, for path object is isomorphic toP : I ′ → T I ′ via f : P ′ → P

with f (t) = tc. HereI ′ = {t/c | t ∈ I }.

Definition 9. A pathor trajectory in a dynamical systemX : M → TM is a morphism
c : P → X in Dyn, whereP is an object inP. More explicitly, a pathc is a mapc : I → M

such that the following diagram commutes.

I
c✲ M

T I

P
❄ T c✲ TM

X
❄

This means that a path inX is a smooth mapc : I → M for some open intervalI such that
c′(t) = X(c(t)) for all t ∈ I . Thus, a path inX is just an integral curve inM. Observe that
given a pathc in X, andf : X → Y , f ◦ c is a path inY. This is the sense ofY simulating
or over-approximating X.

The next issue to understand is the meaning of path extension. SupposeP : I → T I

andQ : J → T J are objects inPwith I, J open intervals inR containing the origin, and
m : P → Q. Then,m is a smooth map fromI to J, such thatm′(t) = 1 orm(t) = t − t0 for
somet0 ∈ R and for allt ∈ I .
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We now introduce the following notation: let�X(x1, x2, t) denote the predicate that is
true iff systemX evolves from statex1 to statex2 in time |t |. Hence,�X(x1, x2, t) is true
iff there is an open intervalI in R containing the origin and an integral curvec : I → M

such thatc(0) = x1 andc(t) = x2. The following important result will be central to the
characterization ofP-open maps inDyn.

Theorem 10(Boothby[5] ). Let X be a smooth vector field on a manifold M and suppose
p ∈ M. Then there is a uniquely determined open interval ofR, I (p) = (�(p),�(p))

containingt = 0 and having the properties:
(1) there exists a smooth integral curveF(t) defined onI (p) and such thatF(0) = p;
(2) given any other integral curveG(t) withG(0) = p, then the interval of definition of G

is contained inI (p) andF(t) = G(t) on this interval.

The characterization ofP-open maps is given by the following proposition.

Proposition 11. Given the dynamical systems X on M and Y on N, f : X → Y is P-open
if and only if
For any statex1 of X (x1 ∈ M) andt ∈ R, if �Y (f (x1), y2, t), then there existsx2 ∈ M

such that�X(x1, x2, t) wherey2 = f (x2).

Proof. Supposef : X → Y is aP-open map and�Y (f (x1), y2, t). Then there exists a
pathd1 : J1 → N such thatd1(0) = f (x1) andd1(t) = y2. Then, by the existence and
uniqueness theorem for vector fields there exists a pathd : J → N with Jmaximal such
thatd(0) = f (x1) and thusJ1 ⊆ J andd1(t) = d(t) for all t ∈ J1. On the other hand, there
is a pathc : I → M with c(0) = x1 for some open intervalI of R. Thusf c(0) = f (x1).
By maximality,I ⊆ J andf c(t) = d(t) for all t ∈ I . Thus the following diagram (withi
the inclusion map) commutes:

I
c✲ M

J

i
❄ d✲ N

f
❄

TheP-openness off, then implies that there existsr : J → M such thatri = c andf r = d.
Hence we haveri(0) = c(0) = x1 andf r(t) = d(t) = y2. Let x2 = r(t), then clearly we
have established�X(x1, x2, t).

Conversely, suppose that the condition of Proposition11 holds and givenP,Q, m : P →
Q, with p : P → X andq : Q → Y , the equationfp = qm holds. Note that as was
observed earlier withP : I → T I andQ : J → T J , m(t) = t − t0 for somet0 ∈ R.
Consider the pointp(0) ∈ M, by Theorem 10 there exists an integral curver̃ : Ĩ → M

with Ĩ maximal such that̃r(0) = p(0). We will show that for everyt ∈ J , t + t0 ∈ Ĩ .
Suppose there exists at ∈ J such thatt + t0 /∈ Ĩ . Note thatq is aDyn-morphism, so we
have�Y (q(−t0), q(t), t0 + t), but�Y (q(−t0), q(t), t0 + t) = �Y (q(m(0)), q(t), t0 + t) =
�Y (f (p(0)), q(t), t0 + t) where the latter equality follows from assumption. Hence, there
exists a pointx ∈ M such that�X(p(0), x, t0 + t) with f (x) = q(t). Hence, there exists
an integral curvec : Ic → M with c(0) = p(0) andc(t + t0) = x, andt + t0 ∈ Ic \ Ĩ
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contradicting the maximality of̃I . Now definer by r(t) = r̃(t + t0) for all t ∈ J . Clearlyr
is aDyn-morphism and is well defined. Now,rm(0) = r(−t0) = r̃(0) = p(0) and hence
rm = p. On the other hand,f r(−t0) = f r̃(0) = fp(0) = qm(0) = q(−t0) and hence
f r = q.

Intuitively, this condition simply requires thatp(t) be extendible on both sides if
necessary to a solutionr(t) of X that matches the solutionqofY, i.e.,f (r(t)) = q(t) for all
t ∈ J . �

In the special case where vector fields arecomplete, that is solutions exist for all time
(i.e., for all t ∈ R), the previous proposition takes the following form.

Proposition 12. Let X andY be complete vector fields on manifolds M and N respectively.
Then anyf : X → Y isP-open.

Proof. Note that for complete vector fields any integral curve is defined on the whole of
R. Supposep : P → X and q : Q → Y are paths and thatfp = qm. Recall that
m : P → Q is given bym(t) = t − t0 for somet0 ∈ R. Consider the pointp(0) ∈ M,
then by Theorem10 and completeness ofX, there exists an integral curved : R → M such
that d(0) = p(0), definer : J → M by r(t) = d(t + t0) for all t ∈ J . Clearly r is a
Dyn-morphism. Now,f r(−t0) = f d(0) = fp(0) = qm(0) = q(−t0) and hencef r = q.
Similarly, rm(0) = r(−t0) = d(0) = p(0) and hencerm = p. �

Recall that by the general definition in Section 2, two objectsX1 andX2 in the model
category areP-bisimilar if there is a span ofP-open maps, that is, an objectXwith P-open
mapsf1 : X → X1 andf2 : X → X2. TheP-bisimulation relation has to be an equivalence
relation and for that purpose one requires the existence of pullbacks in the underlying model
category, to ensure transitivity. However, as it is well known in differential geometry [1,14],
in the categoryMan of smooth manifolds and smooth mappings, arbitrary pullbacks do not
exist. Structure needs to be imposed on the maps in order to guarantee that pullbacks exist.

Definition 13. Given smooth manifoldsM andN, a smooth mapf : M → N andx ∈ M,
let Txf : TxM → Tf (x)N be the differential off. We say that:
(i) f is animmersionatx if and only if the mapTxf is injective.

(ii) f is asubmersionatx if and only if the mapTxf is surjective.

Definition 14. LetM,N be smooth manifolds andf : M → N be a smooth mapping and
P be a submanifold ofN. The mapf is transversalonP iff for eachx ∈ M such thatf (x)

lies inP, the composite

Tx(M)
Txf−→ Tf (x)(N) → Tf (x)(N)/Tf (x)(P )

is surjective.

In particular, if for everyx ∈ M, Txf is surjective, that is, iff is a submersion onM,
then the composite in the definition above will be surjective and hence every submersion
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f : M → N is transversal on every submanifoldP of N. The importance of transversality
is that one can prove submanifold property, that is, givenf : M → N a smooth transversal
map on a submanifoldP of N, f −1(P ) is a smooth submanifold ofM.

Definition 15. Given smooth mapsf : M → P andg : N → P , we say thatf andg are
transversal iff × g : M × N → P × P is transversal on the diagonal submanifold�P of
P × P .

Proposition 16(Abraham et al.[1] ). Let M and N be smooth manifolds andf : M → N

a smooth map, then graph(f ) is a smooth submanifold ofM × N .

Proposition 17. The categoryMan has transversal pullbacks.

Proof. SupposeM,N,P are smooth manifolds andf1 : M → P andf2 : N → P are
smooth transversal maps. Form the fiber product ofM andN onP, denotedM ×P N =
{(x, y) ∈ M×N | f1(x) = f2(y)}.Asf1 andf2 are transversal,(f1×f2)

−1�P = M×P N

is a submanifold ofM × N , the smooth structure is induced by that ofM × N , for more
details see[14]. The rest of the proof consists of checking the universal property of the
pullback which follows from the set theoretical construction.�

Obviously transversality is a sufficient condition and hence there are other pullbacks in
the categoryMan. In view of this proposition we have the following result.

Proposition 18. Pullbacks of submersions exists inMan. Moreover, the pullback of any
submersion is a submersion.

Proof. First note that the transversality condition for a givenf1 : M → P andf2 : N → P

is equivalent to the following condition: for anyp ∈ P such thatp = f1(x) = f2(y) for
somex ∈ M andy ∈ N , im(Txf1) + im(Tyf2) = TpP [14]. In other words, the tangent
spaces on the left together must span the whole ofTpP . Now given thatf1 andf2 are
submersions, we conclude thatim(Txf1) = im(Tyf2) = TpP and hence transversality
follows. To prove the second statement, recall that the pullback morphisms are projec-
tions restricted toM ×P N , let g1 : M ×P N → N be the pullback off1 (see the
diagram below),T g1 : T (M ×P N)�TM ×T P TN → TN. Given any(x, y) ∈ M ×P N ,
T(x,y)g1 : TxM ×Tf1(x)P

TyN → TyN is surjective asf1 is a submersion. Henceg1 is a
submersion.

M ×P N
g1✲ N

M

g2
❄ f1✲ P

f2
❄

�

After all these preliminary results in the categoryMan of manifolds, we can finally get
to our desired goal in the category of dynamical systems.
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Proposition 19. The categoryDyn has binary products and transversal pullbacks.

Proof. Given the dynamical systemsX : M → TM andY : N → TN, defineX × Y :
M × N → TM × TN�T (M × N) by (X × Y )(x, y) = (X(x), Y (y)). The projections
�1 : X × Y → X and�2 : X × Y → Y are morphisms inDyn as can be easily seen from
the definition.

Let X, Y andZ be dynamical systems on the manifoldsM,N,P respectively andf1 :
X → Z andf2 : Y → Z. By assumption the mapsf1 : M → P andf2 : N → P are
transversal, soM×P N is a smooth submanifold ofM×N . We define the dynamical system
W : M ×P N → T (M ×P N)�TM×T P TN, denotedX×P Y byW = X×Y |M×PN . For
this definition to be well-defined one has to ensure that for every point(x, y) ∈ M ×P N ,
(X × Y )(x, y) ∈ TM×T P TN, in other words one has to show that the vector fieldX × Y

is tangent to the submanifoldM ×P N . We proceed by proving the equivalent statement:
for any(x, y) ∈ M ×P N the flow of(x, y) alongX × Y at any timet (for which the flow
is defined), denotedFlX×Y

t (x, y) is in M ×P N .

(Z ◦ f1)(x) = (Z ◦ f2)(y), as(x, y) ∈ M ×P N,

Txf1X(x) = Tyf2Y (y), asf1, f2 areDyn-morphisms,

(LXf1)|x = (LY f2)|y, Lie derivative,

f1(FlXt (x)) = f2(FlYt (y)), by integration,

FlX×Y
t (x, y) ∈ M ×P N, by definition.

The fact thatM ×P N is a pullback in the categoryMan implies thatW is a pullback
in Dyn. �

In this case, as we have seen above, we can only guarantee the transversal pullbacks.
Hence we modify the definition forP-bisimulation to ensure that it becomes an equivalence
relation. That is, we require that there be a span ofP-open surjective submersions.

Definition 20. We say that two dynamical systemsX1 andX2 areP-bisimilar, denoted
X1 ∼P X2, if there exists a span(Z, f1 : Z → X1, f2 : Z → X2) of P-open surjective
submersions.

Note that if there exists aP-open surjective submersionf : X → Y , thenX ∼P Y with
the span(X, idX, f ).

Proposition 21. The relation ofP-bisimilarity is an equivalence relation on the class of
all dynamical systems.

Proof. Reflexivity follows from the fact thatidX is aP-open surjective submersion for
any dynamical systemX. Symmetry is trivial. For transitivity, suppose thatX1 ∼P X2
andX2 ∼P X3. Then, there are the spans(Z1, f1 : Z1 → X1, f2 : Z1 → X2) and
(Z2 : g1 : Z2 → X2, g2 : Z2 → X3). The pullback off2 andg1 exists as these are
submersions, denote these pullbacks byf ′

2 andg′
1, respectively. We also know thatf ′

2 and
g′

1 areP-open surjective submersions, as pullback preserves all these properties. Moreover,
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the composition ofP-open surjective submersions is aP-open surjective submersion. Thus
we have the span ofP-open surjective submersions(Z, f1g

′
1 : Z → X1, g2f

′
2 : Z → X3)

whereZ is the vertex of the pullback square.�

We proceed with a definition of bisimulation for dynamical systems, for this we need
a notion of a well-behaved relation. We will show that bisimulation andP-bisimulation
coincide. The following definition which seems to be new, is inspired by a relevant definition
for equivalence relations on manifolds[1,25].

Definition 22. LetM andN be smooth manifolds andR be a relation fromM toN, that is
to say,R ⊆ M × N . We say thatR is regular iff
• R is a smooth submanifold ofM × N ,
• the projection maps�1 : R → M and�2 : R → N are surjective submersions.

Proposition 23. LetM,N and P be smooth manifolds andR ⊆ M × N andS ⊆ N × P

be regular relations. ThenS ◦ R ⊆ M × P is a regular relation.

Proof. As R andS are regular relations the following pullback exists

R ×N S f2✲ S

R
f1

❄ �2✲ N

�1
❄

Note thatR ×N S = {(r, s) |�1(s) = �2(r)} = {(x, y, y′, z) | y = y′}. Now consider

R×N S �1×�2−→ M×P , thenS ◦R = (�1×�2)(R×N S). However,�1×�2 is a submersion
and hence an open map. ThusS◦R is an open subset ofM×P and so a smooth submanifold

of M × P . Furthermore,�1 : S ◦ R → M is given byR ×N S f1−→ R �1−→ M which is a
surjective submersion. Similarly for�2 : S ◦ R → P . �

Definition 24. Given two dynamical systemsX onM andY onN, we say that a relation
R ⊆ M × N is abisimulationrelation iff
(1) R is a regular relation,
(2) for all (x, y) ∈ M × N , (x, y) ∈ R implies for allt ∈ R,

• if �X(x, x′, t), there existsy′ ∈ N such that�Y (y, y
′, t) and(x′, y′) ∈ R,

• if �Y (y, y
′, t), there existsx′ ∈ M such that�X(x, x′, t) and(x′, y′) ∈ R.

We say that two dynamical systemsX andY on manifoldsM andN, respectively are
bisimilar if there exists a bisimulation relationR ⊆ M × N .

Theorem 25. Given dynamical systems X andY on manifolds M and N respectively,X and
Y are bisimilar iff they areP-bisimilar.

Proof. Suppose thatX ∼P Y and (Z, f : Z → X, g : Z → Y ) is the span where
Z : P → T P . Note thatgraph(f ) ⊆ P × M and graph(g) ⊆ P × N are regular
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relations. Consider the converse relationgraph(f ) and letR = graph(g) ◦ graph(f ).
It can be shown thatgraph(f ) is regular. Also, note that by the proposition above,R is
regular. Let(x, y) ∈ R and�X(x, x′, t), then there exists az ∈ P such that(x, z) ∈
graph(f ) and (z, y) ∈ graph(g), so x = f (z). As f is aP-open map, then there exist
z′ ∈ P such that�Z(z, z′, t) andf (z′) = x′, i.e. (z′, x′) ∈ graph(f ). Let y′ = g(z′),
then�Y (g(z), g(z

′), t) = �Y (y, y
′, t) and(x′, y′) ∈ R. Similarly, the other bisimilarity

condition is satisfied.
Conversely, suppose thatX andYare bisimilar andR is the bisimulation relation. AsR

is regular, it is a smooth manifold. Consider the dynamical systemZ : R → T R defined
by Z = (X × Y )|R. Note that as in Proposition19 for Z to be well defined, one has to
show thatX × Y is tangent to the submanifoldR. We prove: for any point(x, y) ∈ R,
FlX×Y

t (x, y) = (FlXt (x),FlYt (y)) ∈ R. Let FlXt (x) = x′, then�X(x, x′, t) and asR
is a bisimulation relation, there existsy′ such that�Y (y, y

′, t) and (x′, y′) ∈ R, where
y′ = FlYt (y). Also �1 : R → M is a surjective submersion, asR is regular. We need to
show that�1 is P-open. Let�X(�1(x, y), x

′, t) = �X(x, x′, t), then there existsy′ such
that�Y (y, y

′, t) and(x′, y′) ∈ R, so�Z((x, y), (x′, y′), t) and�1(x
′, y′) = x′, so�1 is

P-open. Similarly for�2 and hence(Z,�1 : Z → X,�2 : Z → Y ) is a span ofP-open
surjective submersions and henceX ∼P Y . �

The above theorem shows that the abstract notion ofP-bisimilarity coincides with the
expected and natural notion of bisimulation for dynamical systems.

The following gives an example of two bisimilar dynamical systems.

Example 26. Consider the vector fieldX onM = R2 defined byẋ = Ax, where

A =
[

1 3
4 2

]
.

SinceM is a Euclidean space we can make the identificationTM = R2 × R2 andX as a
map fromM to TM is then described byX(x) = (x,Ax). Also consider the vector fieldY
onN = R defined byẏ = 5y. The linear mapf : R2 → R defined byf (x1, x2) = x1 +x2
is aDyn-morphism fromX toY, indeed:

TfX(x) = [1 1]

[
x1 + 3x2
4x1 + 2x2

]
= 5x1 + 5x2 = 5(x1 + x2) = 5y = Y (f (x)).

As linear vector fields are known to be complete[5] we have by Proposition 12 thatf is
P-open. Note thatf is a surjective submersion. It then follows thatX andYare bisimilar by
the span(X, id : X → X, f : X → Y ).

We now turn our attention to control systems.

5. Control systems

In this section we extend the treatment in the previous section to control systems. The
extensions are in many cases straightforward and hence we have omitted the proofs of
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some propositions and theorems. On the other hand, we give enough details on product and
pullback constructions.

Before we proceed with the mathematical definitions, we shall motivate the idea of a
control system. Recall the example of a dynamical system in Section4 where we modeled
the temperature change in a car. Assume now that we are inside the car and that we can
change the rate at which heat is generated by the car’s heating system. Having the possibility
of changing the value ofu leads us to regardu, not as a constant, but as an input allowing
to alter the temperature evolution. Eq. (2), that we repeat here for convenience:

d

dt
x(t) = c(x(t) − y) + u, (3)

now defines a control systemX : R × R → R × R with X(x, u) = (x, c(y − x) + u). In
this case, a value for the temperature at timet = 0 does not uniquely define its future values
since by changingu over time we can alter the temperature evolution. When the heating
system is automatic we do not need to play directly with the value ofu and only have to
specify a desired value for the temperature. An embedded system will then measure the
temperature inside and outside the car and automatically adjust the value ofu in order to
reach the specified temperature as quickly as possible.

We define the model categoryCon as follows. Objects ofCon are control systems over
smooth manifolds, a control systemX over a manifoldM is given by a pair(UM,XM)

whereXM : M × UM → TM is a smooth map such that�MXM = �1 with �M the
canonical tangent bundle projection and�1 : M × UM → M, the first projection map.
HereUM is a smooth manifold called theinput space. A morphism inCon from a control
systemX = (UM,XM) to Y = (UN, YN) is given by a pair(�1,�2) of smooth maps with
�1 : M × UM → N × UN and�2 : M → N , such that

M × UM

�1✲ N × UN M × UM

�1✲ N × UN

TM

XM
❄ T �2 ✲ TN

YN
❄

M

�1
❄ �2 ✲ N

�1
❄

both commute. Thus related control systems are said to be(�1,�2)-related[22]. Note that
since�1 is a surjective map,�2 is uniquely determined given�1. The identity morphism
idX : X → X for an objectX inCon is given byidX = (idM×UM

, idM). Givenf : X → Y

andg : Y → Z, the compositegf : X → Z is given bygf = (g1f1, g2f2).
The path categoryP is defined as the full subcategory ofConwith objects, control systems

(UI , PI ) whereUI is the singleton space with trivial topology and thusI × UI�I andI
is an open interval ofR containing the origin. Hence,PI : I → T I which we define as
P(t) = (t,1) for all t ∈ I . Thus(UI , PI ) is a well-defined control system.

Definition 27. A pathin a control systemX = (UM,XM) is then a morphismc = (c1, c2) :
(UI , PI ) → (UM,XM) in Con with c1 : I → M × UM andc2 : I → M such that the
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diagrams

I
c1✲ M × UM I

c1✲ M × UM

T I

PI
❄ T c2 ✲ TM

XM
❄

I

idI
❄ c2 ✲ M

�1
❄

commute.

This means that a path inX is a pair of smooth mapsc1 : I → M×UM andc2 : I → M for
some open intervalI with 0 ∈ I such thatc′

2(t) = X(c2(t), u(t)) for all t ∈ I , whereu(t) =
�2c1(t). Let (I, PI ) and(J,QJ ) be two path objects inP andm = (m1,m2) : P → Q be
a path extension. Then from the diagram on the right above we get thatm1 = m2 : I → J

and then the diagram on the left coincides with the condition we had for dynamical systems.
Thus a path extensionm = (m1,m2) is of the formm1 = m2 : I → J , m1(t) = t − t0 for
somet0 ∈ R and for allt ∈ I .

Definition 28. Given control systemsX = (UM,XM), Y = (UN, YN)andZ = (UP ,ZP ),
f = (f1, f2) : X → Z andg = (g1, g2) : Y → Z are said to betransversalif f2 × g2 :
M × N → P × P is transversal on�P andf1 × g1 : (M × UM) × (N × UN) →
(P × UP ) × (P × UP ) is transversal on�P×UP

.

Proposition 29. The categoryCon has binary products and transversal pullbacks.

Proof. Let X = (UM,XM) andY = (UN, YN) be control systems on manifoldsM andN,
respectively. Their productX × Y = (UM × UN, (X × Y )M×N) is given by

(X×Y )M×N := (M×N)×(UM×UN)
�−→ (M×UM)×(N×UN)

XM×YN−→ TM×TN �−→
T (M × N).

Suppose now thatf = (f1, f2) : X → Z andg = (g1, g2) : Y → Z whereZ =
(UP ,ZP ) is a control system on a smooth manifoldP. The pullback off andg is given
by (Q, f ′, g′) whereQ is a control system on the manifoldM ×P N with input space
UM ×P UN := (�2 × �2)((f1 × g1)

−1�P×UP
)) which is a submanifold ofUM × UN

due to transversality off1 andg1 and the fact that�2 × �2 is an open map. The dynamics
XM ×P YN is defined by restrictingXM × YN to (M ×P N)× (UM ×P UN), see the proof
of Proposition19. �

We introduce the following notation: let�X(x1, x2, t) denote the predicate that is true iff
the control systemX = (UM,XM) evolves from statex1 to statex2 in time t, under some
input inUM . Hence,�X(x1, x2, t) is true iff there is an open intervalI of R containing the
origin, a morphismc = (c1, c2) : (UI , PI ) → X such thatc2(0) = x1 andc2(t) = x2. The
input driving the system is given by�2c1 : I → UM . Similarly to the case of dynamical
systems, we characterize theP-open maps as follows.

Proposition 30. Given the control systemsX = (UM,XM) and Y = (UN, YN), f =
(f1, f2) : X → Y isP-open iff
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For any statex1 of X (x1 ∈ M) and t ∈ R, if �Y (f2(x1), y2, t), then there exists
x2 ∈ M such that�X(x1, x2, t) wherey2 = f2(x2).

Definition 31. Given control systemsX = (UM,XM) andY = (UN, YN), a morphism
f : X → Y is said to be asurjective submersionif both its componentsf1 andf2 are
surjective submersions.

Definition 32. We say that two control systemsX1 andX2 areP-bisimilar, denotedX1 ∼P
X2, if there exists a span(Z, f1 : Z → X1, f2 : Z → X2) of P-open surjective submer-
sions.

Proposition 33. The relation ofP-bisimilarity is an equivalence relation on the class of all
control systems.

We define the bisimulation relation for control systems, similarly to the case of dynamical
systems.

Definition 34. Given two control systemsX = (UM,XM) andY = (UN, YN), we say that
a relationR ⊆ M × N is abisimulationrelation iff
(1) R is a regular relation,
(2) for all (x, y) ∈ M × N , (x, y) ∈ R implies, for allt ∈ R,

• if �X(x, x′, t), there existsy′ ∈ N such that�Y (y, y
′, t) and(x′, y′) ∈ R,

• if �Y (y, y
′, t), there existsx′ ∈ M such that�X(x, x′, t) and(x′, y′) ∈ R.

We say that two control systemsXandYas above arebisimilar if there exists a bisimulation
relationR ⊆ M × N .

Theorem 35. Given control systemsX = (UM,XM) and Y = (UN, YN), X and Y are
bisimilar if and only if they areP-bisimilar.

The above theorem, shows that the categorical notion of bisimulation described in
Section2, also captures the natural notion of bisimulation for control systems.

6. Hybrid systems

A hybrid system is just a family of smooth dynamical systems indexed over the states of
an underlying labelled transition system. The dynamical systems are glued together by the
transitions of the underlying labelled transition system.

Definition 36. A hybrid (dynamical) system His a tuple

H = (S, i, L,→, {Xs}s∈S, {Invs}s∈S, {Gs,a}s=src(a),a∈L, {Rs,a}s=src(a),a∈L)
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Fig. 1. Hybrid systemH.

where:
• (S, i, L,→) is a labelled transition system,
• Xs is a smooth dynamical systemXs : Ms → TMs , for eachs ∈ S, notice that we do not

require that the dynamical systems be identical, nor do we require that the underlying
manifolds be the same for all statess ∈ S,

• Invs ⊆ Ms , for eachs ∈ S is calledthe invariant setat states, Invs is not required to be
a submanifold,

• Gs,a ⊆ Invs called theguardof the transitiona ∈ L, for eacha ∈ L, wheres is the
source of the actiona, that is, there ist ∈ S such that(s, a, t) ∈→.

• With (s, a, t) ∈→, Rs,a : Gs,a → Invt is a function, called theresetfunction.

Note that we have indexed the guard and the reset functions on a subset ofS × L due to
the fact that there might be two different edges with the same labela and different source
states and these might very well have different guards and/or reset functions. On the other
hand, identically labeled edges emerging from the same state will have identical guards and
reset functions.

Example 37. We give an example of a hybrid system below, see Fig.1. In this example
Msi = R for i = 1,2,3 and guards are given by:Gs1,a = [1/2,1], Gs2,b =] − 1,1[ and
Gs3,c = {1/4}.

In order to simplify the notation we refer to the underlying transition system in a hybrid
systemH, byT. For a hybrid system as above,T = (S, i, L,→). We will also omit the index
sets, as it will always be clear from the context. We assume that the underlying transition
systems all have the same label setL, that is,T is an object inTL.

Given a hybrid systemH = (T ,Xs, Invs,Gs,a, Rs,a), the state space ofH is defined by
Q = {(s, x) | s ∈ S andx ∈ Invs} = ⊎

s∈S Invs . We next define a transition relation on a
hybrid system as follows⇒ ⊆ Q×(L∪{	t }t∈R+

0
)×Q. Fort ∈ R+

0 ,	t /∈ Lare distinguished

actions used to represent the continuous flow of the system. We let(s, x)
a⇒ (s′, x′) denote

((s, x), a, (s′, x′)) ∈⇒. Given states(s, x), (s′, x′) in Q, (s, x)
a⇒ (s′, x′) iff either one of

the following transitions takes place:
(1) discrete transition(a ∈ L): s

a−→ s′, i.e., a is a transition inT, andx ∈ Gs,a and
x′ = Rs,a(x). Note thatx ∈ Ms andx′ ∈ Ms′ andMs may be different fromMs′ .

(2) continuous transition(a = 	t , t ∈ R+
0 ): s = s′ andFlXs

t (x) = x′ andFlXs

t ′ (x) ∈ Invs ,
for all 0� t ′ � t .
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Fig. 2. Hybrid systemH̃ .

In other words, the flow in the dynamical systemXs takesx to x′ while satisfying
the invariant at all times in-between, and the discrete state remains the same.

Example 38. Here is an example of a trajectory that can take place in the hybrid systemH
of Example37.

System starts at(s1, x(0) = 1/4)and flows continuously for log 2/2 units of time reaching
(s1, x(log 2/2) = 1/2). At this point the guard is enabled and discrete transitiona occurs
making the system evolve from(s1,1/2) to (s2, Rs1,a(1/2)) = (s2,1/4). Now discrete
transitionb takes place and the system jumps to(s3,1/4+ 1) = (s3,5/4). At this point the
system flows continuously for 1 unit of time until reaching(s3, z(log 2/2 + 1) = 1/4) and
c takes the system to(s2,−3/4).

This can be neatly represented as

(s1,1/4)
	log 2/2⇒ (s1,1/2)

a⇒ (s2,1/4)
b⇒ (s3,5/4)

	1⇒ (s3,1/4)
c⇒ (s2,−3/4).

We define the model categoryHyb with objects, hybrid systems. A morphismf in Hyb
from H = (T ,X, Inv,G,R) to H ′ = (T ′, X′, Inv′,G′, R′) with T = (S, i, L,→) and
T ′ = (S′, i′, L,→′) is a pair(f 1, {f 2

s }s∈S) where
• f 1 : T → T ′ is aTL-morphism,
• f 2

s : Xs → X′
f 1(s)

is aDyn-morphism, for alls ∈ S,

• f 2
s (Invs) ⊆ Inv′

f 1(s)
for all s ∈ S, and

• f 2
s (Gs,a) ⊆ G′

f 1(s),a
for all a ∈ L, s = src(a),

• If ((s, x), a, (t, y)) ∈⇒ is a transition inH, then(x, y) ∈ Rs,a implies(f 2
s (x), f 2

t (y))

∈ R′
f 1(s),a

.

For hybrid systemsH = (T ,X, Inv,G,R),H ′ = (T ′, X′, Inv′,G′, R′)andH ′′ = (T ′′, X′′,
Inv′′,G′′, R′′), the identity morphismid : H → H is defined byidH = (idT , {idXs }s).
Given f : H → H ′ and g : H ′ → H ′′, their compositionh = g ◦ f is given by
h1 = g1 ◦ f 1 andh2

s = g2
f1(s)

◦ f 2
s for s ∈ S. It can be easily checked that hybrid systems

and their morphisms form a category.
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Fig. 3. Hybrid systemH ′.

Fig. 4. Hybrid systemH ′′.

Example 39. Consider the hybrid systems̃H , H ′ andH ′′ in Figs.2, 3 and 4 respectively.
Note that on the figures we have avoided adding tilde, prime and double prime to the

symbols to avoid notational complexity, instead we make such references to variables in the
text. The guards inH̃ ,H ′ andH ′′ will play no role in this example, hence we leave them
unspecified.

We first show that there is a morphism fromH ′ to H̃ . Letf 1 be defined byf 1(s′
1) = s̃1

andf 1(s′
2) = s̃2, f 2

s′
1

be defined byf 2
s′
1
(x1, x2) = x and finallyf 2

s′
2

be the identity map, it is

obvious that the conditions forf 2
s′
2

are satisfied. Forf 2
s′
1

we note that:

Tf 2
s′
1
·
[

4x1 − 3x2

x2 + x2
2

]
= x2 + x2

2 = Xs̃1 ◦ f 2
s′
1
,

which shows thatf 2
s′
1

is aDyn-morphism. The remaining conditions are easily checked.

Next we show that there are no morphisms fromH ′′ to H̃ . Thef 2
s′′
2

component of any

morphism fromH ′′ to H̃ needs to be a morphism of dynamical systems and therefore to
satisfy− d

dzf
2
s′′
2

= Tf 2
s′′
2
· (−1) = −1. This differential equation has solutionf 2

s′′
2
(z) = z+ c

for some constantc ∈ R. However, for all possible choices ofcwe havef 2
s′′
2
(Invs′′

2
)� Invs̃2

which violates the definition of morphism. Intuitively, there can be no morphism since
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there are trajectories inH ′′ that cannot be simulated bỹH as their image underf 2
s′′
2

would necessarily be outsideInvs̃2 thus contradicting the notion of trajectory that we next
introduce.

We proceed to define the path categoryP as the full subcategory ofHyb with objects
P = (T ,X, Inv,G,R) whereT = (S, i, L,→) is a tree with a single (possibly empty)
branch, and for everys ∈ S, Xs : Is → T Is , with Is an open interval(�s ,�s) of R

containing the origin, is defined byXs(t) = (t,1). Invs ⊆ Is , Invs is a closed interval of the
form [t1, t2] for somet1, t2, (this includest1 = t2 possibility) that represents the duration
of the continuous flow andGs,a = {t2}. Suppose(s, a, t) ∈→, Rs,a : Gs,a → Invt is the
inclusion function.

Definition 40. A pathor trajectory in a hybrid systemH is a morphismp : P → H in
Hyb, whereP is an object inP.

Any path including a discrete transition will also carry the information of when this
transition takes place. This in turn is captured by the choice of the appropriate path ob-
ject (see the example below). The example below contains the representative cases that
cover all possibilities. We content ourselves with the example as it is sufficiently self
explanatory.

Example 41. Let H be a hybrid system. We will consider 3 path examples that cover all
possible cases.
• Consider a path of the form

(s0, x)
	t⇒ (s0, x

′) a⇒ (s1, y)
	t1⇒ (s1, y

′) b⇒ (s2, z)

so in this case the system flows for durationt, starting at time 0 and then at timet the
eventa takes place etc. This path is represented by the path objectP which has states
l0, l1, l2 as shown below:

l0
a✲ l1

b✲ l2

Il0 = (�0,�0)

with 0, t ∈ Il0
Invl0 = [0, t]
Gl0,a = {t}
Rl0,a(t) = t

Il1 = (�1,�1)

with 0, t + t1 ∈ Il1
Invl1 = [t, t + t1]
Gl1,b = {t + t1}
Rl1,b(t + t1) = t + t1

Il2 = (�2,�2)

with 0, t + t1 ∈ Il2
Invl2 = {t + t1}

In this case we also spell out the definition ofp : P → H : p1(lj ) = sj , j = 0,1,2 and
p2
l0
(0) = x0, p2

l1
(t) = x1 andp2

l2
(t + t1) = x2, note that thep2

s are integral curves and
thus uniquely determined by these definitions.

• Next consider the path

(s0, x)
	t⇒ (s0, x

′) a⇒ (s1, y)
b⇒ (s2, z)

	t1⇒ (s2, z
′)
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The path object for this path is defined as follows, the underlying tree is the same as
the one above and we have:

Il0 = (�0,�0)

with 0, t ∈ Il0
Invl0 = [0, t]
Gl0,a = {t}
Rl0,a(t) = t

Il1 = (�1,�1)

with 0, t ∈ Il1
Invl1 = {t}
Gl1,b = {t}
Rl1,b(t) = t

Il2 = (�2,�2)

with 0, t + t1 ∈ Il2
Invl2 = [t, t + t1]

• This last case follows from the one above, but we include it for the sake of clarity. Suppose
we are given the path

(s0, x)
a⇒ (s1, y)

	t⇒ (s1, y
′) b⇒ (s2, z)

The path object here too has the same underlying tree as the ones above and

Il0 = (�0,�0)

with 0 ∈ Il0
Invl0 = {0}
Gl0,a = {0}
Rl0,a(0) = 0

Il1 = (�1,�1)

with 0, t ∈ Il1
Invl1 = [0, t]
Gl1,b = {t}
Rl1,b(t) = t

Il2 = (�2,�2)

with 0, t ∈ Il2
Invl2 = {t}

SupposeP = (T ,X, Inv,G,R) andP ′ = (T ′, X′, Inv′,G′, R′) andm : P → P ′. Then,
m1 : T → T ′ which simply extends the treeT to T ′. For anys ∈ S, m2

s is a smooth map
from Is to Im1(s), such that d/dt (m2

s (t)) = 1 orm2
s (t) = t − t0 for somet0 ∈ R and for all

t ∈ Is .
We next characterize theP-open maps.

Proposition 42. LetH = (T ,Xs, Invs,Gs,a, Rs,a) andH ′ = (T ′, X′
s , Inv

′
s ,G

′
s,a , R′

s,a)

be hybrid systems withT = (S, i, L,→), T ′ = (S′, i′, L,→′) and underlying state spaces
Q andQ′, thenf = (f 1, f 2

s ) : H → H ′ isP-open iff

(1) for all u ∈ Q,w ∈ Q′ anda ∈ L, if f (u)
a⇒ w, then there exists av ∈ Q such that

u
a⇒ v andf (v) = w, and

(2) for all u ∈ Q,w ∈ Q′ and t ∈ R+
0 , if f (u)

	t⇒ w, then there exists av ∈ Q such that

u
	t⇒ v andf (v) = w.

Proof. Supposef = (f 1, f 2
s ) : H → H ′ isP-open and for a reachable stateu = (s, x) ∈

Q anda ∈ L, f (u)
a⇒ w in H ′. Let w = (s′′, x′′), thenf (u) = (f 1(s), f 2

s (x)) and

f 1(s)
a−→ s′′ in T ′, f 2

s (x) ∈ Gf 1(s),a and (f 2
s (x), x′′) ∈ Rf 1(s),a . As u = (s, x) is

reachable inH, the states ∈ S is reachable fromi in T, say through

i = s0
a1✲ s1 . . .

an✲ sn = s

hence there is a path objectPwhose underlying tree is

l0
a1✲ l1 . . .

an✲ ln
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and a pathp : P → H with p1(l0) = s0, . . . , p
1(ln) = sn and appropriatep2

s for
s ∈ {l0, . . . , ln}. The only part of the continuous data aboutP relevant to the proof is the
information atln which we will make explicit below. Suppose thatan occurs at timetn and
consider the following cases:
Case1: No continuous flow takes place at statesn, hence we have, say(sn−1, x)

an⇒(sn, x),
or (sn−1, x

′) an⇒ (sn, x) with Rsn−1,an(x
′) = x. Also Iln = (�n,�n) containing the origin

andtn andInvln = {tn}. Define a path objectP ′ with underlying tree

l′0
a1✲ l′1 . . .

an✲ l′n
a✲ l′

The underlying continuous information is the same as inP except that we setGl′n,a = {tn},
andIl′ = (�′,�′) containing the origin andtn and Invl′ = {tn}. Also we define the path
q : P ′ → H ′ by q1(l′j ) = f 1p1(lj ) for j = 0, . . . , n, andq1(l′) = s′′. And q2

s = f 2
s p2

s

for all s ∈ {l′0, . . . , l′n}, andq2
l′(tn) = x′′.

Case2: There is a continuous flow atsn, say we have

(sn−1, x
′) an⇒ (sn, x̃)

	t⇒ (sn, x)

for somet. The path objectP is as above save forIln = (�n,�n) containing the origin, and
tn + t andInvln = [tn, tn + t]. We define the path objectP ′ as this new path objectP, except
for Gl′n,a = {tn + t}, andIl′ = (�′,�′) containing the origin andtn + t andInvl′ = {tn + t}.
The morphismq is defined as above except that we setq2

l′(tn + t) = x′′.
Clearlyq is a path and withm the obvious embedding we havefp = qm. As f isP-open

we haver : P ′ → H , let v = (r1(l′), r2
l′(tn)) in case 1 andv = (r1(l′), r2

l′(tn + t)) in the

second case. Clearlyu
a⇒ v and

f (v) = (f 1r1(l′), f 2
r1(l′)(r

2
l′(tn))) = (s′′, x′′)

in case 1 and similarlyf (v) = w in case 2.

Now supposef (u)
	t ′⇒ w, with the same notation as above, this means thatf 1(s) = s′′

andFl
X′

f 1(s)

t ′ (f 2
s (x)) = x′′. Again we need to distinguish two cases similar to those above:

(1) There is no continuous flow atsn. The path objectP is the same as in case 1 above, we
define the path objectP ′:

l′0
a1✲ l′1 . . .

an✲ l′n

asPexcept that we setIl′n = (�′,�′) containing 0 andtn + t ′, Invl′n = [tn, tn + t ′]. The path
q is defined as in case 1 above except thatq2

l′n
(tn + t ′) = x′′.

(2) There is continuous flow, say of durationt to reach(s, x), in this caseP is the same
as in case 2 above and we defineP ′ asP except thatIl′n = (�′,�′) to contain the origin and
tn + t + t ′ andInvl′n = [tn, tn + t + t ′].

It can be easily checked that withv = (r1(l′n), r2
l′n
(tn+t ′)), andv = (r1(l′n), r2

l′n
(tn+t+t ′))

in cases 1 and 2 respectively, one hasu
	t⇒ v andf (v) = w.
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Conversely, suppose that conditions (i) and (ii) of the proposition hold and that there are
pathsp : P → H andq : P ′ → H ′ with m : P → P ′ such thatfp = qm we need to
show thatf isP-open.

Note that the underlying tree ofP ′ is either the same as or an extension ofP, in this case
we repeatedly use condition (i) above to definer1. The argument for the definition ofr1 is
the same as in[12]. We show the proof on an example, supposeP is given by

l0
a✲ l1

which maps to

s0
a✲ s1

in H underp andP ′ is given by

l′0
a✲ l′1

b✲ l′2

which maps to

s′
0

a✲ s′
1

b✲ s′
2

underq.

Now apply condition (i) of the proposition to finds2 such thats1
b−→ s2 and define

r1(l′j ) = sj , j = 0,1,2.
Consider the commutative diagram

Il0

p2
l0✲ Ms0

m2
l0

� � f 2
s0

Il′0

q2
l′0✲ M ′

s′
0

and use Theorem11 to definer2
l′0

, similarly for r2
l′1

. As for r2
l′2

, supposeInvl′2 = {tb} where

tb is the time thatb occurs. Then there is no continuous flow ats′
2 and we setr2

l′2
(tb) = x2

where(s1, x1)
b⇒ (s2, x2). On the other hand, if timet elapsed at statel′2, use (ii) above to

find (s2, x
′
2) where(s2, x2)

	t⇒ (s2, x
′
2) and setr2

l′2
(tb) = x2 andr2

l′2
(tb + t) = x′

2.

It is not hard to see that with this definitionr : P ′ → H is a path and that thef r = p′
andrm = p. �

Definition 43. Let H ′, H ′′ be hybrid systems withS′ andS′′ as the state spaces of their
underlying labelled transition systems, respectively. Letf : H ′ → H̃ andg : H ′′ → H̃

be morphisms of hybrid systems. We say thatf andg aretransversalif for any s′ ∈ S′ and
s′′ ∈ S′′ such thatf 1(s′) = g1(s′′) we have that theDyn-morphismsf 2

s′ : X′
s′ → X̃f 1(s′)

andg2
s′′ : X′′

s′′ → X̃g1(s′′) are transversal (see Section4).
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Definition 44. LetH andH ′ be hybrid systems, andf : H → H ′ be a morphism of hybrid
systems. Then,f is said to be asurjective submersionif f 2

s : Xs → X′
f 1(s)

is a surjective
submersion, for alls ∈ S.

Proposition 45. The categoryHyb has binary products and transversal pullbacks.

Proof. Given two hybrid systems

H ′ = (T ′, X′, Inv′,G′, R′)

and

H ′′ = (T ′′, X′′, Inv′′,G′′, R′′)

with T ′ = (S′, i′, L,→′) andT ′′ = (S′′, i′′, L,→′′), we define their productH = H ′ ×
H ′′ = (T ,X, Inv,G,R) as follows:
• T = (S, i, L,→) = T ′×T ′′. Note that this is the product in the categoryTL of transition

systems with label setL (see Section3 above).
• For s = (s′, s′′) ∈ S = S′ × S′′, Xs = X′

s′ × X′′
s′′ , which is a product inDyn.

• For s = (s′, s′′) ∈ S, Invs = Inv′
s′ × Inv′′

s′′ , Cartesian product of sets.
• Finally, for s = (s′, s′′) ∈ S, G(s′,s′′),a = G′

s′,a × G′′
s′′,a andR(s′,s′′),a = R′

s′,a × R′′
s′′,a .

Definition of projection maps is based on those for underlying transition and dynamical
systems and verification of product property is routine and not included.

LetH ′, H ′′ be hybrid systems as above andf : H ′ → H̃ andg : H ′′ → H̃ be morphisms
of hybrid systems. Now supposef, g are transversal, we define the pullback off andg as
(H, g′, f ′) whereH = (T ,X, Inv,G,R) is given by
• T is the pullback inTL of f 1, g1, (see Section3 above). Recall that, thenS =

{(s′, s′′) | f 1(s′) = g1(s′′)}.
• For s = (s′, s′′) ∈ S, Xs is the pullback inDyn of transversal mapsf 2

s′ andg2
s′′ (see

Section4 above). Recall thatMs = {(x′, x′′) ∈ M ′
s′ × M ′′

s′′ | f 2
s′(x′) = g2

s′′(x′′)}.
• For s = (s′, s′′) ∈ S, Invs = (Inv′

s′ × Inv′′
s′′) ∩ Ms .

• For s = (s′, s′′), t = (t ′, t ′′) ∈ S and (x′, x′′) ∈ Ms and (y′, y′′) ∈ Mt such that
(s′, s′′, x′, x′′) a⇒ (t ′, t ′′, y′, y′′) define

G(s′,s′′),a = {(x′, x′′) ∈ (G′
s′,a × G′′

s′′,a) ∩ Ms | (R′
s′,a(x

′), R′′
s′′,a(x

′′)) ∈ Invt }.
• R(s′,s′′),a = (R′

s′,a × R′′
s′′,a)|G(s′,s′′),a . Note that the range ofR(s′,s′′),a is in Invt , for t as

above. This follows from the definition ofG(s′,s′′),a .
Definitions off ′ andg′ follow using the underlying morphisms and verification of pullback
property is routine and not included.�

Definition 46. We say that two hybrid systemsH andH ′ areP-bisimilar if there exists a
span(H̃ , f : H̃ → H, g : H̃ → H ′) of P-open surjective submersions.

This immediately gives us the following result.

Proposition 47. P-bisimilarity is an equivalence relation on the class of all hybrid systems.
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It remains to show that the notion ofP-bisimilarity coincides with a natural notion of
bisimulation for hybrid systems, that we now define.

Definition 48. Given two hybrid systemsH = (T ,X, Inv,G,R) andH ′ = (T ′, X′, Inv′,
G′, R′), with Xs andX′

s′ defined onMs andM ′
s′ respectively. LetR1 ⊆ S × S′, and for

each(s, s′) ∈ R1, letR2
s,s′ ⊆ Ms × M ′

s′ be a regular relation.

DefineR = (R1, {R2
s,s′ }(s,s′)∈R1) to be the set

{(s, x, s′, x′) | (s, s′) ∈ R1 and(x, x′) ∈ R2
s,s′ }.

R is said to be abisimulationrelation iff for all((s, x), (s′, x′)) ∈ Q×Q′, ((s, x), (s′, x′)) ∈
R implies,
• for anya ∈ L if (s, x)

a⇒ (t, y), then there existst ′, y′ such that(s′, x′) a⇒ (t ′, y′) and
((t, y), (t ′, y′)) ∈ R,

• for anyt ∈ R+
0 if (s, x)

	t⇒ (t, y), then there existst ′, y′ such that(s′, x′) 	t⇒ (t ′, y′) and
((t, y), (t ′, y′)) ∈ R

• Vice-versa.

Remark 49. Notice thatR above is not a relation fromQ to Q′, as it might contain tuples
(s, x, s′, x′) with x /∈ Invs or x′ /∈ Inv′

s′ . However, this fact does not pose a problem in our
definition, as hybrid systems always evolve inside the invariant sets.

We say that two hybrid systemsH andH ′ arebisimilar if there exists a bisimulation
relationR such that((i, x), (i′, x′)) ∈ R for somex ∈ Invi andx′ ∈ Inv′

i′ (recall thati, i′
are the initial states ofT andT ′, respectively).

The main theorem below shows that the intuitive definition for hybrid system bisimilarity
is captured by the abstract bisimulation (P-bisimilarity).

Theorem 50. Let H andH ′ be hybrid systems. Then H andH ′ are bisimilar iff they are
P-bisimilar.

Proof. SupposeH andH ′ areP-bisimilar, let the span bef : H̃ → H andg : H̃ → H ′.
We define a relationR = (R1, {R2

s,s′ }(s,s′)∈R1) as follows:

R1 = graph(g1) ◦ graph(f 1) ⊆ S × S′.

For (s, s′) ∈ R1, define

R2
s,s′ = ⊎

s̃,f 1(s̃)=s,g1(s̃)=s′
graph(g2

s̃ ) ◦ graph(f 2
s̃
).

Note thatR2
s,s′ ⊆ Mf 1(s̃) × M ′

g1(s̃)
= Ms × M ′

s′ .

Regularity ofR2
s,s′ follows from Proposition23 and the fact that the disjoint union of

regular relations is regular.
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It remains to show thatR thus defined is a bisimulation relation, but this follows from
f, g beingP-open surjective submersions. Finally, bisimilarity ofH andH ′ follows from
the fact thatf 1 andg1 preserve initial states.

Conversely, supposeH and H ′ are bisimilar, let the bisimulation relation beR =
(R1, R2

s,s′), define a hybrid system̃H = (T̃ , X̃, ˜Inv, G̃, R̃) as follows:

• T̃ = (T × T ′)|R1 which means that we remove all states ofT × T ′ not inR1, we also
remove the incident transitions on these states.

• For s̃ = (s, s′) ∈ R1, defineX̃s̃ : R2
s,s′ → TR2

s,s′ by X̃s̃ = (Xs × X′
s′)|R2

s,s′
, this is

well-defined by Theorem25.
• ˜Inv(s,s′) = (Invs × Inv′

s′) ∩ R2
s,s′ .

• G̃(s,s′),a = (Gs,a × G′
s′,a) ∩ R2

s,s′ , and

• R̃(s,s′),a is obtained fromRs,a × R′
s′,a by restricting its domain tõG(s,s′),a . the well-

definedness of̃R follows from the fact thatR is a bisimulation.
The mapsf : H̃ → H andg : H̃ → H ′ are defined using the projection maps on the
discrete and continuous parts and can be shown to beP-open surjective submersions. The
proof is essentially similar to that of Theorem25. Hence, we have a span(H̃ , f, g) of
P-open surjective submersions, andH andH ′ areP-bisimilar. �

7. Related work

In this section we compare several aspects of our work with the existing ones in the
literature.

7.1. Categorical approaches to modeling of hybrid systems

As much as the authors are aware the only other work that discusses categorical models
of hybrid systems is the paper [18]. In this work, the authors construct an institution of
hybrid systems and provide a categorical characterization of free aggregation, restriction
and abstraction of such systems, thus providing a basis for compositional specification and
verification of hybrid systems. However, they do not discuss bisimulations. More explicitly,
they show that in the category of hybrid systems free aggregation corresponds to a product,
restriction to a cartesian lifting and abstraction to a cocartesian lifting. Categorically inspired
modeling of heterogeneous systems, consisting of multiple models of computation, is the
primary concern of the tagged-signal model in [17], and more, recently, the trace algebraic
framework in [6].

7.2. Categorical approaches to bisimulation

There has been considerable amount of research on categorical formulations of bisimu-
lation in addition to [12]. We will be more specific on coalgebraic approach to bisimulation.
See [23] for coalgebraic approaches to systems theory in general.

Coalgebraic formulation has been used successfully to model a variety of systems that
include, deterministic systems, deterministic and nondeterministic labeled transition sys-
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tems, supervisory control systems[15], symbolic dynamical systems, to name a few. More
explicitly a labeled transition system(S, i, L,→) defined in Section 3 can be viewed as
an F-system(S, �S) with F : Set → Seta functor andF(X) = 2L×X for any setX.
Here �S : S → F(S) is given by�S(s) = {(a, s′) | s a−→ s′}. An F-homomorphism
f : (S, �S) → (T , �T ) is a mapf : S → T such thatF(f )�S = �T f which means
that f both preserves and reflects the transition structure. This fact that a homomorphism
reflectsF-transitions makes it different from the morphisms we have in the categoryTL .
Now supposeF : Set→ Setis a functor, and(S, �S) and(T , �T ) areF-systems, a relation
R ⊆ S × T is said to be a bisimulation betweenS andT if there exists anF-dynamics
�R : R → F(R) such that the projections fromR toSandT areF-homomorphisms.

Note that in the case of dynamical systems we have a functor, the so called tangent functor
T : Man → Man, and one is tempted to view a dynamical systemX on a manifoldM as
a coalgebra(M,X) with X : M → TM. However, this is not the case on the face of it,
recall that a dynamical system isX : M → TM such that�MX = idM where�M is the
canonical projection. On the other hand, clearly one could work in a full subcategory of
coAlgT where the property above is also satisfied.

On a more essential note, our choice to work with path objects and path categories instead
of coalgebraic approach was due to the fact that in coalgebraic approaches one does not
have a direct way of modeling the notion of time and trajectory for the system under study.
However, in path object approach the flow of the system is made explicit and the notion
of abstract bisimulation has the trajectories built into the definition through theP-open
maps. As a matter of fact, in trying to formulate a notion of bisimulation for dynamical and
especially for hybrid systems we have benefited greatly from having to first define a path
object. This gave as an idea as to what the abstract notion of time should be for a hybrid
system. As the reader might recall, this is a tree with a single branch with bubbles on every
state, representing clocks working at constant rate 1.

8. Conclusions

In this paper, we developed novel notions of system equivalence for dynamical and
control systems, unified the notion of bisimulation across discrete and continuous domains,
and developed bisimulation notions for hybrid dynamical systems. In all cases, we proved
that this definition is captured by the abstract bisimulation framework introduced in [12].

There are several future research directions. On the one hand there is the well known
connection between abstract bisimulation, and logic and game characterizations of bisimu-
lation and presheaf semantics in the case of concurrency models [30]. This direction can be
exploited for dynamical and hybrid dynamical systems and in this way one obtains specifi-
cation logics for such systems. We are very keen on further exploring the relation between
our models and presheaf semantics.

On the other hand we have to further investigate the use and appropriateness of the no-
tion of bisimulation for dynamical and hybrid systems in the context of real life engineering
applications. The first step in this direction is to find algebraic characterizations of bisim-
ulation for hybrid systems or for at least a class of such systems and hence make a step
forward towards computability issues of such relations. Secondly, our definition might be
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too strong for applications, notice that in our setting, the two bisimilar hybrid systems are
locked in timing, that is, wherever one gets in timet the other should also be able to simulate
in the same time durationt. This condition could be weakened to allow for other equiva-
lence relations similar to weak bisimulation relation in the context of concurrency theory
[19]. Another weaker relation could be obtained by allowing a discrete transitiona in one
hybrid system to be simulated by pre and post time evolution of the other machine during
the execution of the eventa. We plan to study both of these weaker versions of equivalences
and the possibilities of characterizing them in abstract bisimulation framework.

Appendix A. Differential geometry

Our treatment of differential geometry follows that of [10]. For a more thorough intro-
duction to geometry, the reader may wish to consult numerous books on the subject such
as [1,26].

A.1. Differentiable manifolds

Recall that a functionh : A → B is a homeomorphism iffh is a bijection and bothhand
h−1 are continuous. In this case, topological spacesA andB are called homeomorphic. A
functionf : Rn → R is called smooth orC∞ if all derivatives of any order exist and are
continuous. Functionf is real analytic orC
, if it is C∞ and for eachx ∈ Rn there exists a
neighborhoodU of x, such that the Taylor series expansion off atxconverges tof (x) for all
x ∈ U . A mappingf : Rn → Rm is a collection(f1, . . . , fm) of functionsfi : Rn → R.
The mappingf is smooth (analytic) if all functionsfi are smooth (analytic).

Definition A.1 (Manifolds). A manifoldMof dimensionn is a Hausdorff and second count-
able topological space which is locally homeomorphic toRn.

A manifold, which is of great interest to us, isRn itself.A subsetNof a manifoldMwhich
is itself a manifold is called a submanifold ofM. Any open subsetN of a manifoldM is
clearly a submanifold, since ifM is locally homeomorphic toRn then so isN. In particular,
an open intervalI ⊆ R is also a manifold.

A coordinate chart on a manifoldM is a pair(U,�) whereU is an open set ofM and�
is a homeomorphism ofU on an open set ofRn. The function� is also called a coordinate
function and can also be written as(�1, . . . ,�n) where�i : M −→ R. If p ∈ U then

�(p) = (�1(p), . . . ,�n(p)) is called the set of local coordinates in the chart(U,�).

When doing operations on a manifold, we must ensure that our results are consistent
regardless of the particular chart we use. We must therefore impose some conditions. Two
charts(U,�) and(V ,�) with U ∩ V �= ∅, are calledC∞ (C
) compatible if the map

� ◦ �−1 : �(U ∩ V ) ⊆ Rn −→ �(U ∩ V ) ⊆ Rn

is aC∞ (C
) function. AC∞ (C
) atlas on a manifoldM is a collection of charts(U�,��)

with � ∈ A which areC∞ (C
) compatible and such that the open setsU� cover the
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manifoldM, soM = ⋃
a∈A U�. An atlas is called maximal if it is not contained in any other

atlas.

Definition A.2 (Differentiable manifolds). A differentiable (analytic) manifold is a mani-
fold with a maximal,C∞ (C
) atlas.

Now that we have imposed this differential structure on our manifoldM we can perform
calculus onM. In particular letf : M −→ R be a map. If(U,�) is a chart onM then the
function

f̂ = f ◦ �−1 : �(U) ⊆ Rn −→ R

is called the local representative off in the chart(U,�). We therefore define the mapf to
be smooth (analytic) if its local representativef̂ is smooth (analytic). Notice iff is smooth
(analytic) in one chart, then it is smooth (analytic) in every chart since we required our charts
to beC∞ (C
) compatible and our atlas to be maximal. Hence our results are intrinsic to
the manifold and do not depend on the particular chart we use. Similarly, if we have a map
f : M −→ N , whereM, N are differentiable manifolds, the local representation off given
a chart(U,�) of M and(V ,�) of N is

f̂ = � ◦ f ◦ �−1,

which makes sense only iff (U) ∩ V �= ∅. Again f is smooth (analytic) iff̂ is a smooth
(analytic) map.

A.2. Tangent spaces

Let p be a point on a manifoldM and letC∞(p) denote the vector space of all smooth
functions in a neighborhood ofp. A tangent vectorXp atp ∈ M is an operator fromC∞(p)

to R which satisfies forf, g ∈ C∞(p) anda, b ∈ R, the following properties:
(1) LinearityXp(a · f + b · g) = a · Xp(f ) + b · Xp(g).
(2) DerivationXp(f · g) = f (p) · Xp(g) + Xp(f ) · g(p).
The set of all tangent vectors atp ∈ M is called the tangent space ofM atp and is denoted
by TpM. The tangent spaceTpM becomes a vector space overR if for tangent vectors
Xp, Yp and real numbersc1, c2 we define

(c1 · Xp + c2 · Yp)(f ) = c1 · Xp(f ) + c2 · Yp(f )

for any smooth functionf in the neighborhood ofp. The collection of all tangent spaces of
the manifold,

TM = ⋃
p∈M

TpM

is called the tangent bundle. The tangent bundle has a naturally associated projection map
� : TM −→ M taking a tangent vectorXp ∈ TpM ⊂ TM to the pointp ∈ M. The tangent
spaceTpM can then be thought of as�−1(p).
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The tangent space can be thought of as a special case of a more general mathematical
object called a fiber bundle. Loosely speaking, a fiber bundle can be thought of as gluing
sets at each point of the manifold in a smooth way.

The tangent bundle is a vector bundle and the fiber at each pointp ∈ M is the tangent space
TpM. In particular, the tangent bundleTM has dimension 2n, whereM is n-dimensional.

Now letM be a manifold and let(U,�) be a chart containing the pointp. In this chart
we can associate the following tangent vectors

�
��1

, . . . ,
�

��n

defined by

�
��i

(f ) = �(f ◦ �−1)

�xi

for any smooth functionf ∈ C∞(p). The tangent spaceTpM is ann-dimensional vector
space and if(U,�) is a local chart aroundp then the tangent vectors

�
��1

, . . . ,
�

��n

form a basis forTpM. Therefore ifXp is a tangent vector atp then

Xp =
n∑

i=1
ai

�
��i

,

wherea1, . . . , an are real numbers. From the above formula we can see thatXp(f ) is an
operator which simply takes the directional derivative off in the direction of[a1, . . . , an].

Now letM andN be smooth manifolds andf : M −→ N be a smooth map. Letp ∈ M

and letq = f (p) ∈ N . We wish to push forward tangent vectors fromTpM to TqN using
the mapf. The natural way to do this is by defining a mapTpf : TpM −→ TqN by

(Tpf (Xp))(g) = Xp(g ◦ f )

for smooth functionsg in the neighborhood ofq. One can easily check thatTpf (Xp) is a
linear operator and a derivation and thus a tangent vector. The mapTpf : TpM −→ Tf (p)N

is called the push forward map off. The push forward mapTpf : TpM −→ Tf (p)N is a
linear map, and furthermore iff : M −→ N andg : N −→ K then

Tp(g ◦ f ) = Tf (p)g ◦ Tpf,

which is essentially the chain rule.

A.3. Vector fields

A vector field on a manifoldM is a smooth mapX which places at each pointp of M a
tangent vector fromTpM. Therefore since a vector field,X, places at each pointpa tangent
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vectorX(p) we have that in the chart(U,�) the local expression for the vector fieldX is

X(p) =
n∑

i=1
ai(p)

�
��i

.

The vector field is smooth (analytic) if and only ifai(p) is C∞ (C
).
Let I ⊆ R be an open interval containing the origin. An integral curve of a vector field

is a curvec : I −→ M whose tangent at each point is identically equal to the vector field
at that point. Therefore an integral curve satisfies for allt ∈ I ,

c′ = Ttc(t,1) = X(c).

A vector field is calledcompleteif the integral curve passing through everyp ∈ M can be
extended for all time, that is we can chooseI = R. Integral curves of smooth (analytic)
vector fields are smooth (analytic).

Definition A.3 ( f-related vector fields). Let X andY be vector fields on manifoldsM and
N respectively andf : M −→ N be a smooth map. ThenX andYaref-related iff

T (f ) ◦ X = Y ◦ f. (A.1)

If f is not surjective, thenXmay bef-related to many vector fields onN. If, however,f is
surjective, thenX can only bef-related to a unique vector field onN.
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