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Abstract— This paper studies the Susceptible-Infected-
Susceptible (SIS) epidemic model on time-varying interaction
graphs in contrast to the majority of other works which only
consider static graphs. After presenting the mean-field model
and characterizing its stability properties, we formulate and
solve an optimal resource allocation problem. More specifically,
we first assume that a cost can be paid to reduce the amount
of interactions certain nodes can have with others (e.g., by
imposing travel restrictions between certain cities). Then, given
a budget, we are interested in optimally allocating the budget to
best combat the undesired epidemic. We show how this problem
can be equivalently formulated as a geometric program and
solved in polynomial time. Simulations illustrate our results.

I. INTRODUCTION

The study of spreading processes on complex networks has

recently gained a massive surge of interest. With the wide

range of applications including the spreading of a computer

virus, how a product is adopted by a marketplace, or how an

idea or belief is propagated through a social network, it is no

surprise that a plethora of different models and studies have

been devoted to this. However, an overwhelming majority of

the stochastic models considered assume a fixed interaction

topology. Unfortunately, this may not be a fair assumption

depending on the time-scale of a spreading process. For

instance, in the context of diseases, the network of contacts in

a human population is constantly changing. Hence, a time-

varying network model might be more appropriate, albeit

more challenging to analyze. We are only aware of a few

works analyzing these types of time-varying models, which

seems to be a promising new branch of epidemics research.

Literature review

One of the oldest and most commonly studied spread-

ing models is the Susceptible-Infected-Susceptible (SIS)

model [1]. Early works such as the one above often consider

simplistic assumptions such as all individuals in a population

being equally likely to interact with everyone else in the pop-

ulation [2]. One of the first works to consider a continuous-

time SIS model over arbitrary graphs using mean field theory

is [3], which provides conditions on when the disease-free

state of the system is globally asymptotically stable.

In addition to the simple SIS model, a myriad of different

models have also been proposed and studied in the literature;

see [4] for a recent survey. In [5], [6], the authors add various

states to model how humans might adapt their behavior

when given knowledge about the possibility of an emerging

epidemic. The work [7] considers the possible effect of
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human behavior changes for the three state Susceptible-

Alert-Infected-Susceptible (SAIS) model. In [8], a four-state

generalized Susceptible-Exposed-Infected-Vigilant (G-SEIV)

model is proposed and studied.

However, a large drawback is that all of the works above

consider a fixed known topology. In the context of epidemics,

this may be a very crude assumption since the people

a given person interacts with is time-varying in the real

world [9]. In fact, we can find several works mentioning

the nontrivial effect that the dynamics of the network has

on the behavior of spreading processes. For example, the

authors in [10] observe from extensive simulations that the

spreading speed of epidemic processes over a time-varying

network can be significantly slower than in its aggregated

network. We also find recent studies pointing out the key role

played by the addition and removal of links [11], as well as

the distribution of contact durations between nodes [12] in

spreading dynamics.

Apart from these empirical studies, we also find sev-

eral theoretical results about spreading processes over time-

varying networks. The authors in [13] derived the value of

the epidemic threshold in a type of time-varying networks,

where randomly chosen two pairs of nodes swap their

neighbors at random time instants. A wide and flexible class

of TV network model, called edge-Markovian graphs, was

proposed in [14] and analyzed in [15]. In this model, edges

appear and disappear independently of each other according

to Markov processes. Taylor et al. derived in [16] the value

of the epidemic threshold in edge-Markovian graphs and

proposed control strategies to contain an epidemic outbreak,

assuming homogeneous spreading and recovery rates. Fi-

nally, epidemic processes over time-varying networks whose

topology adaptively changes by responding to the prevalence

of epidemics are studied in [17], [18].

Statement of contributions

In this paper we have presented an SIS epidemic model for

a class of time-varying networks, contrary to the overwhelm-

ing majority of works that study only a static network. After

presenting the model, a sufficient condition for almost sure

global asymptotic stability of the disease-free equilibrium

is presented. Leveraging this result, we propose an optimal

resource allocation problem in which a cost can be paid

to reduce the stochastic interactions between nodes (e.g.,

enforcing travel restrictions between certain cities). More

formally, given a fixed budget, we are interested in maximiz-

ing the chance of eradicating the epidemic. We show how

this problem can be equivalently formulated as a geometric
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program which can be solved efficiently using off-the-shelf

solvers. Simulations illustrate our results.

A. Notation

For a positive integer n, define the set [n] = {1, . . . ,n}.

The Euclidean norm of x ∈ R
n is denoted by ‖x‖. Let In

denote the n× n identity matrix. A square matrix is said to

be Metzler if its off-diagonal entries are nonnegative. The

spectral abscissa of a square matrix A, denoted by η(A), is

defined as the maximum real part of its eigenvalues. We say

that A is Hurwitz stable if η(A) < 0. Also, we define the

matrix measure [19] of A by µ(A) = η(A+A⊤)/2. For a

square random matrix X , its expectation is denoted by E[X ]
and its variance is defined by Var(X) = E[(X −E[X ])2]. The

diagonal matrix with diagonal elements a1, . . . , an is denoted

by diag(a1, . . . ,an).
For a real random variable X , define

Var(X) = (esssupX −E[X ])(E[X ]− ess infX). (1)

It is known that [20]

Var(X)≤ Var(X) (2)

II. PROBLEM STATEMENT

In this section, we state the problems studied in this

paper. Consider a network of nodes 1, . . . ,n connected over a

time-varying graph G(t) with the weighted adjacency matrix

W (t) = [wi j(t)]i, j. We study the SIS disease spread over this

time-varying network. Using mean-field approximation, we

model the evolution of the infection probability over the

time-varying graph by the differential equations

ṗi(t) = (1− pi(t))βi

n

∑
j=1

wi j(t)p j(t)− δipi(t),

for i = 1, . . . ,n, where pi(t) is the probability that node i is

infected at time t, βi is the infection rate to i from a neighbor

of i, and δi is the recovery rate of node i. By comparison

principle [21], we can focus on the linearized equation

ṗi(t) =
n

∑
j=1

wi j(t)p j(t)− δipi(t). (3)

Let D = diag(δ1, . . . ,δn). Then, equations (3) yield

Σ : ṗ = (W (t)−D)p.

We model the weighted time-varying graph G(t) through

its adjacency matrix W (t) as follows. Let i, j ∈ {1, . . . ,n}
satisfy i < j. Let

¯
wi j and w̄i j be positive numbers such

that
¯
wi j ≤ w̄i j and also let Ni be a positive integer. Define

∆wi j = w̄i j−
¯
wi j and hi =∆wi j/Ni j. Then we define wi j as the

Markov process with the state space {
¯
wi j,

¯
wi j +hi j, . . . ,

¯
wi j +

(ki j − 1)hi j, w̄i j} and the transition probability

P(wi j(t +∆t) =
¯
wi j + ℓhi j | wi j(t) =

¯
wi j + khi j)

=











pi j∆t + o(∆t) if ℓ= k+ 1 or ℓ= k = Ni j ,

qi j∆t + o(∆t) if ℓ= k− 1 or ℓ= k = 0,

0 otherwise,

where pi j and qi j are nonnegative numbers.

Roughly speaking, pi j gives the rate at which the weight

wi j increases by hi j, and qi j the rate at which the rate

decreases by hi j. The positive number Ni j represents the

“resolution” of the weight wi j. We assume that the stochastic

processes {wi j}i< j are independent of each other. Also, since

G(t) is assumed to be undirected at each time t, the above

definition defines W (t) by extending w ji = wi j for all (i, j)
such that i < j. The above defined model generalizes the

edge-Markovian graph [22], where it is assumed that Ni j = 1,

¯
wi j = 0, w̄i j = 1, pi j = p, and qi j = q for some constants

pi j,qi j > 0.

We are concerned with the stability of the infection-free

equilibrium p ≡ 0 of Σ, defined as follows:

Definition 2.1: We say that Σ is almost surely stable if

P
(

lim
t→∞

‖p(t)‖= 0
)

= 1,

for all initial states p(0) = p0 and wi j(0) = wi j,0.

Now we can state the problems studied in this paper. The

first problem is the stability analysis:

Problem 2.2: Determine if Σ is almost surely stable or

not.

The other problem is the optimal resource allocation

problem. We assume that the rates pi j and qi j can be designed

with an accompanying cost ci j(pi j,qi j). The total cost for

realizing the rates (pi j,qi j) over the whole network is then

given by

C = ∑
i< j

ci j(pi j,qi j).

Now we can state the following design problem:

Problem 2.3: Given a maximum budget C̄, find the rates

{pi j}i< j and {qi j}i< j such that the total cost C is less than

or equal to C̄ while Σ is almost surely stable.

III. STABILITY ANALYSIS

We start with recalling the notion of Markov jump linear

systems [23]. Let A(t) be an R
n×n-valued Markov process

with a finite state space {A1, . . . ,AN}. Then, we say that the

stochastic differential equation

ẋ = A(t)x, (4)

where x(0)∈R
n and A(0) are arbitrary constants, is a Markov

jump linear system [23]. We say that the Markov jump linear

system (4) is almost surely stable if P(limt→∞‖x(t)‖= 0) = 1

for all x(0) and A(0). We quote the following sufficient

condition for the almost sure stability of Markov jump linear

systems:

Lemma 3.1 ([24, Theorem 4.2]): Assume that A(t) is

symmetric for each t ≥ 0 with probability one and the

Markov process A is irreducible. Let Aπ denote the ran-

dom matrix following the stationary distribution of A. If

E [µ(Aπ)] < 0, then the Markov jump linear system (4) is

almost surely stable.

We also need to recall the following estimate of the

maximum eigenvalue of the sum of random matrices:

Proposition 3.2 ([22], [25]): Let X1, . . . , XN be indepen-

dent random n × n symmetric matrices. Let C and v be

nonnegative constants such that ‖Xk −E[Xk]‖ ≤C for every
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k ∈ [N] with probability one and ‖∑N
k=1 Var(Xk)‖ ≤ v2. Then

the sum X = ∑N
k=1 Xk satisfies

P(η(X)> η(E[X ])+ s)≤ κC,v2(s) (5)

for every s ≥ 0, where κC,v2(s) is defined by (6).

We present stability analysis in this section. For two

positive constants C and v, define the decreasing function

κC,v2 by

κC,v2(s) = nes/C

(

Cs+ v2

v2

)−Cs+v2

C2

, s > 0 (6)

where n is the number of the nodes in the network.

The following theorem, the first main result of this paper,

provides a condition for Σ to be almost surely stable:

Let πi j denote the probability distribution on the set

{
¯
wi j,

¯
wi j + hi j, . . . , w̄i j} given by

πi j(
¯
wi j +mhi j) =

ρm
i j

1+ρi j + · · ·+Ni jρi j

. (7)

We assume that all the probability distributions πi j (i < j)

are independent.

Theorem 3.3: Assume that wi j is irreducible for all i and

j. Define W ∈R
n×n by

Wi j =
¯
wi j + hi j

ρi j + · · ·+Ni jρ
Ni j

i j

1+ρi j + · · ·+ρ
Ni j

i j

, 1 ≤ m ≤ Mi j (8)

for all i and j. Define

C = max
i< j

(∆wi j),

v2 = max
1≤i≤n

(

∑
j<i

(w̄i j −E[πi j])(E[πi j]−
¯
wi j)+

∑
j>i

(w̄i j −E[πi j])(E[πi j]−
¯
wi j)

)

.

(9)

Then, the disease-free equilibrium of Σ is almost surely

stable if there exists s > 0 such that

λmax(W −D)+ s+λmax(Wmax −D)κC,v2(s)< 0. (10)

Proof: Since all the processes wi j are assumed to be

irreducible, the Markov process {W(t)}t≥0 is irreducible.

Therefore {W(t)−D}t≥0 is also irreducible and therefore has

a unique stationary distribution. Let M be the random matrix

following the stationary distribution. Then, by Lemma 3.1,

it is sufficient to show E[µ(M)] < 0 under the assumptions

stated in the theorem. Since W (t) − D is similar to a

symmetric matrix, so is M with probability one. Therefore

we have E[µ(M)] = E[λmax(M)]. Hence, we need to show

E[λmax(M)] < 0.

By the definition of W , we can decompose the random

matrix W (t) into the sum of random variables as W (t) =
∑i< j wi j(t)Ei j. Therefore W (t)−D =−D+∑i< j wi j(t)Ei j. It

is immediate to see that Markov process {wi j(t)}t≥0 has the

stationary distribution πi j defined in (7). Therefore, M admits

the expression

M =−D+∑
i< j

πi jEi j =−D+∑
i< j

Xi j,

where Xi j = πi jEi j. We use this expression of M and Propo-

sition 3.2 to evaluate E[λmax(M)]. Notice that

E[M] =W . (11)

Let C and v2 be the constants defined as in (9). We tem-

porarily assume that these constants satisfy

‖Xi j −E[Xi j]‖ ≤C, (12)

‖∑
i< j

Var(Xi j)‖ ≤ v2, (13)

which will be proved later. Let (Ω,M,P) be the fun-

damental probability space, and define Ωs = {ω ∈ Ω :

E[λmax(M)] > λmax(E[M])+ s}. Proposition 3.2 shows that

P(Ωs)< κC,v2(s). Moreover, if ω ∈ Ωs, we have

λmax(M)≤ λmax(BWmax −D)

with probability one since M ≤Wmax −D entrywise and also

λmax is monotonic over the set of Metzler matrices with

respect to the entrywise ordering. Therefore, for the s > 0

satisfying (10), we have

E[λmax(M)]≤ (λmax(E[M])+ s)P(Ω\Ωs)
+λmax(Wmax −D)P(Ωs)

≤ λmax(E[M])+ s+λmax(Wmax −D)κ(s)

< 0,

as desired.

Let us prove (12) and (13) in order to complete the proof.

The first inequality (12) is obvious. Let us prove (13). A

straightforward calculation shows that

Var(Xi j) = Var(πi j)(Eii +E j j).

Therefore,

∑
i< j

Var(Xi j) =
n

∑
i=1

(

∑
j>i

Var(πi j)+∑
j<i

Var(πi j)

)

Eii

and hence
∥

∥

∥

∥

∥

∑
i< j

Var(Xi j)

∥

∥

∥

∥

∥

= max
1≤i≤n

(

∑
j>i

Var(πi j)+∑
j<i

Var(πi j)

)

≤ max
1≤i≤n

(

∑
j>i

Var(πi j)+∑
j<i

Var(πi j)

)

= v2.

This completes the proof of the theorem.

Remark 3.4: An argument similar to the proof of Theo-

rem 3.3 is used in [22] for proving a sufficient condition for

stability of spreading processes on a time-varying network

called aggregated-Markovian arc independent graphs, which

include edge-Markovian graphs as their special case. The

authors in [22] also confirm that the conservativeness aris-

ing from the argument is relatively small using numerical

simulations.
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Directed time-varying network

In the previous subsection, we have considered epidemic

processes over a time-varying network whose topology is

undirected. We can naturally extend the definition of the

time-varying network to the directed case, as done in [22].

Below, we present a corresponding stability condition ana-

logue to Theorem 3.3. We omit the proof of the condition

as it is similar to the proof of [22, Theorem 3.4].

Theorem 3.5: Assume that wi j is irreducible and define

W ∈ R
n×n by (8) for all i and j. Define

C = max
i< j

(∆wi j),

v2 = max
1≤i≤n

(

∑
j 6=i

(w̄i j −E[πi j])(E[πi j]−
¯
wi j)+

∑
j 6=i

(w̄i j −E[πi j])(E[πi j]−
¯
wi j)

)

.

Then, the disease-free equilibrium of Σ is almost surely

stable if there exists s > 0 such that

µ(W −D)+ s+ µ(Wmax−D)κC,v2(s)< 0,

where µ(·) denotes the matrix measure [19] of a square

matrix defined by µ(A) = λmax(A+A⊤)/2.

IV. OPTIMAL RESOURCE ALLOCATION

In this section we present the resource allocation we are

interested in solving. Building upon the SIS epidemic model

on a time-varying network W (t), we now consider the case

where w̄i j are control parameters that can be chosen. For

example, one might be able to decrease w̄i j by limiting

interactions between nodes i and j (e.g., limiting the amount

of traffic between different cities).

Formally, we let
¯
wi j and w̄i j be the natural bounds on

the edge weight wi j(t). Instead, we consider new bounds

¯
Wi j =

¯
wi j and W̄i j ∈ [

¯
wi j, w̄i j ], where the new upper limits W̄i j

are control parameters. The cost of setting the new upper

bounds is given by

C = ∑
i< j

ci j(W̄i j),

where ci j(
¯
wi j) = 0 and ci j(·) is nondecreasing for all i, j ∈

{1, . . . ,n}. This means that there is no cost incurred when

setting W̄i j = w̄i j to the natural upper bound, and the cost to

reduce the bound W̄i j is nondecreasing.

We are now interested in optimization problems to allocate

resources leveraging the results of Section III. We formalize

the optimal budget allocation problem next.

Problem 4.1 (Optimal budget allocation): Given a fixed

budget B > 0, find the optimal allocation that minimizes

λmax(W −D). This can mathematically formulated mathe-

matically by:

min.
W̄

λmax(W −D)

s.t. ∑n
i, j=1 ci j(W̄i j)≤ B,

¯
wi j ≤ W̄i j ≤ w̄i j ,

for all i, j ∈ {1, . . . ,n}.

Theorem 4.2: Problem 4.1 can be solved exactly by the

auxiliary geometric program:

min.
W̄,u,λ

λ

s.t.
∑n

j=1(W̄i j−δ )u j−δui

(φ+λ )ui
≤ 1,

∑n
i, j=1 ci j(W̄i j)≤ B,

¯
wi j ≤ W̄i j ≤ w̄i j ,

where φ > δ and λmax(W −D) = λ ∗−φ .

Proof:

In our derivations, it will be useful to resort to the follow-

ing result from [26, Chapter 4]. For a review of geometric

programming in general, see [26], [27].

Proposition 4.3: Consider an N × N nonnegative, irre-

ducible matrix M(x) with entries being either 0 or posynomi-

als with domain x ∈ S where S =∩m
i=1{x ∈R

k
>0 | fi(x)≤ 1}

for some posynomials fi. Then, minimizing the largest real

part of the eigenvalues of M(x), denoted by λ1(M(x)), over

x ∈ S is equivalent to solving the following GP:

minimize
λ ,{ui}

N
i=1,x

λ

such that
∑N

j=1 Mi j(x)u j

λ ui
≤ 1, i ∈ {1, . . . ,N},

fi(x)≤ 1, i ∈ {1, . . . ,m}.

(14)

Leveraging this result, it is easy to see in this case that the

auxiliary program is simply optimizing over the eigenvalues

of (W−D+ Iφ) for which it is clear that λ (W−D+ Iφ) =
λ (W −D)+φ .

We finally remark that, using Theorem 3.5, we can easily

extend the framework presented in this section to the case

of directed networks. The details are omitted.

V. NUMERICAL SIMULATIONS

Here we demonstrate the correctness of the algorithm

on a 20 node time-varying directed contact graph W . For

simplicity, we initially set δi = 1.2 constant for all nodes, and

lower and upper bounds on all edge weights as wi j = 0.1 and

wi j = 1 for all links in W . The cost for reducing the upper-

bound is then given by ci j(W i j) =
1

W i j
− 1

wi j
for all links.

Figure 1 shows the achieved λmax(W −D) given a certain

budget.

50 52 54 56 58 60
-0.05

0

0.05

0.1

Budget

λmax

Fig. 1: Achieved λmax for varying levels of budget.

Figure 2 shows the trajectories of the average of all

states p̄ = ∑N
i=1 pi for varying levels of λmax(W −D). In-

terestingly, these simulations (and further simulations not
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shown here) seem to hint at the fact that λmax(W −D)≤ 0

is both a necessary and sufficient condition for almost sure

convergence to the disease-free equilibrium, but this has yet

to be shown.

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.1883
0.0883
-0.0117
-0.1117
-0.2117

Time

p̄

Fig. 2: Trajectories of mean-field approximation for vary-

ing λmax.

In Figure 3 we compare the evolution of the mean-field

approximation (3) to the exact evolution of the original

stochastic model. The dashed lines represents the average

trajectory of all 20 nodes and the solid line represents the

average trajectory of all 20 nodes over 500 simulations for

the exact spreading model for λmax(W −D) =−0.1117.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Time

p̄

Fig. 3: Mean-field approximation (dashed) vs exact trajecto-

ries (average of 500 simulations, solid) for λmax =−0.1117.

VI. CONCLUSIONS

In this work we have presented the Susceptible-Infected-

Susceptible (SIS) epidemic spreading model for a class of

time-varying networks. After analyzing the stability prop-

erties of the mean-field dynamics, we leverage this result

to formulate a geometric program that can efficiently solve

an optimal resource allocation problem to best mitigate the

effects of an undesired epidemic. For future work we hope

to mathematically show that the condition λmax(W −D) ≤
0 is a necessary and sufficient condition for almost sure

convergence to the disease-free equilibrium.
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