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Abstract— In this paper we consider an online planning prob-
lem for unmanned aerial vehicle (UAV) operations. Specifically,
a UAV has the task of reaching a goal from a set of possible
goals while minimizing the amount of energy required. Due to
unforeseen disturbances, it is possible that initially attractive
goals might end up being very expensive during the execution.
Thus, two main problems are investigated here: i) how to predict
and plan the motion of the UAV at run time to minimize its
energy consumption and ii) when to schedule next replanning
time to avoid unnecessary periodic re-evaluation executions.
Our approach considers a nonlinear model of the system for
which a model predictive controller is used to determine the
desired control inputs for each possible goal. These control
inputs are then used to estimate the energy required to reach
the different goals. Finally, a self-triggered scheduling policy
determines how long to wait before replanning the goal to aim
for. The proposed framework is validated through simulations
and experiments in which a quadrotor must choose and reach
some goal while being subject to external disturbances.

I. INTRODUCTION

In recent years we have witnessed an increasing interest
in using unmanned aerial vehicles (UAVs) for both military
and civilian operations. UAVs have demonstrated great tech-
nological advantages and the myriad ways in which they can
be applied are only increasing.

Even though the control performance and operation of
these systems has become very sophisticated, a big challenge
still remains on how to guarantee at run time that they
can safely coordinate and achieve a desired goal (e.g.,
reaching a target and return to a base station). In fact,
most control strategies usually assume one of the following
limiting conditions: either i) there are no disturbances and the
system is not compromised, operating in perfect conditions
(e.g., battery fully charged, no environment disturbances)
or ii) worst-case scenarios are considered (e.g., maximum
energy consumption, strong environment disturbance), which
in most cases is an unnecessary over-constrained condition
that results in bad performance and underuse of resources.
To overcome these limitations and leverage the full power
and capabilities of these aerial vehicles, in this work we
introduce a generalizable framework for online prediction
and planning that takes into consideration the dynamics of
these UAVs to guarantee both safety (i.e., something “bad”
will never happen) and liveness (i.e., something “good” will
eventually happen).

To this end, we use a model-predictive approach paired
with self-triggered scheduling techniques to: i) estimate
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Fig. 1. Motivational cartoon representation of the case study used in this
work. Due to the disturbance, a UAV might consume less energy to reach
goal g2 even though g; is closer.

safety critical states, ii) predict the future steps of the
system, iii) plan and replan its motion, and iv) schedule next
replanning time. We will refer to this procedure in short as
online planning.

The specific case study considered in this work is a single
UAV with a set of possible unprioritized goals. However,
we are interested in seeking out the goal for which the
total energy consumption is lowest, which depends on the
unknown disturbances in the system. For instance, as shown
in Fig.[I] wind might help the UAV reach a goal that is farther
away while consuming less energy than a closer goal. The
problem is that, since the disturbances are causal, we might
incorrectly decide on the best goal to aim for. In general,
this problem requires constant replanning to ensure that the
goal the UAV is aimed at is the best one. Rather than making
this decision periodically, we propose the self-triggered and
self/event-triggered scheduling policies that determine, based
on currently available information, at what time in the future
the UAV will replan its motion.

A. Related Work

The study of unmanned aerial vehicles and in particular
quadrotors has been gaining a lot of popularity among the
robotics and control community due to their robustness and
simplicity of control. For example, in [1] a quadrotor is used
as a wireless relay node to maximize the communication
throughput and quality between two sources; in [2] quadro-
tors are used to optimally carry loads, and in [3] the authors
use vision-based control to coordinate and plan the motion
for these UAVs. All of the above mentioned works are mostly
concerned with motion and path planning problems and
assume either ideal or worst case situations. In reality, these
systems may be subject to disturbances and other unmodeled
constraints that, if not handled properly at run time, could
prevent the correct performance and realization of a given
objective.



In the literature, we find some works dealing with a few
aspects related to this problem of run-time monitoring and
planning. [4] offers a comprehensive survey about the state
of the art on run-time monitoring and checking and current
issues. The authors point out that current challenges lie
in how to: i) reduce the checking overhead, ii) select the
right properties to monitor, iii) select the right feedback
for an external observer, and iv) recover after detecting a
violation of a monitored property. Authors in [5] propose a
Learning-Based Model Predictive Control (MPC) to learn the
ground effect and the unknown trajectory of a ball thrown
to a quadrotor that needs to plan its trajectory to catch it.
Similarly, in [6] the authors also use a MPC approach to
generate state interception trajectories for a quadrotor in real
time. Another similar work, [7], proposes a least-squares
method to estimate the inertial parameters (mass and center
of mass) of a load grasped by a quadrotor, to improve its
flight performance. From a recovery point of view, in [8] the
authors demonstrate how to stabilize a quadrotor even after
a complete loss of up to three of the four propellers. Finally,
similar to the work proposed in our paper, authors in [9]
deal with the problem of path planning for coverage while
finding the path that reduces energy consumption.

In this work we contribute to the current run-time mon-
itoring and online planning literature by: i) developing a
complete framework for prediction and planning of a UAV
operation to minimize energy consumption and ii) building
self-triggered scheduling techniques [10], [11] that reduce
the otherwise computationally expensive periodic replan-
ning employed by traditional motion planners. Note that
the proposed framework is general for different types of
predictive controllers. MPC is particularly attractive in this
specific work because its solution is a sequence of future
inputs, which are used to control and to calculate the UAV
predicted energy dissipation. To the best of our knowledge
the proposed scheme has never been investigated especially
on non-linear systems like quadrotor UAVs and/or validated
with extensive simulations and experiments as presented
in this paper. From an implementation point of view, a
final contribution is the realization of a fast prediction and
replanning algorithm by using CVXGEN [12].

The rest of the paper is organized as follows: in Section
we outline the mathematical notation used in this work.
In Section we formally state the problems, followed
by the UAV and disturbance models in Section The
online prediction and planning technique and guarantees are
presented in Section [V| Simulation results for a “quadrotor
navigation subject to external disturbance” case study are
presented in Section Hardware validation on a real
quadrotor is presented in Section and finally we draw
conclusions in Section

II. PRELIMINARIES

Through this paper we will denote vectors with bold lower
case italic letters (e.g., ) while matrices will be expressed
with bold upper case italic letters (e.g, A). Time varying
variables will have the time index k& within parenthesis. Since
our formulation is in discrete time, (k + 1) will denote a
sequential increment from k£ with sampling time ¢, (i.e.,
tk+1 — tx = ts). At times, the use of (k) will be omitted
for ease of notation but it will be clear from the context that
the formulation is time dependent. A A symbol on top of a

variable represents its estimated value (e.g., ). ||-|| represents
the Euclidean norm and finally unit(b — a) = ﬁ (i.e.,
the unit vector in the direction of (b—a)). A state is denoted
by x with generally a subscript to indicate the system it is
referring to and we use p € R? to refer to the position part

of the state.

III. PROBLEM STATEMENT

In this work we are interested in finding an online plan-
ning policy for minimum energy path planning of UAVs.
Formally, we consider the following problem:

Problem 3.1: Online Prediction and Planning: A UAV
has the objective to navigate to one or multiple goals
gj where j = 1,2,...,N, with z,, € X, =
[€g,, Xy, -, Xgy, ], While minimizing energy consumption.
External disturbance may be present in unknown locations
and at unknown times through the operating workspace.

Given the UAV dynamics as a function of its state x,
input u, and disturbance d,

w(k+1) = f(x(k),u(k),d(k))

we want to find a policy P at time ¢}, to:
1) predict its input and state evolution from the current
time t; up to a future horizon typ,
2) predict its energy consumption Eg, (k) from its current
state (k) to each goal x,, € X, and
3) select goal x4+ € X, such that:

Eq*(k) < EmaX(k) (1)
Eg*(k) < Egj (k) Vg, #9g

where Eg, (k) is the predicted energy at time 5, needed
by the UAV to reach g;, and Enax (k) is the maximum
energy available at ty.

Solving Problem [3.1] will allow us to predict and replan
the UAV target goal assignment at any time. However,
running a prediction frequently and periodically, may be
computationally expensive due to the very non-linear nature
of the system. This bring us to the following second problem
that we investigate in this work:

Problem 3.2: Online Replan Scheduling: While solving
Problem find a policy 7 to schedule next replanning
time t‘;ﬂ S tz'-)km +7,4 €N, with 7 > at, and o a constant.

Thus, by solving Problems [3.1] and [3.2] it will be possible
at run time to plan the operation of the UAV by selecting
the goal with minimum predicted energy consumption and
schedule next replanning execution time.

IV. SYSTEM MODELS

In this section we outline the quadrotor dynamical model,
linearization procedure, and disturbance and power models
used by the MPC procedure later in Section [V}

A. Quadrotor Model

A quadrotor has four rotors with two of them rotating
clockwise while the other two rotating counter-clockwise.
The thrust and torque produced by each propeller is propor-
tional to the square of its rotational speed [13]. Denoting
the rotational speed of each propeller by w; and the propor-
tionality constants for thrust and moments by x; and &,
respectively, we have

Fi=rpwf, Tj=kpw?, i=1,...,4 2)



where F; is the thrust produced by each propeller while T;
is the magnitude of the moment produced by it.

Assuming the length of the arm of the quadrotor is d, the
net thrust and moments on the robot, which we consider as
the inputs to the system, are given by,

F U1 Kf Kf Ky Ky w?
Myl fua| _ 0 dry 0 —drs| |w?
My| ™ |us —dky 0 dky 0 w3
M, Ugq Km —Rm  Km —Km wi

The dynamics of the quadrotor can be described as a non-
linear system of the form & = f(x, ) with the following
state vector ¢ = [pT ¢ 0 1 v, Uy Uy Wy Wy w.|T where
p = [z y 2|7 is the world frame position, v, v, and v,
are the world frame velocities, ¢, 6 and v are the roll, pitch
and yaw Euler angles and w,, w, and w, are the body frame
angular velocities. w = [u; us ug u4]T contains the four
motor inputs. For ease of discussion here we omit the full
state space representation that can be found in [13], [7], [3].

For linearization, we select a linearization point (z*, u*)
and compute

of
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Instead of linearizing the system just at the hover state (com-
mon procedure), here we linearize at its current operating
point so that the linearization is valid even when the robot
is not close to the hover state. This give us,

z=f(z"uv")+A(x—x")+ B(u—u")
B. Disturbance Model

When a quadrotor is flying, there are many factors which
can cause it to deviate from the set point. In this work, we
consider wind as the main external disturbance acting on the
robot. Wind is an important factor to consider because when
flying outdoors, wind can cause a big change in the robot’s
behavior. The effect of wind on small robots has not been
studied very well but there are some empirical results [14].

The force on the robot due to wind is approximately
proportional to the wind velocity. This leads to an additional
term in the dynamics

&=Ax—z")+[B|I [fq(‘mz)] +Byd (3
where d = [d,, d,, d.]" is the wind velocity.

In this work we assume that we have an upper bound on
the wind velocity magnitude, which gives us a bound for the
disturbance. We also assume that the wind changes slowly
and its velocity has a bounded rate of change.

The system model in (3)) is discretized with a sampling
time ¢, and with a slight abuse of notation, we write it as

z(k+1) = Ax(k) + Bu(k) + B;f (z*,u") + Bgd (4)
C. Power Model

Since we are concerned with the energy consumption
of the robot, we need a model of the power used by the
platform. The two components using power on the robot are
the motors and the onboard electronics. The power used by
the motors when flying is more than an order of magnitude

higher than the power used by the electronics, thus we only
take into account the motor power in our calculations.
The power used by each motor is equal to
P=Tw=kmw? i=1,...,4

)

where T is as defined in (). Thus, the net energy used by
the motors is
P=> P=kny w (5)

V. ONLINE PREDICTION & PLANNING

In this section we describe the framework adopted for
online prediction and planning for UAV missions to solve
Problems [3.1]and [3.2] Specifically we follow the architecture
depicted in the block diagram in Fig. [2|

Fig. 2. Overall architecture for online prediction and planing used for UAV
operations. Our contribution lies within the green colored sections of the
block diagram.

The overall architecture is composed of: i) states and
disturbance estimation, ii) energy prediction, and iii) path
planning. Both estimation and prediction are model-based:
the state estimate uses a model of the system to estimate the
disturbance while the predictor makes predictions of states
and inputs based on the current states and inputs and uses the
worst and best disturbance cases to evaluate the total energy
the system will consume over a finite planning horizon and a
finite number of trajectories. Finally the planner will choose
the trajectory with the minimum energy consumption.

Disturbance estimation can be performed using different
techniques, both parametric and non parametric [5]. The
literature offers several methods like Kalman filtering, least-
square methods, expectation-maximization algorithms, and
kernel regressions. In this work, for ease of discussion,
we assume that a disturbance estimate is available to the
quadrotor at every time.

A. Sequential MPC-based Energy Prediction

In order to solve the prediction Problem [3.1] we use a
sequential linearization and model-predictive procedure to
increase the accuracy of the prediction. We leverage the well
known model predictive control (MPC) theory, [15], over a
finite horizon h to predict the future evolution of the states
and inputs of the UAV and then deduce the energy consump-
tion based on the sequence of inputs obtained from the MPC
calculation. Besides MPC, other methods like trajectory or
simulation based predictions are also possible to use. MPC
is particularly suitable for such energy prediction problem
because its result is a series of inputs that are necessary
for energy calculation, as shown in (3)), thus giving a more
precise prediction than other input independent techniques.
Due to the UAV non-linearities, we cannot run the MPC for a
long horizon and thus we execute a sequence of linearizations



of the system every ¢ MPC steps (with ¢ < h) for IV}, times
to increase the energy prediction accuracy. Therefore, the
overall predictive horizon H becomes H = N /. To improve
the execution timing, in the next section we will present an
online self-triggered replan scheduling technique [10] that
relaxes the periodic execution of the prediction presented in
this section.

To predict the energy consumption of the UAV reaching
a specific goal g;, we consider the following optimization

h—1
Ji(@(k), u(k), D(k)) =min Y ef(k)Qex(k)  (6)
k=0

—+ el(k)Reu(k)
+ Au (k) Ray Au(k)

subject to < i=1,...,4
x(k+1) = Ax(k) + Bu(k) + By d(k)
+B, f(z*,u)
where the result of (6) is an array of inputs from the
current time to the h horizon time, as follows: 2T [F™"~! =
[u(k\k)T, cooulk+ =1k, u(k+h— 1|k)T].
e, (k) and e, (k) are the errors between the current and the
desired state and input respectively. Aw is introduced to
limit the input rate of change: in other words the last term
in (6) allows for a smooth input transition without sudden
undesired jumps. Q, R, and R, are weight matrices [15]
and D(k)" = [d(k|k)T,d(k+1|k)T,....d(k+h—1]k)T].
The current disturbance d(k|k) is given or estimated at
t; as described above. Future estimates of the disturbance
d(k + i|k) for i € {1,2,...,h — 1} depend on appropriate
assumptions on the disturbance. We assume that the
disturbance d(k|k) € D = [—dmax, dmax] for some known
dnax > 0. This will be explained in more detail in Section
for now we can assume d(k + i|k) = d(k|k) V.

As previously mentioned, only the first £ elements of z are
used for the energy calculation, followed by the linearization
of the system and the operation is repeated for NV;, consecu-
tive times before the planner makes a decision. We will refer
to this procedure as P/’ ((k), u(k), D(k)) or in short P/,
The output of P/’ is the following prediction: ZT|RHH=1
[u(klk)", u(k + 1|k)7,...,u(k + H - 1]k)T].

Given that u = f(w1,ws,ws,ws) (see Section [[V-A), we
can calculate the total energy consumed over the horizon H
while going to goal g; by

Unmin, i S u; < Umax,i,

t k+H-1
k+H—1

B[ =t Y PG )

th
k i=k

where P, (i) is the power consumed at time ¢; computed as
given by ().

This prediction will be limited only to the H horizon
which may not be sufficient to cover the entire trajectory to
the goal. Extending the prediction to an horizon sufficiently
large to cover the entire trajectory to a goal is generally
computationally expensive if we have long distances to cover.
Thus we use the following suboptimal approximation. Let’s
first consider the typical flight phases of a quadrotor.

A quadrotor has three main transition phases during a
flight: (D an initial acceleration, @) a steady motion, and
(B a final deceleration, as depicted in Fig.

Fig. 3. The three phases during a UAV flight.

During long flights where energy prediction is of foremost
importance, both phases () and @) are usually short in
comparison to phase () but can use high power. We also
notice that phase Q) doesn’t change (if the disturbance is
constant), that is, after the initial transition and stabilization,
the UAV keeps the same attitude until it starts to brake
to stop to its goal location. With these considerations in
mind we are thus interested in estimating the state and input
evolution at least until the beginning of phase 2). We then
use the following interpolation to calculate the predicted
energy consumption

tg; therH -1
Ey |, =Eq| ~— TPkt H=1)(ty,~ terr—1) 8)
k k
+AE,, 3
where t,, = [|p(t) — Py, ||/Vmax With U, being the

maximum speed of the UAV.

The energy required to decelerate and stop (AE, 3 > 0),
during phase (3)) can be calculate assuming a shorter phase
@ (since in phase Q) the system is in steady-state) which
will allow the MPC to cover all three phases. Alternatively
AFE, 3 can be neglected during long flights or taken into
account with a worst case analysis. Choosing Ny, is critical in
(8) to have a more accurate estimation. A too short prediction
horizon will leave the system inside phase (I), and therefore
would lead to a wrong estimation. In general and based
on our experiments, phase () takes less than 1s on a typical
research quadrotor.

The procedure presented in this section (summarized in
Algorithm is used at replanning time to evaluate the
predicted energy to any goal point the UAV can reach. Thus
the overall output of the online planner will be a list of
reachable goal points with the respective energy predictions
E = [E,,...,E;, ]. The planner will then choose the
goal location - that satisfies the following constraint:
xg = {xy, € Xy|Ey, = min E}.

In Algorithm (I} steps 5 to 9 are the procedure PJH
described above, while B(k) is a monotonically decreasing
function that represents the maximum energy available at ¢j.
Furthermore, we assume that for any goal g;, there exists a
disturbance d* (k) € D such that the system will consume
the maximum possible energy Eg, max as defined later in
(T0) (more consideration will be given in the next section).
Step 14 of Algorithm[I]is added to improve the algorithm by
eliminating goals as they become infeasible and by ensuring
that the quadrotor can reach a destination before its battery
is exhausted (i.e., liveness guarantee).

B. Self-triggered & Self/Event-triggered Scheduling

The online prediction and planning procedure described
in Section [V-A] evaluates the energy consumption at every
planning time and assign the goal to go that minimizes
the energy consumption of the UAV. Predicting periodi-
cally is computationally expensive and generally unneces-
sary especially in situations where the goals are far apart



Algorithm 1 Online Prediction & Planning

1: Estimate disturbance d(k|k)

2: Linearize system around the current state x(k)
3: for all xz,, € X, do

4 m=0

5 while m < N, do

6 Linearize system around the (£-m)™ state
7: Run MPC (6) over the interval [¢-m, £ - m+h—1]
8
9

m—m+1
: end while
0:  Calculate E,, using (7) and (8)
11:  Calculate Eg, max for d™ (k)
12: end for
13: if Jxy, € X, st By, max > B(k) and X is not a
smgleton then
14: Xy =X, \{xy,}
15: end if
16: B = [Egj}gjeXg
17: Plan the trajectory to x4« where g* = argmin E

—

and the UAV is already close to its destination. To avoid
running the prediction and planning periodically here we
propose a self-triggered replanning scheduling approach to
address Problem [3.2] The self-triggered scheduler computes
the next replanning time based on the predicted maximum
and minimum energy consumption. Thus, in order to find
the self-triggering policy we need to predict the maximum
and minimum energy consumption which depends on the
disturbance and dynamics of the system. To do this, for a
given time tj, we let

Z; ={2'| 3D’ € D" st. P/ (x(k),u(k), D') = 2'}
©

then we define the maximum and minimum required energy
to reach goal g; as

ty;

ty,
Ey; max = max B, 7 10)
23

ax , Egj7min = min Egj

94, 2/ €2,

ty.

. 7 . . .

respectively, where Egj‘ is as given in (§).
¢

It is easy to show ?hat Egj,max is when d*(k) =
dimax Unit(xg — x4+ ), i.e., the disturbance is as large as pos-
sible in the direction away from goal g;. On the other hand,
it is not trivial to compute Egj,min since the transient phase
also affects this. Instead, we compute Egj7min > Egj7min by
assuming d~ (k) = min{vmax, dmax } unit(xy, —x0), i.e., the
disturbance exactly matches the velocity constraint of the
UAV when possible. This last consideration is because during
the second phase of a quadrotor flight (see section its
roll and pitch angles ¢ = # = 0 meaning that the only energy
consumed by the UAV is for hovering (uy = us = ug = 0).
Although we cannot compute Fy . nin exactly, in general, the
difference |Egj,min - EAgj7min| is negligible because most of
the energy is used during phase ) with a low consumption
of energy during the transient from its current velocity to a
steady state velocity.

Thus, associated with each goal there will be a current
disturbance energy prediction, used to plan and replan the
trajectory of the UAV and a minimum and maximum energy
consumption prediction used to determine next replanning

time. After running the MPC procedure in Section [V-A] the
planner chooses one of the goals ¢« = x,, € X, where to
send the UAV. The self-triggered policy will then evaluate the
following risk between the selected goal x4« and all other
available goals x;:

max{E} .. — Ejmin,0}
r; = max ’ Ve, € X
J Egj,max E*. 9gj g

min

(1)

The numerator in should be perceived as the worst-
case risk, i.e., the maximum amount of energy that we
might waste by choosing a suboptimal goal g; # g*.
Note that Ej,, — Eg, min < 0 implies there is no risk at
all in sticking with the chosen goal g* since goal g; is
guaranteed to be more expensive in terms of energy. This
is reflected in the definition of below. The denominator
is needed to capture the chance of realizing this worst-case
risk. Intuitively, the larger the denominator is, the less chance
there is that the worst-case risk will be realized.

We then select the maximum risk among all the possible
goals Tmax = {7'|7" > 1; Va, € X}

plan

Thus, given a plannlng time ¢;, the next time we will

replan the goal ¢ j_"} is given by tfﬂ = "™ 4 7, where
r=a(1+:2) (12)

with « a constant that determines the minimum replanning
scheduling time and the scaling for the next replanning time
and [ a design parameter. Note that setting 8 = 0 recovers an
algorithm in which the target goal is evaluated periodically.
As mentioned above, note that 7 = oo when 7T =
0. Simulations illustrate the efficacy of this framework in
Section

A drawback of the self-triggered framework is that we are
always assuming worst-case conditions for the wind d(k) €
D at all times. Instead, we provide here an alternate frame-
work that combines ideas from event-triggered and self-
triggered control. The main idea is as follows.

Rather than using worst-case conditions of the disturbance
in D at all time to compute the self-triggered decision
time @) we instead try to estimate the future disturbance
based on available information to provide less conservative
triggering times (i.e., longer periods of time without active
replanning). In between planning times we continue to moni-
tor the disturbance, and if at any time the disturbance violates
our estimate, we will then re-evaluate which goal to aim for.
This idea is reminiscent of team-triggered control ideas for
networked systems [11].

More specifically, at planning time - = t°*", rather than
computing Ey. nax and Eg; min for each goal assuming worst

case conditions in D, we compute an estimate set D(k) C D
for k > k*. Note that this subset can be a time-varying set.
Then, we define a subset Z; of Z; given in (9) using

Z; ={2'|3d'(k) € D(k) for k € [k*,..., k" + H — 1],
st. PH(@(k),u(k),D’' (k) = 2'}.
where d’ (k) is an element of the sequence D’(k).

We then compute Egj7max and Egj,min as in (10) where
we replace Z; with Z;. It is then guaranteed that Eg, y.x >



Egj,max and Eg]. min < Egj,max. This means the next replan-
ning time 2"} = t?*" 4 7 given by will in general be
longer, allowing more time in between replanning the goals.

However, the problem now is that it may be the case that
the actual disturbance d(k) does not lie in our estimated
set D(k) for some time ¢, > tfla“. To alleviate this issue, we
also implement an event-triggered framework that tells the
quadrotor it needs to re-evaluate its goal ahead of schedule
in case this occurs. Since d(k|k) is estimated at all times
t € [ 7], if there exists some time tj at which
d(k|k) ¢ D(k), we set t21} = max{t?™ + a,t;}. In other
words, if at least « steps have passed since the last planning
time, we will immediate re-evaluate the goal, otherwise we
will wait until time tElan + a.

VI. SIMULATION RESULTS

The case study investigated in this work is an autonomous
navigation of a quadrotor UAV under disturbance (wind
in our case) and limited energy constraints. Specifically,
we consider that a quadrotor has the task of flying from
a starting position prome = (0,0,2)m to a final goal
g* € [g1,92]. The two available goal points are located
at equal and opposite directions from the starting point of
the UAV, at p,, = (100,0,2)m and p,, = (—100,0,2) m.
In the simulations below we assume that the quadrotor has
a maximum speed vVpq, = £1m/s. There is a constant
disturbance d, = 0.5m/s except in the marked regions
(see Fig. . A disturbance of velocity d, 1 = —2m/s is
introduced at time ¢, = 0.9s for a duration of 2s, while
between 6s and 8s we introduce a stronger disturbance
d. 2 = 3m/s in the opposite direction. Outside these regions,
there is a constant disturbance d, = 0.5 m/s. Following the
framework introduced in the previous sections, at run time
the UAV will predict the future inputs, states, and energy
consumptions based on the current disturbance, plan the
motion to one of the two goals, and finally compute the
next replanning time.

Initial simulations were performed using the Matlab MPC
Toolbox [15] however to optimize the execution timing, we
eventually opted for a faster implementation using CVXGEN
[12] which is able to run 30 times faster than the Matlab
MPC toolbox and with same results.

Fig. [ shows the current (o), min (x), and max (+)
predicted energies for both trajectories (to g; (blue) and
g2 (red)) during a self-triggered replanning simulation with
D = [—4,+4] m/s, as described in Section For ease of
presentation here we show just the first 11s of the simulation
since after the last planning execution at 7.5s the scheduled
next replanning time 7 = oco. This can be easily noticed from
(12): whenever the risk r is high, like in the beginning, the
next replanning time 7 is low, whereas as the UAV moves
toward one of the goals, the risk becomes lower and 7 higher.
In fact, as the UAV gets closer to go, turning around toward
g1 would imply consuming an higher energy to travel a
longer distance even with strong wind d o.

Fig. 5] shows a comparison between the three replanning
scheduling techniques presented in this paper: i) periodic,
ii) self-triggered, and iii) self/event-triggered scheduling,
all for the same case study described above. In all three
cases, the quadrotor switches goal during d,; and stays
on that goal till the end of the simulation. For ease of

Fig. 4. Self-triggered implementation with min and max energy prediction
for both goal trajectories.

presentation and to avoid overcrowded plots, here we have
omitted the min and max energy predictions data points,
shown in Fig. fi] Both self-trigegred (Figs. [] and [5(b)) and
self/event-triggered (Fig. [5[c)) implementations increase 7
as the simulation evolves until a point in which 7 = oo,
with a clear improvement from a periodic implementation in
Fig. [5[a). Even more, the self/event-triggered case decreases
the frequency of replanning because it considers a lower
D = [-2.8,+2.8] m/s during the execution. Note that the
event-triggered part of the scheduler intervenes as soon as a
disturbance d, > 2.8 m/s is detected (Fig. EKC) at 6 s).

VII. CROSS WIND HARDWARE IMPLEMENTATION

To validate the proposed strategy we implemented a series
of indoor experiments with a KMel Nano+ quadrotor UAV
[3]. We followed the architecture shown in Fig. E] to run the
experiments. Specifically since our online implementation is
designed in Matlab/CVXGEN, we decided to use the newly
released Robotics System Toolbox that allows us to connect
Matlab directly to ROS. The goal output of our online
planner is sent, through ROS, to a linux-based machine
running the controller for the quadrotor. The pose of the
quadrotor is estimated using a Vicon motion capture system.

Fig. 6. Architecture diagram of the setup used during the experiments.

Wind perpendicular to the motion of the UAV was created
through a 24” industrial heavy duty drum fan (orange device
in Fig.[7) capable of generating wind speeds djow = 3m/s and
dhigh = 6m/s.

The UAV starts at position ppome = (—0.5,—0.85,0.7) m
and has a wvnx = 0.3m/s. Two goals are located at
Py, = (2.0,—0.7,0.7)m and p,, = (0,1.7,0.7)m (.e.,
lPgo — Phomell > ||Pgi — Phomel]). The fan is centered at
Pfan = (0,—1.0,0)m blowing air in the +y direction
(similar to Fig. [I).

The objective is to navigate from home to one of the goals
while minimizing energy. Fig. [/| shows a sequence of snap-
shots of the self-triggered experiment for low disturbance
(Fig. [/(a)) and high disturbance (Fig. [7/(b)). In both cases
the UAV initially chooses g1 (E,4, < Eg,) since there is no
disturbance at the starting position, g; is closer than g, and
there is no prior knowledge about the disturbance at pyqs,.
With diow — E4, < E,, during the entire trajectory while
with dpign, as soon as wind is detected, at replanning time,



(@ (b)

Fig. 5.

the UAV decides to switch to go since By, < E,,. Fig. [§|
shows the predicted energy (similar to Fig. [4) at every step
during the experiments.

home

home

(b)
Fig. 7. Self-triggered experimental results with a) low wind and b) high
wind disturbances.

(@ (b)
Fig. 8. Predicted energy for the a) low wind and b) high wind self-triggered
experiments presented in Fig. [7}

VIII. CONCLUSIONS & FUTURE WORK

In this paper we have presented an online planning scheme
for UAV operations under environmental disturbances.
Through the use of MPC, self-triggered and self/event-
triggered scheduling techniques we were able to demonstrate
that it is possible to predict the energy consumption of a
complex system like a quadrotor to better plan its motion
and reduce unnecessary periodic replanning executions.

Current and future work is centered on extending the
proposed framework to multi-agent heterogeneous robotic
systems missions and to investigate the scalability of the
proposed framework when planning the motion to multiple

()

First 11s of energy prediction for the (a) periodic, (b) self-triggered, and (c) self/event-triggered replanning simulations.

goals. We are also exploring different prediction techniques
and how to adapt the UAV speed based on the disturbance.
A better study of the wind distribution for real outdoor
experiments is in our agenda, too.

We believe that the developed online planning framework
presented in this work could be running in the background of
any robotic system operation to guarantee safety and liveness
properties.
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