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39.1 Introduction

The Almost Native Graphics Layer Engine (ANGLE) project is an open-source im-
plementation of OpenGL ES 2.0 for Windows. This chapter explores the challenges
that we encountered in the design of ANGLE and the solutions we implemented.

We begin the chapter by providing the motivation for ANGLE and some po-
tential uses of it. We then delve into the implementation details and explore the
design challenges that were involved in developing ANGLE. We discuss the feature
set that ANGLE provides, including the standard OpenGL ES and EGL extensions
that ANGLE supports, as well as some ANGLE-specific extensions [ANGLE 11].
We also describe in detail some of the optimizations that were implemented to en-
sure high performance and low overhead. We provide performance tips and guidance
for developers who may wish to use ANGLE directly in their own projects. We end
with some performance comparisons of WebGL implementations using ANGLE and
native Desktop OpenGL drivers.

39.2 Background

ANGLE is a conformant implementation of the OpenGL ES 2.0 specification
[Khronos 11c] that is hardware-accelerated via Direct3D. ANGLE version 1.0.772
was certified as compliant by passing the ES 2.0.3 conformance tests in October
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2011. ANGLE also provides an implementation of the EGL 1.4 specification
[Khronos 11b].

TransGaming did the primary development for ANGLE and provides continued
maintenance and feature enhancements. The development of ANGLE was spon-
sored by Google to enable browsers like Google Chrome to run WebGL content on
Windows computers that may not have OpenGL drivers [Bridge 10].

ANGLE is used as the default WebGL backend for both Google Chrome and
Mozilla Firefox on Windows platforms. Chrome, in fact, uses ANGLE for all graph-
ics rendering, including for the accelerated Canvas2D implementation and for the
Native Client sandbox environment.

In addition to providing an OpenGL ES 2.0 implementation for Windows, por-
tions of the ANGLE shader compiler are used as a shader validator and translator
by WebGL implementations across multiple platforms. It is used on Mac OS X
(Chrome, Firefox, and Safari), Linux (Chrome and Firefox), and in mobile variants
of the browsers. Having one shader validator helps to ensure that a consistent set
of GLSL ES (ESSL) shaders are accepted across browsers and platforms. The shader
translator is also used to translate shaders to other shading languages and to option-
ally apply shader modifications to work around bugs or quirks in the native graphics
drivers. The translator targets Desktop GLSL, Direct3D HLSL, and even ESSL for
native OpenGL ES 2.0 platforms.

Because ANGLE provides OpenGL ES 2.0 and EGL 1.4 libraries for Windows,
it can be used as a development tool by developers who want to target applications
for mobile, embedded, set-top, and Smart TV–based devices. Prototyping and initial
development can be done in the developer’s familiar Windows-based development
environment before final on-device performance tuning. Portability tools such as the
GameTree TV SDK [TransGaming 11] can further help to streamline this process
by making it possible to run Win32 and OpenGL ES 2.0-based applications directly
on set-top boxes. ANGLE also provides developers with an additional option for
deploying production versions of their applications to the desktop, either for content
that was initially developed on Windows, or for deploying OpenGL ES 2.0–based
content from other platforms such as iOS or Android.

39.3 Implementation

ANGLE is implemented in C++ and uses Direct3D 9 [MSDN 11c] for rendering.
This API was chosen to allow us to target our implementation at Windows XP, Vista,
and 7, as well as providing access to a broad base of graphics hardware. ANGLE
requires a minimum of Shader Model (SM) 2 support, but due to the limited capa-
bilities of SM2, the primary target for our implementation is SM3. There are some
implementation variances, and in some cases, completely different approaches used,
in order to account for the different set of capabilities between SM2 and SM3. Since
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SM3 is our primary target, the focus of this chapter is on the description of our
implementation for this feature set.

The main challenge of implementing OpenGL ES on top of another graphics
API, such as Direct3D, is accounting for different conventions and capabilities. Some
differences can be implemented in a straightforward manner, while others are much
more involved.

This section begins with one of the most well-known differences between the
APIs: the differences in coordinate conventions. Dealing with these in a mathemat-
ically sound manner is critical to achieving correct results. Next, we cover another
key aspect of the project: the translation of OpenGL ES shaders into their Direct3D
equivalents. Following this, we delve into handling data resources such as vertex
buffers and textures. Finally, we cover the finer details of the different API paradigms
and interfaces, tying the individual aspects into a complete OpenGL ES implemen-
tation on top of Direct3D.

39.3.1 Coordinate Systems

It is often said that OpenGL has a right-handed coordinate system and Direct3D
has a left-handed coordinate system, and that this has application-wide implica-
tions [MSDN 11a]. However, this is not entirely correct. The differences can be best
understood by looking at the coordinate transformation equations. Both OpenGL
and Direct3D take the position output from the vertex shader in homogeneous (clip)
coordinates, perform the same perspective division to obtain normalized device coor-
dinates (NDC), and then perform a very similar viewport transformation to obtain
window coordinates. The transformations as performed by OpenGL are shown in
Figure 39.1 and Equation (39.1) [Khronos 11c, Section 2.12]. The parameters px

and py represent the viewport width and height, respectively, and (ox, oy) is the center
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Figure 39.1. GL coordinate spaces: (a) NDC space, (b) window space, and (c) screen space.
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of the viewport (all measured in pixels):
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The transformations performed by Direct3D are shown in Figure 39.2 and Equa-
tion (39.2) [MSDN 11k]:
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Figure 39.2. Direct3D coordinate spaces: (a) NDC space, (b) window space, and (c) screen space.
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Window origin. One notable difference between Equations (39.1) and (39.2) is
that Direct3D inverts the y-axis during the viewport transformation. Direct3D also
considers the window origin to be in the top-left corner with the y-axis pointing
down, whereas OpenGL considers the window origin to be in the lower-left corner
with the y-axis pointing up, as shown in Figure 39.3. These operations cancel each
other out. This means that when the homogeneous coordinates output from an
OpenGL vertex shader are fed into Direct3D using the same viewport parameters,
the resulting image will correctly appear upright on the screen.

The problem is that when rendering to a texture, the image is stored in window
coordinates, and hence, there is no vertical flip performed, leaving the image upside
down. Furthermore, the window coordinates are also an input to the pixel shader, so
things like fragment coordinates and gradients are inverted.

There are several ways to deal with this issue. The first is to append code to
the original OpenGL ES vertex shader to negate the y-component. This way, the
negation in the viewport transformation is canceled, meaning the window coordi-
nates are the way OpenGL expects them, and when rendering to a texture, the image
appears upright. Since Direct3D flips the image when viewed on screen, we also
have to counteract that by explicitly flipping it before the Present call. Originally,
we chose this option; since negating the y-component in the vertex shader is triv-
ial, it easily solves the render-to-texture issue, and no changes are required to pixel
shaders or regular texture handling. It only comes at the cost of an extra pass to
copy the rendered result into a texture and flip it upside down before presenting it
on the screen. Unfortunately, this pass caused a significant performance impact—up
to 20% slower—on low-end hardware when rendering simple scenes.

The second way to deal with the inversion of the y-coordinate is to invert the
texture sampling coordinate system by rewriting every sampling operation to use
modified texture coordinates: (s′, t ′) = (s, 1 − t). This implies that the data for

4

3

2

1

0

3

2

1

0

0 1 2 3 4

0 1 2

(ox, oy)
(ox, oy)

3 4 5

Figure 39.3. Window origin and fragment coordinate differences between OpenGL (left)
and Direct3D (right). The red dot represents the location of (0, 0) in window coordinates and
(ox, oy) is the center of a 5 × 4 pixel viewport.
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regular textures must be stored in an upside down fashion. Cube maps are handled
by additionally swapping the top (+Y) and bottom (−Y) faces. It also requires all
pixel shader operations that use the window y-coordinate to be adjusted. This is
the solution currently implemented and is discussed further in Section 39.3.2. The
texture inversions on upload are a potential source of inefficiency, but we already
swizzle and convert most texture data on load, so this does not add additional over-
head. Another concern is that the modification of the texture coordinates turns them
into dependent texture reads. This could prevent prefetching of texture data on some
GPU architectures, and the extra instructions add computational overhead. Fortu-
nately, this does not appear to be a problem on most desktop GPUs, and we have
not observed negative effects due to these modifications.

The third way of solving this issue is to invert the rendering only when rendering
into a texture and using the shader unmodified when rendering to a window. This
approach could avoid the drawbacks of the first two methods, but it is not with-
out additional implementation complexity. The shaders would have to be compiled
differently depending on the rendering destination and it could also affect the fill
convention. This approach is still under evaluation and might be implemented in
the future.

Winding order. Another interesting consequence of the difference in viewport
transformations between OpenGL and Direct3D is that the winding order of a tri-
angle’s vertices is reversed. The winding order determines whether a triangle is con-
sidered front facing or back facing and hence which primitives are culled. Since the
winding order is computed using window coordinates, the need to invert the culling
parameters also depends on whether or not the viewport transformation difference is
handled in the vertex shader.

Dithering. No specific dithering algorithm is required in OpenGL ES, only that
the dithering algorithm depends solely on the fragment’s value and window coor-
dinates. When the viewport is inverted, this has the potential to make the dither-
ing algorithm also depend on the viewport height. However, if the identity func-
tion is used, this dithering requirement is trivially fulfilled. Direct3D 9 does have
a D3DRS DITHERENABLE render state, but dithering is typically no longer directly
supported on recent hardware.

Fill convention. One last interesting effect of the different viewport transforma-
tions is that it also affects the fill convention. The fill convention is the rule that
decides whether a pixel whose center is directly on a triangle’s edge is considered cov-
ered by that triangle or not. This is vital to prevent adjoining triangles from filling
the same pixels twice or leaving gaps. Direct3D enforces a top-left fill convention.
OpenGL does not require a specific fill convention, only that a well-defined conven-
tion is used consistently. Although ANGLE complies with this, it is worth noting
that the OpenGL specification does not guarantee exact pixel results. In particular,
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screen-space rectangles should be aligned to pixel edges instead of pixel centers to
avoid unexpected results.

Depth range. In addition to the window-origin differences, there is also a differ-
ence in the depth range of the homogeneous coordinates that must be accounted for.
OpenGL clips the z-coordinate to the [−1, 1] range and then transforms it to the
[near, far] range specified with glDepthRangef. Direct3D uses the [0, 1] range
instead. Note again that, contrary to popular belief, the z-axis of OpenGL does
not point out of the screen. Both OpenGL and Direct3D applications are free to
use whichever coordinate system(s) they prefer, as long as the projection takes care
of correctly transforming the camera-space coordinates into the intended clip-space
coordinates. Since clipping takes place right after the vertex shader stage, we can ac-
count for the differences by appending code to the original vertex shader that adjusts
the output z-coordinate. We will revisit this in Section 39.3.2.

Fragment coordinates. The numerical coordinates for pixel centers are also dif-
ferent between OpenGL and Direct3D 9. In OpenGL, the pixel centers are located
at half-pixel locations, and thus, the (x, y) fragment coordinate of the pixel closest to
the origin is (0.5, 0.5). In Direct3D 9, pixel centers are located at integral locations,
and the location of the pixel closest to the origin is (0, 0). This also means that view-
ports are not symmetric around the origin, as shown in Figure 39.3. This oddity has
been corrected in Direct3D 10, but for ANGLE on Direct3D 9, a half-pixel offset is
required to adjust the fragment coordinates for this difference. This adjustment can
also be done at the output of the vertex shader stage, so in homogeneous coordinates,
the half-pixel offset becomes ( 1

px
wc,

1
py

wc).

39.3.2 Shader Compiler and Linker

The initial design of the OpenGL Shading Language was done by 3Dlabs. As part
of their work, they developed and released an open-source GLSL compiler front-
end and shader validator for the initial version of GLSL [3Dlabs 05]. This GLSL
compiler front-end was used as the starting point for ANGLE’s shader compiler and
translator. The 3Dlabs compiler front-end was designed for Version 1.10 of the
GLSL specification and thus needed to be adapted for the GLSL ES Version 1.00
language [Khronos 11e]. The differences between GLSL 1.10 and GLSL ES 1.00
are summed up in a student report from the Norwegian University of Science and
Technology [Ek 05].

Architecture. In OpenGL ES 2.0, individual vertex and fragment shaders are
compiled using glCompileShader and linked into a single program using glLink
Program. With Direct3D 9, however, there is no explicit linking step between the
vertex and pixel shaders (the Direct3D equivalent of the ESSL fragment shader).
Vertex shader outputs and pixel shader inputs have to be assigned a “semantic”
[MSDN 11j], essentially a register identifier, within the HLSL code itself, and they
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are implicitly linked when the shaders are made active. Since assigning matching
semantics can only be done when both the vertex and pixel shaders are known, the
actual HLSL compilation has to be deferred until link time. During the compilation
call, ANGLE can only translate the ESSL code into HLSL code, leaving the out-
put and input declarations blank. Note that this is not unique to ANGLE, as other
OpenGL and OpenGL ES implementations also defer some of the compilation until
link time.

The ANGLE shader compiler component functions as either a translator or a
validator. It consists of two main components: the compiler front-end and the com-
piler back-end. The compiler front-end consists of the preprocessor, lexer, parser,
and abstract syntax tree (AST) generator. The lexer and parser are generated from
the shading language grammar using the flex [Flex 08] and bison [FSF 11] tools.
The compiler back-end consists of several output methods that convert the AST to a
desired form of ‘object’ code. The forms of object code that are currently supported
are the HLSL, GLSL, or ESSL shader strings. The shader compiler can validate
shaders against either the ESSL specification [Khronos 11e] or the WebGL specifica-
tion [Khronos 11f]. ANGLE uses the former, and the web browsers use the latter.

During program object linking, the translated HLSL shaders from the “com-
piled” vertex and fragment shaders are compiled into binary shader blobs. The shader
blobs include both the Direct3D 9 bytecode for the shaders and the semantic infor-
mation required to map uniforms to constants. The D3DXGetShaderConstant

Table method is used to obtain the uniform information and define the mappings
between the uniform names and the vertex and pixel shader constant locations. Note
that ANGLE uses the Direct3D 10 shader compiler instead of the one included with
D3DX9 because it comes as a separately updated DLL, produces superior shader as-
sembly/binary code, and can handle complex shaders more successfully without run-
ning out of registers or instruction slots. Unfortunately, there are still some shaders
that contain complex conditionals or loops with a high number of iterations that fail
to compile even with the Direct3D 10 compiler.

Shader translation. The translation of ESSL into HLSL is achieved by traversing
the AST and converting it back into a textual representation while taking the differ-
ences between the languages into account. The AST is a tree structure representation
of the original source code, so the basic process of turning each node into a string
is relatively straightforward. We also extended 3Dlabs’ definition of the AST and
their traversing framework to preserve additional source information like variable
declarations and precisions.

HLSL supports the same binary and unary operators as ESSL, but there are
some noteworthy differences in semantics. In ESSL, the first matrix component
subscript accesses a column vector while the second subscript (if any) selects the row.
With HLSL, this order is reversed. Furthermore, OpenGL constructs matrices from
elements specified in column-major order while Direct3D uses row-major order.
These differences were addressed by transposing matrix uniforms. This also required
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(un-)transposing matrices when used in binary operations. Although it may seem in-
efficient to transpose matrices within the HLSL shader, at the assembly level it simply
results in having multiply-add vector instructions instead of dot-product instructions
or vice versa. No noticeable performance impact was observed.

Another significant semantic difference between the two languages is the eval-
uation of the ternary select operator (cond ? expr1 : expr2). With HLSL,
both expressions are evaluated, and then the result of one of them is returned based
on the condition. ESSL adheres to the C semantics and only evaluates the expression
that is selected by the condition. To achieve the ESSL semantics with HLSL, ternary
operators are rewritten as if/else statements. Because ternary operators can be nested
and statements can contain multiple ternary operators, we implemented a separate
AST traverser that hierarchically expands the ternary operators and assigns the re-
sults to temporary variables that are then used in the original statement containing
the ternary operator. The logical binary Boolean AND (&&) and OR (‖) operators
also require short-circuited evaluation and can be handled in a similar manner.

To prevent temporary variables and differences in intrinsic function names from
colliding with names used in the ESSL source, we “decorate” user-defined ESSL
names with an underscore. Reserved names in the ESSL code use the same gl

prefix in HLSL, while variables needed to implement or adjust for Direct3D-specific
behavior have a dx prefix.

Shader built-ins. The OpenGL ES shading language provides a number of built-
in shader variables, inputs, and functions that are not directly provided by Direct3D’s
HLSL or that require different semantics between the two languages.

The vertex shading language has no built-in inputs but instead supports
application-defined attribute variables that provide the values passed into a shader
on a per-vertex basis. The attributes are mapped directly to HLSL vertex shader
inputs using the TEXCOORD[#] semantics.

The varying variables form the interface between the vertex and fragment shaders.
ESSL has no built-in varying variables and supports only application-defined vary-
ings. These varyings are mapped to HLSL vertex shader outputs and pixel shader
inputs using the COLOR[#] semantics. In most cases, we could alternatively use the
TEXCOORD[#] semantics, but these are treated differently for point-sprite rendering,
so instead, we always use the COLOR[#] semantics for user-defined varyings. The
exception for this is in SM2, where variables with the COLOR[#] semantics have lim-
ited range and precision, and thus we must use the TEXCOORD[#] semantic. For this
reason, we cannot directly support large points when using SM2.

The vertex shading language has two built-in output variables: gl PointSize

and gl Position. The gl PointSize output controls the size at which a point is
rasterized. This is equivalent to the HLSL vertex shader PSIZE output semantic, but
to meet the GL requirements, it must be clamped to the valid point size range. The
gl Position output determines the vertex position in homogeneous coordinates.
This is similar to the HLSL vertex shader POSITION0 output semantic; however, we



552 VII Software Design

output.gl_PointSize = clamp(gl_PointSize , 1.0, ALIASED_POINT_SIZE_RANGE_MAX_SM3);

output.gl_Position.x = gl_Position.x - dx_HalfPixelSize.x * gl_Position.w;
output.gl_Position.y = gl_Position.y - dx_HalfPixelSize.y * gl_Position.w;

output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;
output.gl_Position.w = gl_Position.w;
output.gl_FragCoord = gl_Position;

Listing 39.1. Vertex shader epilogue.

must account for several differences between Direct3D and OpenGL coordinates at
this point before we can use it. As described previously in Section 39.3.1, the x- and
y-coordinates are adjusted by the half-pixel offset in screen space to account for the
fragment coordinate differences, and the z-coordinate is adjusted to account for the
depth-range differences. Listing 39.1 shows the vertex shader epilogue that converts
the ESSL shader to Direct3D semantics.

The fragment shading language has three built-in read-only variables: gl Frag

Coord, gl FrontFacing, and gl PointCoord. The gl FragCoord variable
provides the window-relative coordinate values (xw, yw, zw, 1/wc) for the fragments
that are interpolated during rasterization. This is similar to the HLSL VPOS se-
mantic that provides the (x, y)-coordinates. We use the VPOS semantic to pro-
vide the base (x, y) screen-space coordinates and then adjust for both the fragment-
center and window-origin differences. To compute the z- and w-components of
gl FragCoord, we pass the original gl Position from the vertex shader into the
pixel shader via a hidden varying. In the pixel shader, the z-value is multiplied by
1/wc to perform perspective correction and is finally corrected by the depth factors
calculated from the near and far clipping planes, as shown in Listing 39.2.

The gl FrontFacing variable is a boolean value which is TRUE if the fragment
belongs to a front-facing primitive. Under HLSL, similar information is available via
the pixel shader VFACE input semantic; however, this is a floating-point value that
uses negative values to indicate back-facing primitives and positive values to indicate
front-facing ones [MSDN 11h]. This can easily be converted to a boolean value,
but we must also account for the different face-winding convention and the fact that
point and line primitives are always considered front-facing under OpenGL, whereas
the face is undefined for those primitives under Direct3D (see Listing 39.3).

rhw = 1.0 / input.gl_FragCoord.w;
gl_FragCoord.x = input.dx_VPos .x + 0.5;

gl_FragCoord.y = dx_Coord .y - input.dx_VPos .y - 0.5;
gl_FragCoord.z = (input.gl_FragCoord.z * rhw)* dx_Depth .x + dx_Depth .y;

gl_FragCoord.w = rhw;

Listing 39.2. Calculation of the built-in fragment coordinate for SM3.
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gl_FrontFacing = dx_PointsOrLines || (dx_FrontCCW ? (input.vFace >= 0.0) : input.←֓

vFace <= 0.0));

Listing 39.3. Calculation of front-facing built-in variable.

The gl PointCoord variable provides a set of 2D coordinates that indicate
where in a point primitive the current fragment is located. The values must vary
from 0 to 1 horizontally (left to right) and from 0 to 1 vertically (top to bot-
tom). These values can be used as texture coordinates in order to provide textured
point sprites. Direct3D also has the ability to synthesize texture coordinates for
the generated vertices of the point sprite [MSDN 11f]. When this is enabled via
the D3DRS POINTSPRITEENABLE render state, the TEXCOORD semantic is used to
generate texture coordinates that serve as the values for gl PointCoord. Since all
points in OpenGL ES are point sprites, we only need to enable this render state once
on the Direct3D device initialization.

The OpenGL ES shading language also provides one built-in uniform: gl

DepthRange. This is defined as a structure that contains the depth range parameters
that were specified via the glDepthRangef command in the API. Since HLSL does
not provide any built-in uniforms, we pass these parameters in the shaders via a hid-
den uniform and define and populate the gl DepthRangeParameters structure
explicitly in the shader source when referenced by the ESSL code.

Both ESSL and HLSL have a variety of built-in, or intrinsic, functions. Many
of the built-in functions have both the same names and functionality, but there are
some cases where either the name or functionality is slightly different. Differences
in name, such as frac (HLSL) and fract (ESSL), are easily handled at translation
time. In cases where there are functionality differences or simply missing functions,
such as modf (HLSL) and mod (ESSL), this is handled by defining our own functions
with the required semantics.

The OES standard derivatives extension provides the built-in shader func-
tions dFdx, dFdy, and fwidth in the shading language. These gradient compu-
tation functions are available in GLSL 1.20 and are commonly used for custom
mipmap LOD computations (necessary when using vertex texture fetch) or for ex-
tracting screen-space normals. They are translated into the HLSL ddx, ddy, and
fwidth intrinsics, respectively, with ddy being negated to account for the window
origin difference.

The ANGLE translated shader source extension [ANGLE 11] provides the
ability to query the translated HLSL shader source. This is provided as a debugging
aid for developers, as some of the error or warning messages that are reported are
relative to the translated source and not to the original shader source.
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39.3.3 Vertex and Index Buffers

OpenGL ES 2.0 supports buffer objects that can be used both for vertex and index
data, while Direct3D only supports vertex buffers and index buffers separately. This
means ANGLE has to wait until a draw call is issued to be able to determine which
data can go into which type of Direct3D buffer. Furthermore, Direct3D 9 does not
support all of the vertex element types that OpenGL does, so some elements may
need to be translated to wider data types. Because this translation can be expensive
and not all vertex elements are necessarily used during a draw call, we decided that
our baseline implementation should stream the used range of vertex elements into
Direct3D vertex buffers sequentially instead of in packed structures. Figure 39.4
shows the basic process.

The streaming buffer implementation uses a Direct3D vertex buffer in a circular
manner. New data is appended at the point where the previous write operation
ended. This allows the use of a single Direct3D vertex buffer instead of requiring
a new one to be created for every draw call. Appending new data is very efficient
by making use of the D3DLOCK NOOVERWRITE flag [MSDN 11b] when locking the
buffers so that the driver does not need to wait for previous draw calls to complete.
When the end of the buffer is reached, the D3DLOCK DISCARD flag is used to allow
the driver to rename the buffer. This does not affect data that is already in use by a
previous draw call. The streaming vertex buffer only needs to be reallocated when
the buffer is not large enough to fit all of the vertex data for a single draw call.

As previously mentioned, unsupported vertex element types need to be trans-
lated. Direct3D 9 always supports elements with one to four floating-point values,
which offers a universal fallback for any format; however, ANGLE converts the data
into more efficient formats whenever possible. For instance, if the Direct3D driver
supports the D3DDECLTYPE SHORT4N format, three normalized short values get con-
verted into this format, with the fourth element being set to the default value. We
make extensive use of C++ templates in the translation in order to make the code as
efficient as possible and avoid writing several dozen customized routines.

xyz0 st0 rgb0 xyz1 st1 rgb1 xyz2 st2 rgb2 xyzn stn rgbn ...

XYZ1 XYZ2 XYZ3 RGB11 RGB12 RGB13

xyz3 st3 rgb3

Figure 39.4. Example of streaming buffer translation for a single-triangle draw call. The GL buffer (top)
contains position (xyz), texture (st), and color (rgb) vertex data in an interleaved fashion. This is translated
into the Direct3D vertex buffer (bottom) that contains the condensed streams of translated position (XYZ)

and color (RGB1) values. The texture coordinates and other vertices are not included since they were not
referenced by this draw call.
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Despite these optimizations, the streaming implementation is not optimal. When
drawing the same geometry multiple times, the same data must be resent to the hard-
ware on each draw call. To improve on this, ANGLE also features a static buffer
implementation. When the data in a GL buffer is not modified between draw calls,
we can reuse the same Direct3D data from the previous draw call that used this
buffer. This is achieved by associating a Direct3D vertex buffer with each OpenGL
buffer. Instead of streaming data into the global circular vertex buffer, it is streamed
into the static buffer on the first use. A cache keeps track of which vertex element
formats are stored in the static buffer and at which offset. The static buffer gets
invalidated when the OpenGL buffer is subsequently modified or when some for-
mats specified by glVertexAttribPointer no longer match those in the cache.
ANGLE takes the buffer usage parameter into account when determining whether
or not to initially attempt to place data in a static buffer. In our testing, we have also
found that some applications set the usage flags incorrectly. Thus, we track whether
a nonstatic buffer remains unmodified for a number of uses so it can be heuristically
promoted to a static buffer if appropriate. Still, we recommend that applications use
the GL STATIC DRAW hint whenever they are certain a buffer will not be modified
after its first use in a draw call.

In addition to vertex array data specified via glVertexAttribPointer,
OpenGL also supports current attribute values, i.e., attributes that remain constant
during a draw call. Direct3D does not have a similar concept. Even though the value
stays constant per draw call, using an actual Direct3D vertex shader constant would
be complicated because, in one draw call, an attribute can be specified by a vertex
array attribute while, in another draw call, it can use the current attribute, and that
would require rewriting the Direct3D shader. Instead, we opted to implement cur-
rent vertex attributes by using vertex buffers with only one element and a stride of
zero. When the current attribute value is modified, a whole new Direct3D buffer is
created because some drivers do not correctly support updating dynamic buffers that
are used with a stride of zero.

ANGLE supports the OES element index uint extension, which provides
the ability to use 32-bit unsigned integer index buffers with glDrawElements.
Without this extension, OpenGL ES only supports 8- and 16-bit unsigned indices.

39.3.4 Textures

There are some fundamental texture handling differences between OpenGL and Di-
rect3D. In Direct3D 9, the texture format, usage, and shape (number of mipmaps)
must all be declared at texture-object creation time and cannot change over the life-
time of the object. In OpenGL, textures are defined one level at a time and in any
level order; the usage is not known in advance, and the shape can change over time
as mipmaps are added. Furthermore, any or all levels of a texture can be redefined at
any time with the glTexImage2D or glCopyTexImage2D commands.
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In order to handle the differences between Direct3D and OpenGL textures, the
application-provided data for each level are stored in a system memory surface. The
creation of the Direct3D texture is deferred until draw time when the shape and us-
age of the texture are known. At Direct3D texture creation time, we must choose
whether the texture will be renderable or not. Under OpenGL, any texture can
become renderable simply by attaching it to a framebuffer object. Creating all Di-
rect3D textures as render targets can result in degraded performance and can lead
to early out-of-memory situations since render target textures are typically pinned
to video memory and the driver is unable to page them out to system memory as
necessary. Since many textures are never used as render targets, the Direct3D tex-
tures are created nonrenderable by default and are loaded with data from the sys-
tem memory surfaces. This allows the driver to more effectively manage the texture
memory. As a consequence of this, whenever a renderable version of a GL texture is
required, we create a renderable Direct3D texture and migrate any existing data from
either the nonrenderable Direct3D texture or from the system memory surfaces into
the renderable texture. We retain the system memory surfaces, which contain the
application-provided texture data, as these continue to serve as staging areas for tex-
ture updates via glTexSubImage2D. The system memory surfaces are also used to
avoid reading back texture data from the graphics memory in the cases where the
texture is redefined.

Texture redefinition occurs whenever the format or dimensions of level 0 of a
texture are changed. When this happens, any existing Direct3D backing texture
must be discarded. Ideally, the contents of any existing mip-levels of the texture at
that point are preserved in the system memory surfaces. These mip-images should
be kept because it is possible for the images to be used again if the texture is later
redefined in a way that is consistent with the original data. For example, consider a
texture that has four levels with sizes 8 × 8, 4 × 4, 2 × 2, and 1 × 1. If level 0 is
redefined as a 2×2 image, it could be used as a single-level texture with mip-filtering
disabled. If level 0 were once again redefined as an 8× 8 image with the same format
as originally used, this would once again result in a complete texture with four levels,
and levels 1 through 3 would have the same data as before. This is the behavior
implied by the specification, but not all drivers (including some versions of ANGLE)
have correctly implemented image preservation on redefinition. Hence, portable
applications should not rely on this behavior; it is recommended that redefining
textures be avoided, as this can cause expensive reallocations inside the driver.

OpenGL has recently introduced a new texture creation mechanism that allows
the creation of immutable textures: ARB texture storage [Khronos 11d]. The
glTexStorage command is used to create a texture with a specific format, size, and
number of levels. Once a texture has been defined by glTexStorage, the texture
cannot be redefined and can only have its data specified by the gl*SubImage2D

commands or by render-to-texture. This new texture creation API is beneficial for
many drivers, as it allows them to allocate the correct amount of memory up front
without having to guess how many mip-levels will be provided. ANGLE supports



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 557

EXT texture storage [ANGLE 11], an OpenGL ES version of this extension,
in order to provide a more efficient texture implementation. With the shape and
format of the texture known at creation time, we can immediately create a Direct3D
texture that corresponds to the GL texture. The system memory surfaces can be
omitted because we can load the application-provided texture data directly into the
Direct3D9 texture, and we do not have to preserve the system memory copies of the
data because TexStorage textures are immutable. The ANGLE texture usage

extension [ANGLE 11] further provides the ability to let the implementation know
the expected usage of a texture. When it is known that a texture will be rendered
into, the usage parameter can be specified so that the implementation will know to
allocate a renderable texture.

OpenGL also has the notion of incomplete textures. This occurs when insufficient
levels of a texture are present (based on the filter state), or when the formats or sizes
are inconsistent between levels. When sampled in a shader, an incomplete texture
always returns the value (R,G,B,A) = (0, 0, 0, 1). Support for incomplete textures
is implemented by creating a 1-level 1 × 1 Direct3D texture of the appropriate type
that is bound to the sampler during a draw call.

Another texture difference between OpenGL ES and Direct3D 9 is the set of tex-
ture formats that are supported. In addition, OpenGL applications typically supply
the texture data in an RGB(A) format, while Direct3D uses a BGR(A) component
order for most format types. Because of the difference in component ordering and
the limited support for the Direct3D equivalents of some of the packed formats
(e.g., the 4444, 5551, and 565 variants), we expand and swizzle texture data into
the D3DFMT A8R8G8B8 format at load time. The main exceptions are the lumi-
nance and luminance-alpha unsigned byte texture formats, which are loaded directly
as D3DFMT L8 and D3DFMT A8L8 textures when natively supported. While we are
loading the texture data, we must also flip the texture data vertically to account for
the window coordinate differences as described earlier.

To optimize the most common texture loading operations, SSE2 optimized code
is used when supported by the CPU. Similarly, glReadPixels requires flipping
the image and swizzling the color components, but since it is not expected to be a
particularly fast function (because it waits on the GPU to finish rendering), these op-
erations are not yet optimized using SSE2. However, the EXT read format bgra

extension is provided in case the application does not require the components to be
swizzled.

ANGLE supports a number of extensions that provide a wider range of texture
and renderbuffer formats and related capabilities. OES texture npot provides sup-
port for the full complement of mipmapping, minification filters, and repeat-based
wrap modes for nonpower of two textures. 8-bit per component RGB and RGBA
renderbuffers (OES rgb8 rgba8), and BGRA textures (EXT texture format

BGRA8888, EXT read format bgra) provide support for 32-bpp rendering as well
as exposing formats that do not require conversions for performance reasons. The
16- and 32-bit floating-point texture formats (OES texture half float, OES
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texture float), including support for linear filtering (OES texture half

float linear, OES texture float linear), are supported in order to pro-
vide more precise texture data for algorithms that require it, particularly those that
also make use of vertex textures. The DXT1 (EXT texture compression dxt1),
DXT3 (ANGLE texture compression dxt3), and DXT5 (ANGLE texture

compression dxt5) compressed texture formats [ANGLE 11] are also provided
to improve performance by using less texture bandwidth in the GPU and by reduc-
ing system and video memory requirements.

39.3.5 Vertex Texture Fetch

OpenGL ES 2 provides the capability to support texture sampling in vertex shaders
(also referred to as vertex texture fetch or VTF) although support for this is not
mandated. VTF is often used for techniques such as displacement mapping where
a heightmap is stored in a texture and then used to adjust the position of the vertex
based on the value obtained from a texture lookup. In order to determine whether
VTF is supported on a particular implementation and device combination, the ap-
plication must query the MAX VERTEX TEXTURE IMAGE UNITS limit. If the value
for this limit is zero, VTF is not supported.

The initial implementation of ANGLE did not support vertex textures; however,
support was later added as this was a highly sought-after feature. The potential
difficulty with implementing VTF in ANGLE is that some SM3 hardware has no
support for it, and on other hardware, it is only supported in a very limited form—
typically only for 2D textures with 32-bit floating-point formats and only with point
filtering. Unlike Direct3D 9, which exposes capabilities like this at a very granular
level, OpenGL and OpenGL ES do not provide a way to limit what types of textures
or formats can be used with vertex texturing; it is required for all textures types and
formats. With OpenGL, using a format or type that is not directly supported by
hardware will cause vertex processing to fall back to software. With Direct3D 9, it is
possible to get a more complete set of vertex texture capabilities by enabling software
vertex processing [MSDN 11g], but that is not without its own drawbacks. First,
the Direct3D 9 device must be created with mixed vertex processing and that may
not perform as well as a pure hardware device. Next, in order to use a texture with
software vertex processing, the texture must be created in the scratch memory pool
[MSDN 11b], necessitating additional copies of the texture data and ensuring that
they are all kept in sync. Finally, software vertex processing is likely to be significantly
slower, and in many cases, developers would rather do without the functionality than
have it available but executing in a software fallback.

Unlike SM3 hardware, SM4 (Direct3D 10 capable) hardware does provide full
support for vertex textures for all formats, for both 2D and cube textures, and with
linear filtering. Furthermore, these capabilities are also exposed via Direct3D 9 on
this hardware. As a result, ANGLE only exposes support for vertex texture fetch
when it detects that it is running on SM4 hardware and can provide the full com-
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plement of vertex texture functionality without falling back to software vertex pro-
cessing. However, even though SM4 hardware supports 16 vertex texture samplers,
the Direct3D 9 API only supports four vertex texture samplers, and thus, this is the
maximum supported under ANGLE.

39.3.6 Primitive Types

Both OpenGL and Direct3D provide a number of different types of rendering prim-
itives. They both include primitives for rendering points; line strips and lists; and
triangle strips, fans, and lists. OpenGL ES also provides an additional primitive type
that is not available under Direct3D 9: the line loop. Line loops are similar to line
strips with the addition of a closing line segment that is drawn between the last vertex
vn and the first vertex v0. Thus, for a render call with n vertices, there are n− 1 line
segments drawn between vertices (vi−1, vi)|1 ≤ i ≤ n and a final line segment be-
tween vertices (vn, v0). In ANGLE, this is implemented by drawing two line strips.
The first draw call, either arrayed or indexed as specified by the original drawing
command, renders the first n − 1 line segments via a line strip. The second draw
call renders the final line segment using a streaming index buffer that contains the
indices of the last and first vertex from the original draw command.

Large points and wide lines are optional capabilities in OpenGL ES 2. Support
for these must be queried by checking the maximum available point size range and
line width range. Large points are often used for particle systems or other sprite-
based rendering techniques, as they have a significant memory and bandwidth saving
compared to the fallback method of drawing two triangles forming a screen-aligned
quadrilateral. ANGLE supports points with sizes up to a maximum of 64 pixels in
order to support point sprite rendering. Wide lines are used less frequently and, as of
the time of writing, ANGLE does not support lines with width larger than one.

39.3.7 Masked Clears

Another OpenGL capability not directly supported by Direct3D is masked clear op-
erations. Under Direct3D 9, the color, depth, and stencil masks do not apply to clear
operations, whereas they do in OpenGL. Thus, in cases where only some of the color
or stencil components are to be cleared, we implement the clear operation by drawing
a quad the size of the framebuffer. As with glClear, the scissor test limits the area
that is affected by the draw command. One of the drawbacks to implementing the
clear call via a draw operation is that the current state of the Direct3D device must be
modified. Since we do significant caching in order to minimize the state setup that
must be done at draw time, this draw command has the potential to interfere with
that caching. In order to minimize the individual state changes that must be done,
we preserve the current Direct3D rendering state in a stateblock, configure the state
for the clearing draw call, perform the draw, and then restore the previous state from
the stateblock. In cases where masked clear operations are not required, we directly
use the Direct3D 9 Clear call for performance.
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39.3.8 Separate Depth and Stencil Buffers

Framebuffer configuration in OpenGL ES allows applications to separately spec-
ify depth and stencil buffers. Depth and stencil buffers are not separable in Di-
rect3D, and thus, we are not able to support arbitrary mixing of depth and stencil
buffers. However, this is not uncommon for OpenGL or other OpenGL ES imple-
mentations and can be disallowed by reporting GL FRAMEBUFFER UNSUPPORTED

when separate buffers are simultaneously bound to the depth and stencil binding
points. In order to provide support for simultaneous depth and stencil operation, the
OES packed depth stencil extension is supported in ANGLE. This extension
provides a combined depth and stencil surface internal format (DEPTH24 STENCIL8

OES) that can be used for renderbuffer storage. In order to use simultaneous depth
and stencil operations, the application must attach the same packed depth-stencil
surface to both the depth and stencil attachment points of the framebuffer object.
The packed depth-stencil format is also used internally for all formats that require
only depth or stencil components, and the Direct3D pipeline is configured so that
the unused depth or stencil components have no effect. Note that since ANGLE does
not yet support depth textures, packed depth-stencil textures are also not supported.

39.3.9 Synchronization

The glFlush command is required to flush the GL command stream and cause it
to finish execution in finite time. The flush command is implemented in ANGLE
via Direct3D 9 event queries [MSDN 11i]. In Direct3D 9, issuing an event query
and calling GetData with the D3DGETDATA FLUSH parameter causes the command
buffer to be flushed in the driver, resulting in the desired effect.

The glFinish command is required to block until all previous GL commands
have completed. This can also be implemented using Direct3D event queries by
issuing an event query and then polling until the query result is available.

ANGLE also supports the NV fence extension in order to provide finer-grained
synchronization than is possible with only flush and finish. Fence objects are also
implemented via Direct3D 9 event queries as they have very similar semantics.

39.3.10 Multisampling

ANGLE does not currently expose any EGL multisample configurations. This is
not due to any inherent technical difficulty, but rather due to lack of demand for
it. Support for multisampling is provided with multisampled renderbuffers. The
ANGLE framebuffer multisample extension [ANGLE 11] is a subset of the
EXT framebuffer multisample extension from OpenGL. It provides a mecha-
nism to attach multisampled images to framebuffer objects and resolve the multisam-
pled framebuffer object into a single-sampled framebuffer. The resolve destination
can either be another application-created framebuffer object or the window-system
provided one.
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ANGLE also provides support for copying directly from one framebuffer to
another. The ANGLE framebuffer blit extension [ANGLE 11] is a subset of
the EXT framebuffer blit extension from OpenGL. It adds support for separate
draw- and read-framebuffer attachment points and makes it possible to copy directly
between images attached to framebuffer objects. glBlitFramebufferANGLE is
implemented via the Direct3D 9 StretchRect function and therefore has some
further restrictions compared to the desktop version. In particular, color conver-
sions, resizing, flipping, and filtering are not supported, and only whole depth and
stencil buffers can be copied. glBlitFramebufferANGLE is also used to resolve
multisample framebuffers.

39.3.11 Multiple Contexts and Resource Sharing

ANGLE supports multiple OpenGL ES contexts as well as sharing objects between
contexts as described in Appendix C of the OpenGL ES 2.0.25 specification
[Khronos 11c]. The object types that can be shared are the resource-type objects:
shader objects, program objects, vertex buffer objects, texture objects, and render-
buffer objects. Framebuffer objects and fences are not shareable objects. The re-
quirement to share framebuffer objects was removed from the OpenGL ES 2.0.25
specification in order to be more compatible with OpenGL. In general, it is not
desirable to share container-type objects, as this makes change propagation and dele-
tion behavior of the shared objects difficult to specify and tricky to implement
and use correctly. Furthermore, there is little value to be had from sharing con-
tainer objects since they are typically quite small and have no data associated with
them.

Shared contexts are specified at context creation time via the share context

parameter to eglCreateContext. As defined in the EGL 1.4 specification, a newly
created context will share all shareable objects with the specified share context

and, by extension, with any other contexts with which share context already
shares. To implement these semantics, we have a resource manager class that is
responsible for creating, tracking, and deleting all shared objects. All nonshared
objects, framebuffers and fences, are always managed directly by the context. The
resource manager can be shared between contexts. When a new, nonshared context
is created, a new resource manager is instantiated. When a shared context is created,
it acquires the resource manager from the shared context. Since contexts can be de-
stroyed in any order, the resource manager is reference counted and not directly tied
to any specific context.

Direct3D 9 does not have the concept of share groups like OpenGL. It is pos-
sible to share individual resources between Direct3D 9Ex devices, but this func-
tionality is only supported on Windows Vista and later. Thus, in order to share
resources between ANGLE’s GL contexts, the ES and EGL implementations only
make use of a single Direct3D 9 device object. The device is created by and associ-
ated with the EGL default display and made accessible to each of the GL contexts as
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necessary. In order to provide the required separation of state between GL contexts,
we must completely transition the Direct3D state when we switch GL contexts. The
eglMakeCurrent call provides us with the opportunity to do this when the current
context is changed. With our state-caching mechanism, we simply need to mark all
our cached state dirty at this point, and the necessary Direct3D state will be set for
the next draw command.

The current GL context and corresponding EGL display are tracked using thread-
local storage (TLS). The TLS is used to hold a pointer to the GL context that has
last been made current on this thread via eglMakeCurrent. When a GL function
call is made, the current GL context for the thread is obtained from the TLS, and
the command is dispatched to the GL context. If no GL context is presently current
on the thread, the GL command is silently ignored.

ANGLE supports creation of both window- and pbuffer–based EGL surfaces.
Window surfaces are implemented by creating a windowed Direct3D 9 swapchain
for the EGL surface using the HWND window handle that is passed in to eglCreate

WindowSurface as the native window. The eglSwapBuffers command maps
to the swapchain’s Present method. Window resizing is handled by recreating the
swapchain. Resizing can be detected either by registering a window handler for the
WM SIZE message or by checking the window size at the swap buffer’s call. The pre-
ferred method is via the window handler, but this does not work for windows that
were created in a different process. Pbuffer surfaces, which are used purely for off-
screen rendering and do not need to support swapping or resizing, are implemented
using Direct3D 9 render-target textures. The eglBindTexImage API can also be
used to bind a pbuffer as a texture in order to access the contents of the pbuffer.

ANGLE also supports several EGL extensions that enable more efficient inte-
gration with applications that use Direct3D directly, such as a browser that uses it
internally for the compositor or video decoding. These extensions provide a mecha-
nism that allows textures to be shared between ANGLE’s Direct3D device and other
Direct3D devices. This also provides the ability to share images between processes
since Direct3D resources can be shared across processes. The Direct3D 9 render-
target textures that back the pbuffer surfaces can either be created from, or provide,
a sharing handle [MSDN 11d]. In order to make use of this, we need a mechanism
to provide or extract the Direct3D share handle via EGL.

The ANGLE surface d3d texture 2d share handle extension [ANGLE
11] allows an application to obtain the Direct3D share handle from an EGL sur-
face. This handle can then be used in another device to create a shared texture that
can be used to display the contents of the pbuffer. Similarly, the ANGLE d3d share

handle client buffer extension [ANGLE 11] creates a pbuffer from a Direct3D
share handle that is specified via eglCreatePbufferFromClientBuffer. This
provides the ability to have ES2 content rendered into a texture that has been created
by a different Direct3D device. When sharing a surface between Direct3D devices
in different processes, it is necessary to use event queries to ensure that rendering to
the surface has completed before using the shared resource in another device. From



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 563

the ANGLE side, this can be achieved with appropriate use of a fence or by calling
glFinish to ensure that the desired operations have finished.

39.3.12 Context Loss

Direct3D 9 devices can, under various scenarios, become “lost” [MSDN 11e]. On
Windows XP, this can happen when the system has a power management event such
as entering sleep mode, or screen saver activation. On Window Vista and later, when
using Direct3D 9Ex, device loss is much more infrequent but can still happen if the
hardware hangs or when the driver is stopped [MSDN 11d]. When the device is
lost, resources that were located in graphics memory are lost, and rendering related
operations are ignored. To recover from a lost Direct3D device, the application must
release the video memory resources and reset the device.

Unextended OpenGL ES does not provide a mechanism to notify the applica-
tion of a lost or reset device. EGL does have the EGL CONTEXT LOST error code that
corresponds to the loss of a hardware device. By default, when a device loss occurs,
ANGLE generates an out-of-memory error on GL calls, and the context-lost error
on EGL calls, to indicate that the context is in an undefined state. In both cases,
the proper response is to destroy all the GL contexts, recreate the contexts, and then
restore any state and objects as necessary. EGL surfaces do not need to be recreated,
but their content is undefined. For details, see Section 2.6 of the EGL 1.4 specifica-
tion [Khronos 11b]. WebGL applications should additionally follow the advice for
Handling Context Lost [Khronos 11a].

ANGLE supports the EXT robustness extension [ANGLE 11], which is based
on the OpenGL ARB robustness extension [Khronos 11d], in order to provide
a better mechanism for reporting reset notifications. This extension provides an
inexpensive query, glGetGraphicsResetStatusEXT, which applications can use
to learn about context resets. After receiving a reset notification, the application
should continue to query the reset status until GL NO ERROR is returned, at which
point the contexts should be destroyed and recreated.

Applications must opt into receiving reset notifications at context creation time
by specifying the reset notification strategy attribute as defined in the EXT create

context robustness extension [ANGLE 11]. Note that even if an application
does not opt into receiving reset notifications, or explicitly requests no reset notifi-
cations, context loss and resets can still happen at any time. Applications should be
made capable of detecting and recovering from these events.

39.3.13 Resource Limits

The OpenGL ES 2.0 API is quite feature-rich; however, there are still some fea-
tures that are optional or allow for wide variability between implementations. These
include the number of vertex attributes, varying vectors, vertex uniform vectors,
fragment uniform vectors, vertex texture image units, fragment texture image units,
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maximum texture size, maximum renderbuffer size, point size range, and line width
range. Applications that need more than the minimum values for any of these lim-
its should always query the capabilities of the GL device and scale their usage based
on the device’s feature set. Failing to do so and assuming sufficient limits typically
results in reduced portability. This is particularly important to keep in mind for
WebGL development or when otherwise using a OpenGL ES 2.0 implementation,
such as ANGLE, that is provided on desktop hardware. In many cases, the capabili-
ties provided far exceed those available on mobile platforms. The complete listing of
minimum requirements for the various implementation-dependent values can be ob-
tained from Tables 6.18–6.20 of the OpenGL ES 2.0.25 specification [Khronos 11c].

Most of the ANGLE limits have been chosen to provide a maximum set of con-
sistent capabilities across a wide range of common hardware. In some cases, the limits
are constrained by the Direct3D 9 API even if the hardware has greater capabilities
that could be exposed under a different API such as OpenGL or Direct3D 10. In
other cases, the limits vary based on the underlying hardware capabilities which are
denoted with an asterisk in Table 39.1.

The maximum vertex (254) and fragment (221) uniforms are based on the com-
mon capabilities for SM3 vertex (256) and pixel shader (224) constants, but must
be lowered to account for the hidden uniforms we may use to implement some of
the shader built-ins. The maximum number of varying vectors (10) is the maximum
available on SM3 hardware and does not need to be reduced to account for built-in
varyings since these are explicitly included in the ESSL varying packing algorithm,
as described in Issue 10.16 in the ESSL specification [Khronos 11e]. The maximum
texture, cube map, and renderbuffer sizes are directly based on the capabilities of
the underlying device, so they range between 2048 and 16384, depending on the
hardware.

Capability ES 2.0 Minimum ANGLE

MAX VERTEX ATTRIBS 8 16
MAX VERTEX UNIFORM VECTORS 128 254

MAX VERTEX TEXTURE IMAGE UNITS 0 0, 4*
MAX VARYING VECTORS 8 10
MAX FRAGMENT UNIFORM VECTORS 16 221
MAX TEXTURE IMAGE UNITS 8 16

MAX TEXTURE SIZE 64 2048-16384*
MAX CUBE MAP SIZE 16 2048-16384*
MAX RENDERBUFFER SIZE 1 2048-16384*

ALIASED POINT SIZE RANGE (min, max) (1, 1) (1, 64)
ALIASED LINE WIDTH RANGE (min, max) (1, 1) (1, 1)

Table 39.1. Resource limits. The most commonly used implementation-dependent values

showing both the minimum OpenGL ES 2.0 values and the ANGLE-specific limits. The
ANGLE limits are for SM3-capable hardware as of ANGLE revision 889.
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39.3.14 Optimizations

To ensure that ANGLE performs as closely as possible to a native implementation
of OpenGL ES 2.0, we strive to avoid redundant or unnecessary work, both on the
CPU side and on the GPU side.

Much of the effective rendering state is only known at the time of a draw call,
so ANGLE defers making any Direct3D render-state changes until draw time. For
example, Direct3D only supports explicitly setting culling for clockwise or coun-
terclockwise vertex-winding orders while OpenGL indicates which winding order is
considered front-facing by using glFrontFace. glCullFace determines which
of these sides should be culled, and GL CULL FACE enables or disables the actual
culling. In theory, changing any of the glFrontFace, glCullFace, or GL CULL

FACE states would alter the corresponding Direct3D render state, but by deferring
this to the draw call, we reduce it to at most one change (per state) per draw call. For
each related group of states, ANGLE keeps a “dirty” flag to determine whether the
affected Direct3D states should be updated.

OpenGL identifies resources by integer numbers (or “names”), while the im-
plementation requires pointers to the actual objects. This means ANGLE contains
several map containers that hold the associations between resource names and object
pointers. Since many object lookups are required per frame, this can cause a notice-
able CPU hotspot. Fortunately the associations do not typically change very often,
and for currently bound objects, the same name would be looked up many times
in a row. Thus, for the currently bound objects like programs and framebuffers, the
pointer is cached and replaced or invalidated only when an action is performed which
modifies the association.

ANGLE also keeps track of the textures, buffers, and shaders that are currently
set on the Direct3D device. To avoid issues with cases where an object gets deleted
and a new one coincidentally gets created at the same memory location, resources are
identified by a unique serial number instead of their pointer.

Another place caching plays a critical role in optimizing performance is in apply-
ing the vertex attribute bindings. Direct3D 9 requires all attributes to be described in
a vertex declaration. Creating and later disposing of this object takes up valuable time
and potentially prevents the graphics driver from minimizing internal state changes,
so a cache was implemented to store the most recently used vertex declarations.

We also endeavor to minimize the GPU workload, both in terms of data transfers
to/from the GPU and in terms of computational workload. As discussed earlier, we
have eliminated the overhead in flipping the rendered image at presentation time,
added support for buffers with static usage, implemented mechanisms to minimize
texture reallocations, and used direct clear operations when masked clears are not
required. We also optimize out the computation of any shader built-in variables that
are not used in the shaders.

It is important to note that while all these optimizations have made ANGLE
more complex, they have also significantly helped ensure that the underlying
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hardware, accessed through Direct3D, is used as efficiently as possible. Native driver
implementations of OpenGL and OpenGL ES also require many of the same opti-
mizations and inherent complexity in order to achieve high performance in practice.

39.3.15 Recommended Practices

Throughout this chapter, we have touched on a variety of practices that should help
improve the performance and portability of applications. While these recommenda-
tions are targeted specifically at ANGLE’s implementation, we expect that many of
these practices will also be applicable to other GL implementations:

• Always check for optional features and validate resource limits.

• Group objects in buffers based on data format (type and layout) and update
frequency.

• Ensure that appropriate buffer usage flags are used.

• Use static buffers and fully specify the contents of buffers before draw time.

• Use separate buffers for index and vertex data.

• Use immutable textures when available. If EXT texture storage is not
supported, ensure that a complete texture is created and consistently defined.

• Avoid redefining the format or size of existing textures, and create a new tex-
ture instead.

• Use the BGRA EXT / UNSIGNED BYTE texture format to minimize texture con-
versions on load and for pixel readback.

• Use packed depth-stencil for combined depth and stencil support.

• Opt in to reset notifications, and handle context resets appropriately.

• Avoid masked clear operations.

• Avoid line loops by drawing closed line strips instead.

• Use fences instead of glFinish for finer synchronization control.

• Avoid using complex conditional statements and loops with a high maximum
number of iterations in shaders.
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39.3.16 Performance Results

At the time of this writing, there are no de facto benchmarks for WebGL. To correctly
interpret performance results of applications and demos, one should first realize that
once a draw call command reaches the GPU driver, there are, in theory, few funda-
mental differences between OpenGL and Direct3D. For ANGLE, in particular, the
ESSL and HLSL shaders are largely equivalent, so the GPU performs essentially the
same operations. Therefore applications or demos with high numbers of vertices or
high levels of overdraw do not really test the graphics API implementation but rather
the hardware performance itself.

Potential differences in performance between ANGLE and native OpenGL im-
plementations would stem mainly from the graphics commands issued between draw
calls (texture, buffer, and uniform updates), the setup work performed to translate a
GL draw call into a Direct3D draw call, and the vertex-shader epilogue and pixel-
shader prologues. Therefore, the applications and demos we chose to use for per-
formance comparisons perform a relatively high number of draw calls, use various
textures, and/or use nontrivial animations.

The results, shown in Table 39.2, reveal that ANGLE typically performs on par
with desktop OpenGL drivers. This demonstrates that on Windows, it is viable to
implement OpenGL ES 2.0 on top of Direct3D, and the translation does not add
significant overhead.

Desktop GL (fps) ANGLE (fps)

MapsGL, San Francisco street level 32 33

http://maps.google.com/mapsgl

WebGL Field, “lots” setting 25–48 25–45
http://webglsamples.googlecode.com/hg/field/field.html

Flight of the Navigator 20 minimum 40 minimum

http://videos.mozilla.org/serv/mozhacks/flight-of-the-navigator/

Skin rendering 62 53
http://alteredqualia.com/three/examples/webgl materials skin.html

Table 39.2. Performance comparison between ANGLE and native OpenGL implementa-

tions in sample applications. The results were obtained using Google Chrome 15.0.874.106m
on a laptop with a Core i7-620M (2.67 GHz dual core), GeForce 330M, running Windows
7 64-bit. Framerates were determined using FRAPS (http://www.fraps.com/), and vsync was

forced off.
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39.4 Future Work

ANGLE is continuing to evolve, and there is future work to be done implementing
new features, improving performance, and resolving defects. Additional features that
could be added include depth textures, wide lines, and multisample EGL configs.
Areas for improving performance include target-dependent flipping of rendering,
optimizations to texture loading and pixel readback, and bottlenecks as shown by
profiling applications. Another possible future direction for ANGLE’s development
could be to implement a Direct3D 11 back-end. This would allow us to support
features not available in Direct3D 9, future versions of the OpenGL ES API, and
future operating systems where Direct3D 9 is not ubiquitous.

39.5 Conclusion

This chapter explained the motivation behind ANGLE and described how it is cur-
rently used in web browsers both as an OpenGL ES 2.0-based renderer and as a
shader validator and translator. We discussed many of the challenging aspects of
the implementation of this project, primarily in mapping between OpenGL and
Direct3D, and explained how they were mastered. We discussed some of the opti-
mizations we have made in our implementation in order to provide a conformant
Open GL ES 2.0 driver that is both competitive in performance and fully featured.
The development of ANGLE is ongoing, and we welcome contributions.

39.6 Source Code

The source for the ANGLE Project is available from the Google Code repository.1

This repository includes the full source for the ANGLE libGLESv2 and libEGL li-
braries as well as some small sample programs. The project can be built on Windows
with Visual C++ 2008 Express Edition or newer.
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