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ABSTRACT
Biofilaments, such as actin and DNA, have for long been

modeled as thermally fluctuating elastic rods with homogeneous
material properties. Such models are adequate if the length scale
of the filaments being studied is much larger than the scale of
the heterogeneity. However, advanced single molecule experi-
mental techniques have now made it possible to probe the prop-
erties of biomolecules at the scale of a few nanometers. The
data emerging from these experiments ought to be greeted with
appropriately detailed models. In this paper we study the me-
chanics of a thermally fluctuating elastic rod whose moduli are
a function of position. Such a rod can be used as a model for
DNA whose sequence specific properties are known or for a pro-
tein oligomer in an AFM where some of the monomers might
be unfolded. The mechanics of these rods is understood by first
evaluating a partition function through path integral techniques.
We develop a computational technique to efficiently evaluate the
partition function and use it to obtain the force-extension relation
of a fluctuating rod with two different bending moduli as would
be the case for a partially unfolded protein oligomer stretched in
an AFM. The variance of the transverse fluctuations of the pro-
tein oligomer is also evaluated and are found to agree with the
results of a Monte Carlo simulation.

1 INTRODUCTION
Techniques for performing mechanical experiments on sin-

gle molecules, such as, optical tweezers, magnetic tweezers and

∗Address all correspondence to this author.

the atomic force microscopes, have been refined over the last
two decades. These techniques, which combine characteristics,
such as, high force sensitivity, high positional accuracy and good
compatibility with physiological environment, have been widely
used to study molecule forces at the single-molecular level as
well as structures of single bio-molecules [1–6]. The mechanical
behavior of proteins, such as, actin, titin, ubiquitin etc., and those
of nucleic acids, such as, single- and double-stranded DNA and
RNA have been measured using these methods at length scales
spanning a few tens of nanometers to a few microns. The mea-
surements reveal that configurational entropy due to Brownian
motion is a key player in the mechanics of these macromolecules.

Theoretically, it is generally acknowledged that a model of
thermally fluctuating elastic rods is appropriate for describing
the thermal and mechanical properties of rod-like biomolecules,
such as, actin, DNA, etc. Other than taking the bending coop-
erativity into account, this model successfully captures their en-
tropic elasticity and is widely used to interpret the experimen-
tal data on them [7–10]. The most well-known theory in this
field is the worm-like chain (WLC) model dating back to the first
half of the last century and gaining renewed interest in the last
two decades [8, 9]. Different properties of such fluctuating elas-
tic rods, including the distribution of their end-to-end distance
(extension), their force-extension relation under different bound-
ary conditions, as well as their transverse fluctuations along the
arc have been studied under the assumption that the mechani-
cal properties are uniform [8–11]. However, recent experiments
have been able to probe the properties of biomolecules at the
scale of a few nanometers at which heterogeneity in the mechan-
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ical properties cannot be neglected. In fact, several recent studies
have revealed the remarkable effects of the heterogeneous prop-
erties of some biopolymers on the their conformations as well
as their mechanical behaviors [12, 13]. For example, the pro-
tein projectin consists of domains that are significantly differ-
ent in mechanical properties and shows distinct unfolding pat-
terns even in a single pulling experiment [14]. The sequence
dependence of the mechanical properties of DNA is suggested to
be well sensed by DNA binding proteins and could be biologi-
cally significant [15–17]. Heterogeneous mechanical properties
are also encountered in partially unfolded protein oligomers in
atomic force microscopy [18]; protein unfolding has biologically
significant implications in signalling [19]. As a final example, it
has been noted that localized softening in DNA can have sig-
nificant influence on looping probabilities [20] which ultimately
affect regulation of genetic activity [21]. These examples show
that heterogeneity in mechanical properties of biomolecules have
significant biological consequences and motivate us to carefully
examine the effects of heterogeneity via mathematical models.

Some earlier theoretical work on the WLC model can be
modified to take heterogeneity into account [20], but theories
on heterogeneous fluctuating elastic rods are rare in literature.
A simple way of introducing heterogeneity in models of poly-
mers is to group the monomers into H (hydrophobic) or P (hy-
drophilic) types as has been done in some recent articles [22–24].
The approach in this paper is different in that we study heteroge-
neous rods, whose bending modulus Kb(s) is an arbitrary func-
tion of the arc length s, in a fixed force and fixed temperature
ensemble using statistical mechanics. The partition function and
free energy are evaluated first. The averages as well as the vari-
ances of the energy and the extension of the rod are calculated
from the partition function. In particular, we show that the vari-
ance of the extension is just the slope of the extension-force pro-
file scaled by the thermal energy. Also shown in the paper are
the fluctuation of the tangential angles of the rod, as well as the
variance of the transverse fluctuation. Monte Carlo simulations
have been performed to verify our theoretical results.

2 PROBLEM DESCRIPTION

We begin with a statistical mechanical description of a N-
segment fluctuating chain in this paper. The chain is a discrete
version of a fluctuating elastic rod. As shown in Fig. 1, we define
the direction of the end-to-end vector of the chain as the X-axis
(the axis is fixed in the space and the end of chain is constrained
to move on the axis). The segments of the chain are labeled 1 to
N from one end to the other, and link i subtends an angle θi with
respect to the X-axis. The preferred orientation of the segments
of the chain is parallel to each other and there is a quadratic en-
ergy penalty associated with deviations from this configuration.

 θ X axis

force F

extension x

y

Figure 1. Model of the N-segment chain. The end-to-end vector of the
chain defines the X axis along which an external force F is applied. The
end-to-end distance of the chain (called extension) is x. Each link in the
chain subtends an angle θi with the X axis and its transverse displace-
ment from the axis is denoted as yi.

Accordingly, the bending energy of the chain is given by:

Eb =
N

∑
i=1

Ki

2l
(θi+1−θi)2, (1)

where Ki is the bending modulus, which varies along the chain
and l is the segment length. The chain considered here is as-
sumed to be untwistable and inextensible, so that, elastic energy
arises only from bending (Eq. (1)). The theory proposed here is
for a 2D chain, but it is straightforward to generalize the results
to a 3D untwistable and inextensible chain, provided that we use
an appropriate set of angles to represent the chain [25]. Also,
the authors note that twistable and extensible chains can be stud-
ied using the same theoretical framework as long as the elastic
energy remains quadratic in the configuration angles θi.

The chain is in a heat bath at a fixed temperature T and is
randomly bombarded by the small particles surrounding it. The
segments of the chain are so small that the thermal energy and
the bombardment are significant compared to the bending energy
and cannot be ignored. In other words, the chain is fluctuating
around its thermal equilibrium state.

Finally, a constant external force is exerted at one end of the
chain while the other end is hinged (Fig. 1). We then ask ques-
tions, such as, what is the average end-to-end distance (denoted
as extension below) of such a chain? What is the average bend-
ing energy? What is the magnitude of the fluctuations, i.e., what
is the displacement of the chain from the X-axis and what is the
variance of the extension and the energy? These questions are
answered using the methods of thermodynamics.
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3 THEORY
3.1 Fundamental Equation

Since both the temperature and force are fixed in our prob-
lem, the free energy G can be written as:

G(T,F) = Eb−T S−Fx, (2)

which is an analogue of the Gibbs free energy with T and F being
independent variables. S is the entropy. In such an ensemble,
each configuration ν appears with probability [26]:

Pν =
1

exp(−βG)
· exp

(
−

Eb,ν−Fxν

kBT

)
, (3)

where β = (kBT )−1, kB is the Boltzmann constant and x is the
extension of the chain. The partition function is defined as

Z = ∑
ν

exp
(
−

Eb,ν−Fxν

kBT

)
, (4)

and is related to the free energy G as follows:

Z = exp(−βG) , G =−kBT logZ, (5)

which is due to the fact that ∑ν Pν = 1.
The partition function Z in Eq. (4) involves a sum over all

configuartions of the chain and becomes a path integral when the
number of segments N becomes infinite and the segment length
l goes to zero in such a way that their product Nl remains fixed.
Zhang and Crothers [17] (see also [27]) have provided an effi-
cient way to compute this partition sum. The result turns out to
be simply a problem of evaluating the determinant of a N +1 by
N +1 matrix in our case (under the assumption that θi are small).
A glimpse of this calculation appears in section 3.4. Once the
partition function is obtained, we can obtain all the thermody-
namic quantities for the chain, as discussed below.

3.2 Average Extension and Its Variance
We are interested in the average value of the extension and

also its variance under the constant applied force. To address this
problem, we remember that

dEb = T dS +Fdx. (6)

Using Eq. (2), we get,

dG =−SdT − xdF, (7)

therefore,

x =−
(

∂G
∂F

)
T

= kBT
(

∂ logZ
∂F

)
T

, (8)

where we have used Eq. (5) to get the last result.
To evaluate the variance of x, we take the derivative of x

with respect to the quantity which is conjugate to x in the entropy
function S(x,Eb) [26]. We note that

dS =−F
T

dx+
1
T

dEb, (9)

and, therefore,

〈∆x2〉=−kB

(
∂x

∂
(
−F

T

))
1
T

= kBT
(

∂x
∂F

)
T

. (10)

Equation (10) shows that the fluctuation of extension is sim-
ply the slope of the extension-force relation scaled by the ther-
mal energy kBT and further implies that (∂x/∂F)T is always
non-negative, which is in accordance with our intuition. Equa-
tion (10) does not imply, however, that the fluctuation scales lin-
early with temperature T because the derivative on the right-
hand-side itself is a function of the temperature. In fact, us-
ing the force-extension relation for a homogeneous worm-like
chain [11], one finds that the slope of the extension-force profile
depends linearly on T , and therefore the fluctuation 〈∆x2〉 scales
as T 2.

3.3 Average Energy and Its Variance
From the definition of the partition function (Eq. (4)), one

can easily show that the average bending energy is given by:

〈Eb〉=−
(

∂ logZ
∂β

)
F

+F〈x〉, (11)

where 〈x〉 is obtained in the previous subsection (Eq. (8)). The
variance of bending energy is related to the derivative of Eb with
respect to β at fixed ratio of F and T [26], and is given by:

〈∆E2
b 〉=−kB

(
∂Eb

∂( 1
T )

)
F/T

= kBT 2
(

∂Eb

∂T

)
F/T

. (12)

We note that the quantity
(

∂Eb
∂T

)
F/T

is not the heat capacity CV

or CP we are familiar with since it is evaluated at fixed F/T .
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Equation (12) is not convenient for computation since its in-
dependent variables are 1/T and F/T . By changing variables to
F and T , we obtain:

〈∆E2
b 〉= kBT

[
T
(

∂Eb

∂T

)
F

+F
(

∂Eb

∂F

)
T

]
, (13)

which is more useful for a fixed T,F ensemble. If we further
change the variables to x and S, we can express the fluctuation in
terms of the three material properties – heat capacity at constant
F , thermal expansion coefficient and isothermal extensibility:

〈∆E2
b 〉 = kBT 2 ·

[
T
(

∂S
∂T

)
F

]
+2kBT 2 ·F ·

[(
∂x
∂T

)
F

]
(14)

+kBF2T
[(

∂x
∂F

)
T

]
. (15)

3.4 Equipartition theorem in a fixed T,F ensemble
The equipartition theorem provides us another way of ana-

lyzing the energy, and it is also a criterion used in simulations to
determine whether equilibrium has been reached.

We first rewrite the partition function (Eq. (4)) as:

Z = exp(βFL)
∫ +π

−π

· · ·
∫ +π

−π

exp[−β(Eb−Fx+FL)]d~θ. (16)

Here, ~θ = [θ1,θ2, · · · ,θd ]T and d is the number of independent
segment angles in the chain. Note that d depends on the bound-
ary conditions, which in general, will pose a number of con-
straints on the segment angles. The term (Eb−Fx+FL) reaches
its minimum 0 when θi ≡ 0. Therefore, we rewrite it in a
quadratic form (~θT M∗~θ) and apply the Laplace method [28] to
Eq. (16) to get:

Z = exp(βFL)
∫ +∞

−∞

· · ·
∫ +∞

−∞

exp[−β(~θT M∗~θ)]d~θ. (17)

The matrix M is positive definite and symmetric; so we can di-
agonalize it and Eq. (17) now reads:

Z = eβFL
(∫ +∞

−∞

exp(−βρ
2
1Λ1)dρ1

)
· · ·
(∫ +∞

−∞

exp(−βρ
2
dΛd)dρd

)
,

(18)
where Λ =diag[Λ1, · · ·Λd ] is the diagonalized matrix and the in-
dependent variables have changed to ρi. If we denote

Zi =
∫ +∞

−∞

exp(−βρ
2
i Λi)dρi =

√
π

βΛi
, (19)

then

〈ρ2
i Λi〉=

∫ +∞

−∞
Λiρ

2
i exp(−βΛiρ

2
i )dρi∫ +∞

−∞
exp(−βΛiρ

2
i )dρi

=−∂ logZi

∂β
=

1
2β

=
1
2

kBT.

(20)
Finally, we arrive at:

〈Eb〉−F〈x〉+FL = 〈~θT M∗~θ〉=
d

∑
i=1
〈ρ2

i Λi〉=
d
2

kBT. (21)

We note that for an ensemble in which T and F are fixed, it is
not the averge energy Eb, but instead, 〈Eb〉−F〈x〉+ FL that is
equipartitioned.

3.5 Transverse Fluctuation of The Chain
The transverse fluctuation of a homogeneous chain under

different boundary conditions has been discussed in detail by
Purohit et al. [11]. In general, for a heterogeneous chain, this
fluctuation is given by:

〈y2
k〉=

〈(
k

∑
i=1

l sinθi

)2〉
≈ l2

k

∑
i, j=1
〈θi ·θ j〉, (22)

where

〈θi ·θ j〉=
1
Z

∫ +π

−π

· · ·
∫ +π

−π

(θi ·θ j)exp[−β(E−Fx)]d~θ. (23)

Note that such a quantity can be computed analytically (see [17]
for details), and thus the variance of the transverse deflections
can be computed.

4 MONTE CARLO SIMULATION
To verify the theoretical results stated above, we performed

MC simulations for four 250-segment heterogeneous chains
(segment length 0.1nm) with hinged-hinged boundary conditions
on the two ends. The four chains (we call them chain 1 to 4 be-
low) differ from each other in their bending moduli as a function
of position along the chain. Chain 1 has a uniform bending mod-
ulus of 2.0kBT ·nm; chain 2 has a bending modulus of 2.0kBT ·nm
for the first 75 segments and 0.4kBT ·nm for the rest of the seg-
ments. This chain has only two bending moduli and we call it
a special heterogeneous chain in the discussion below. Chain 3
has a bending modulus that is linearly increasing with the seg-
ment number i, with an average value of 2.0kBT ·nm and highest
value of 3.5kBT ·nm. Finally, the bending modulus of chain 4
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is a sine function along the chain, with the maximum and min-
imum values being 3.5kBT ·nm and 0.5kBT ·nm respectively. Of
these, chain 1 and chain 2 are relevant to real biomolecules, such
as, DNA and proteins. Chain 3 and chain 4 are both theoreti-
cal constructs. However, we note that chain 4 could be relevant
since any function K(s) (the s dependent bending modulus, in
this case) on the domain 0 ≤ s ≤ L can be approximated by a
Fourier series and chain 4 will then represent one term of such a
series.

For all the discussions related to the simulations below (ex-
cept for the force-extension profile in which the force is chang-
ing), a fixed force of 1000pN is applied at the end of the chain
along the direction of the end-to-end vector. The end-to-end dis-
tance of the chain is free to fluctuate and the temperature is set to
300K for all the simulations.

In accordance with the theory, the configuration of chain is
characterized by N segment angles θi. New conformations of the
chain are generated from the existing one by randomly varying
N/2 of the existing angles. The new conformation is accepted
with a probability according to the Metropolis criterion [29], and
the equipartition theorem (Eq. (21)) is applied to check whether
the chain is in equilibrium.

5 RESULTS
Fig. 2 shows the energy Eb (blue) as well as Eb−Fx + FL

(black) in the process of the MC simulation for chain 4 (the re-
sults for chain 1-3 are very similar and are not shown). The red
line in the figure is the equipartition value (N/2)kBT , whereas
the red dashed and red dot-dashed lines are the theoretical pre-
dictions for 〈Eb〉 and 〈Eb〉 ±

√
〈∆E2〉 (Eq. (11) and Eq. (13)).

The MC simulation result confirms that it is Eb−Fx+FL, rather
than the energy Eb itself, being equipartitioned. In addition, the
theory and the MC simuation show good agreement for the aver-
age energy (261.2 pN·nm versus 260.7 pN·nm) and its standard
deviation (26.5 pN·nm versus 26.6 pN·nm). We note that since
the equipartition theorem is satisfied and the system has reached
equilibrium, the analysis and the comparisons with the theoret-
ical results in the following discussions are valid. Fig. 3 shows
the theoretical and MC simluation results for the relative exten-
sion x/L and its standard deviation (L is the contour length of
the chain). Fig. 3A is for the special heterogeneous chain (chain
2) and Fig. 3B is for the chain with linearly increasing bend-
ing modulus (chain 3). This figure shows that our theory cor-
rectly predicts the average value and variance of the extension
for the heterogeneous chains (for detailed data, see the caption
of Fig. 3). In fact, our prediction shows that the standard devia-
tion for chain 2 is slightly larger than that of chain 3 and this is
confirmed by the simulation results.

To obtain the full force-extension relation, we varied the
force in the MC simulation to obtain the average extension under
different forces. The result for chain 4, whose bending modu-
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Figure 2. Energy Eb (blue), Eb−Fx + FL (black), equipartition value
(N/2)kBT (red) and theoretical prediction for the energy (red dashed
line) as well as its standard deviation (red dot-dashed lines) throughout
the MC simulation for a chain along which the bending modulus is a sine
function (chain 4). It is clear that it is not the energy itself being equipar-
titioned. This figure also shows a good match between our theoretical
prediction for the energy and the MC simuation results.
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Figure 3. Relative extension for chain 2 (A) and chain 3 (B). Data col-
lected from the MC simulation is shown in blue. The red lines are the
theoretical preditions for the average extension (Eq. (8)). The distance
between the red dot-dashed line and the red line is the theoretical predic-
tion for the standard deviation (Eq. (10)). For chain 2, the theoretical anal-
ysis and MC simulation show exactly the same result: 〈x/L〉 = 0.986,
σ = 1.3× 10−3. For chain 3, the theory and simulation again give the
same result for the average: 〈x/L〉= 0.990, while the theoretical calcu-
lation shows σ = 1.1×10−3 and the simulation shows σ = 1.0×10−3.

lus is changing periodically, is shown as red circles in Fig. 4. In
comparison, we plot our theoretical result (Eq. (8)) as a black
curve in the same figure. The figure shows that the theoretical
and the simulation results match with each other quite well. The
〈θ2

i 〉 profile is plotted in Fig. 5A, B, C and D for chain 1-4 respec-
tively. The red circles are the MC simulation results, which agree
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Figure 4. Force-extension relation for chain 4. We try forces ranging
from 50pN to 2500pN in the MC simulations and obtain the correspond-
ing average extension under these forces (red circles). In comparison,
we plot our theoretical prediction (Eq. (8)) as the black curve in the figure,
which as shown, passes through all the red circles.

with the theoretical predictions (black, Eq. (23)) for all the four
cases. When the chain is homogeneous, the 〈θ2

i 〉 profile is almost
flat in the middle of the chain, while if there is a jump in the bend-
ing modulus in the chain, as in chain 2, the 〈θ2

i 〉 profile shows a
corresponding discontinuity. For chain 2, the bending modulus
is larger in the first part of the chain, so it is expected that 〈θ2

i 〉
will be smaller. For chain 3, whose bending modulus increases
linearly, the 〈θ2

i 〉 profile does not decrease linearly, but in a man-
ner shown in Fig. 5C. Finally, the 〈θ2

i 〉 profile for chain 4 varies
periodically in accordance with its change in bending modulus
as shown in Fig. 5D. We have also calculated the variance of the
transverse displacement and the results are shown in Fig. 6A, B,
C and D, for chain 1-4 respectively. Interestingly, both simula-
tion and theoretical calculation show that the four profiles look
similar, meaning that the transverse displacement is not sensitive
to the distribution of bending modulus at high forces.

6 DISCUSSION AND CONCLUSION
The theory proposed in the paper is able to reproduce the

results of the Monte Carlo simulations: but, it is important to
ask how this depends on the parameters we have chosen. There
are three independent free parameters in our theory: the bend-
ing modulus Kb (can be a function of the arc length s), segment
length l and contour length L. To reduce the number of parame-
ters, one can let l→ 0 (with N→+∞, keeping L = Nl fixed), so
that the chain becomes a continuous rod and has only two param-
eters Kb and L that have clear corresponding physical meanings
for biopolymers. The question is how fast the results discussed in
this paper converge as l→ 0, or how small should l be, in order
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Figure 5. 〈θ2
i 〉 versus i, the segment number. Red circles: MC simu-

lation results, red: theoretical prediction using Eq. (23). A, B, C, D are
for a homogeneous chain, a special heterogeneous chain with only two
bending moduli, a chain with linearly increasing bending modulus and a
chain with sinusoidally varying bending modulus respectively.

that the chain be viewed as a continuous rod?
To address this problem, we try several different segment

lengths l and see how the following quantities converge as l ap-
proaches zero: (1) the force-extension profile, (2) the variance
of the extension under a constant force, (3) the fluctuation in the
angle θi, and (4) the transverse fluctuation of the chain. The pa-
rameters and the results are shown in Table. 1 and Fig. 7. For
simplicity, we discuss homogeneous chains here. Table. 1 shows
the average extensions for different choices of l under a constant
force of 500pN. To see how the result converges, we also con-
sider the limit case as l approaches 0 with L = Nl fixed. In this
limit, the homogeneous discrete chain becomes a continuous rod
and we use the following formula to compute its average exten-
sion [11]:

x = L− kBT
4

[
L√
KbF

coth
(

L
F
Kb

)
− 1

F

]
. (24)

The table shows that smaller segment length l leads to smaller
average extension 〈x〉, reflecting that the chain is more flexible,
which is expected. All the relative errors (with respect to the
average extension of the continuous rod) remain below 1% in
the cases studied. Fig. 7 plots the average extension, variance
in extension, as well as the fluctuation for the chains listed in
Table. 1. All the results show that a chain with ξp/l & 100 can
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Figure 6. 〈y2
i 〉 versus i, the segment number. Red: MC simulation re-

sults, black: theoretical predictions using Eq. (22). Figure A, B, C, and
D are for a homogeneous chain, a special heterogeneous chain with only
two bending moduli, a chain with linearly increasing bending modulus and
a chain whose bending modulus is a sine function respectively.

well represent a continuous rod (results converged). In particular,
for the transverse fluctuation, the results for all the chains, with
ξp/l ranging from 8 to 800, almost coincide. It should be noted
that although the chain can be viewed as a continuous rod only
when l is chosen to be small, the theory proposed in this paper is
valid regardless how small l is compared with ξp.

In conclusion, we have developed a computational tech-
nique to study the thermomechanics of a heterogeneous fluctu-
ating elastic rod. We first compute a partition function for the
corresponding statistical mechanical problem and use it to cal-
culate quantities such as the free energy, the average extension,
variance of transverse displacements, etc. We also compare our
results with those of Monte Carlo simulations and find excellent
agreement. The chief advantage of our computational method
is its speed and its ability to easily account for heterogeneity as
well as a variety of boundary conditions. In some cases, such as,
the special heterogeneous chain with only two bending moduli,
it is possible to derive analytical expressions from our theory that
can be fit to data from AFM experiments on protein oligomers.
In a subsequent publication we will show how to use our hetero-
geneous fluctuating rod model to interpret such experiments.

Table 1. Parameters of the chains and average extensions of the chains
under a fixed force of 500pN. Temperature T , bending modulus Kb and
contour length L are the same for all the chains. N is the number of seg-
ments in the chain, l is the segment length, ξp is the persistence length
for the 2D chain. The results show that chains with larger segment lengths
are less flexible because they have larger average extensions. The error
is computed relative to the average extension of the corresponding con-
tinuous rod in the third row (Eq. (24)). It remains under 1% for all the
chains studied.

T = 300 K, ξp = 4.0 nm (2D chain), L = 25 nm, F = 500pN

N l (nm) ξp/l 〈x〉 in nm Relative Error %

+∞ 0 +∞ 24.5999 0

5000 0.005 800 24.6000 0.0004

2500 0.01 400 24.6002 0.0012

500 0.05 80 24.6074 0.0305

250 0.1 40 24.6275 0.1122

125 0.2 20 24.6852 0.3472

100 0.25 16 24.7146 0.4663

50 0.5 8 24.8197 0.8935
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