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Abstract

Filaments under distributed loads are common in biological systems. In this paper,
we study the thermo-mechanical properties of an extensible thermally fluctuating elas-
tic filament under distributed forces. The ground state of the filament is solved first,
followed by an investigation of the thermal fluctuations around the ground state. We
first consider a special case where the tangential component of the distributed force 7
is uniform along the filament. For the force-extension relation in this case, we show
that the filament is equivalent to one under end-to-end applied force F' = 7Lg/2 where
Lyg is the length of the filament. To study the thermal fluctuations under more general
distributed loadings, the filament is first discretized into segments, and its energy is
approximated up to quadratic order. Then the partition function of the discretized
filament, or chain, is evaluated using multi-dimensional Gaussian integrals, from which
free energy and other properties of the filament are derived. We show that a filament
under distributed loads suffers larger thermal fluctuations than one with the end loads
of the same magnitude. We also show that our results for a discretized filament agree
with continuum theory for a continuous rod. Finally, we give some applications of our
ideas to the stretching and fluctuation of DNA in non-uniform microfluidic channels.



1 Introduction

The wormlike chain model, or the fluctuating elastic filament model, has been extensively
used to describe the mechanical behavior of semi-flexible polymers like DNA, actin and other
long macromolecules [1, 2, 3, 4]. In particular, its force-extension relation is usually fitted
to the experimental data of stretched polymers to extract their mechanical properties like
the bending and stretching moduli [2]. Some authors have also used the model to predict
the transverse fluctuations of the polymers and compare the results with experiments and
simulations [5, 6, 7]. To account for the new and detailed results obtained using sophis-
ticated experimental techniques, the fluctuating rod model is being continuously improved
and generalized. For example, as the length scale at which people probe the mechanics of
the polymers becomes shorter and shorter, boundary conditions and heterogeneity of the
filament can not be ignored. To account for these effects, we have recently generalized the
classical wormlike chain model to study polymers with heterogeneous mechanical properties
that are loaded under different boundary conditions [7].

Most of the studies so far consider only the behavior of a polymer under end-to-end
applied forces and torques. The reason for this may be that the majority of force-extension
measurements on macromolecules are carried out in optical tweezers, magnetic tweezers, or
atomic force microscopes (AFM), all of which apply forces at the end of the polymer chains.
But, there are many other cases where biological filaments are subjected to distributed loads.
For example, DNA in a nanofluidic or microfluidic channel is subjected to distributed drag
force applied by the surrounding fluid flow. Molecular motors exert point loads, which are
a special case of distributed loads, to the long actin filaments in cells and muscles. Also, a
uniformly charged polymer in a constant electric field behaves as if it is stretched by a force
that varies along the contour. The behavior of a filament under such distributed loads is not
well understood. In fact, if one simply uses an end-to-end force model to fit the extension
data for a piece of DNA subjected to uniform flow, the fitted drag coefficient is much lower
than the true measured value [8]. A few groups have tried to tackle this problem theoretically
in recent years [11, 12, 13]. Some of these works relied on phenomenological arguments [11],
while some solved the problem in the limit of a weak force field [12].

In this paper, we first calculate analytically the force-extension relation for a continuous
filament under uniform distributed load. We show using Fourier series that under uniform
tangential force per unit reference length 7 along the filament, it suffers the same extension
as one under end-to-end force of magnitude F' = 7Lq/2, where Ly is the contour length.
However, a Fourier analysis of this kind is easy to do only when 7 is uniform. To consider
more general loadings, we use our theoretical framework [7] developed earlier to investigate
the thermo-mechanical properties of a discretized filament. In particular, we first find the
ground state, or the minimum energy state, for a filament under distributed loads. Then the
thermal fluctuation around this ground state is studied using a statistical mechanical ap-
proach. In particular, the partition function is obtained analytically using multi-dimensional
Gaussian integrals. Once we get the partition function, the free energy of the system is de-
rived immediately, and the thermo-mechanical properties of the system are calculated by
differentiating the free energy. This method is capable of reproducing the classical wormlike
chain results [7]. Moreover, because of the discretization, it can easily deal with filaments
with heterogeneous mechanical properties. Here, we apply this framework to study the



fluctuation of a filament under distributed loads.

2 Theory
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Figure 1: A fluctuating elastic filament (extensible wormlike chain) under distributed forces.
The origin of the x — y coordinate system is set at the head of the filament, which is hinged.
The other end of the filament is constrained to move only in the x direction. One possible
deformed configuration of the filament is shown in dashed line.

2.1 Theory for a continuous elastic filament

Consider a semi-flexible polymer, or fluctuating elastic filament with stretching modulus K
and bending modulus Kj. One end of the filament is hinged at the origin of the x — y
coordinate system shown in Fig. 1, while the other end is constrained to move only in the
a-direction. The reference configuration of the filament (the state under zero loads at zero
temperature) is straight, lying on the x axis. The coordinate of its center line is [z, y] = [s¢, 0].
Here s is the reference arc length with sy € [0, Ly], and Lo being the undeformed contour
length. Under distributed tangential force 7(s¢) per unit reference length and distributed
normal force g(sg) per unit reference length, the filament deforms into [x,y] = [so + u, w],
where u(sg) and w(sg) are the tangential and normal displacements respectively. Axial strain
develops in the deformed filament and it can be expressed in terms of the displacements u(sg)
and w(sg) assuming moderate rotations as:

(1)

€(s0) =

ds—dsy Ou 1 (0w 2
Tds ”a_s()+§<a_30) |
Here ds is the infinitesimal deformed arc length, and we keep terms up to the order of
O(u,w?) in the approximation.

The energy of the deformed filament, as a sum of its stretching, bending, and potential
energies, is:

Lo fr Lo 15, /9%w) 2 Lo Lo
E—/ —s€2d80+/ - —Z) dso—/ Tudso—/ qw dso, (2)

where K, and K, are the stretching and bending moduli of the filament. They are not
necessarily constants and can be functions of the arc length sg in the reference configuration.

4



As discussed by Odijk [3], rather than express the energies in terms of the displacements u(sy)
and w(sp), it is more convenient to use €(sg) and w(sg) as independent variables, because
the total energy can be decoupled using these two variables. This is true even when the
filament is under distributed loads. Using Eq. 1, u(sp) in Eq. 2 can be eliminated and the
energy can be grouped into two decoupled terms — one involving €(sg) only, and the other
involving w(sg) only:

E=FE+E,, (3)

where the expressions for the two energy terms are:

Lo K 50
E. = / {7362 —T/ edso} dso, (4)
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The minimum energy configuration can be evaluated by setting the variations 0 F, = 0
and 0E,, = 0. The former variation gives the strain of the minimum energy configuration:

Ey

1 [lo
Emin(so) = ?/ 7'(50) dso, (6)

while the latter variation yields a 4th order ODE for the transverse displacement wyin(So)
of the minimum energy configuration:

Lo !
(Kyutly,)" — (w;m gl d) _q=0, )
80

with hinged-hinged boundary conditions w(0) = w”(0) = w(Lg) = w”(Ly) = 0. Here we
use ' to denote the derivative d/dsy. We note again that in deriving these results, we do
not assume the moduli K, and K, to be uniform. They can vary along the filament. By
specifying the distributed loads 7(so) and ¢(sg), we can solve Eq. 6 and Eq. 7 to get €y, and
Win respectively. Then by using Eq. 1, we can obtain the longitudinal displacement .
Thus, the deformed configuration of the filament, without taking thermal fluctuations into
account, is known. This minimum energy configuration is the ground state of the filament
around which the system is fluctuating.

While the partition function and fluctuations of a discrete semi-flexible chain can be
evaluated under rather general loading conditions, which we will discuss in the next section,
it is difficult to compute the same quantities analytically for a continuous filament unless
the distributed load is uniform. Here we briefly discuss how one can evaluate the average
end-to-end extension of a continuous filament under constant 7, by using a Taylor expansion
of the path integral [9], and the Fourier series method [2, 10] respectively for the small and
large 7 limits. For simplicity, we also set the normal distributed force ¢ = 0 for now.

In the small 7 limit, the potential energy term involving 7 in the Boltzmann factor can
be expanded using exp(z) &~ 1+ z. After carrying out this exercise the Boltzmann weighted



average end-to-end extension reads:

(Az) = %/J;(LO)-exp (_E”Esk;;f;mo)pf (8)

_ b </Osx(so)-a:(L0) dso>0+0(72), ()

where Z is the partition function, § = 1/kgT, E, and Ej are the bending and stretching
energies respectively. The key step here is that, after the expansion, the potential energy
part in the Boltzmann factor is factored out and so the average (-)o in Eq. 9 is evaluated in
a 7 = 0 ensemble.

Now, the problem in the small 7 limit is how to do the average in a 7 = 0 ensemble. To
solve this problem, we recall that for a wormlike chain in a 7 = 0 ensemble, the correlation
of its tangent angle 6 satisfies: (0(s) - 0(s')) = exp (—|s — §'|/&,) [9], which can be used to
evaluate ( [ 2(so) - 2(Lo) dso), in Eq. 9, given z(so) = [, cos fdsy. Here &, is the persistence
length of the wormlike chain. The calculation is tedious but the final result for (Az) turns
out to be linear, as expected, in the small 7 limit:

2£ LO g _ TLO TL2
Ay = 2o |0 &y —nogey | Tho 2 0
(Az) DkpT Lo (1-e )5t 2K, (10)

with D being the dimension of space, i.e, D = 2,3 for a 2D and 3D chain respectively. The
last term in the above equation is the contribution of the pure stretching term in the energy.
When Ly >> &, the force-extension relation is simply:

. 2§pL0 TLO TL%

<Ax>_Dk:BT 2 oK, (11)

One may recognize that the force-extension relation shown here for a filament under small
uniform 7 is in exactly the same form as the relation for a filament under small end-to-end
force F', with F' being replaced by 7Ly/2. Therefore, we conclude that, as far as the force-
extension relation is concerned, at small loads a uniformly distributed tangential force is
equivalent to an end-to-end force Fog = 7Lo/2.

In the large 7 limit, on the other hand, where the approximation of the tangent angle
0 << 1 holds, one can use the Fourier series method to tackle the problem. As usual, we
expand the tangent angle § = dw/0dsy in a Fourier cosine series:

0(s0) — io 0 08 (27?‘5’0) | (12)

0

n=1

There is no ag term here because the hinged-hinged boundary condition requires fOLO Odsg =
0. Plugging the Fourier series into Eq. 5, the energy of the filament contributed by w

becomes: .
X (Kyr*n? 7L
E :§ 2 1
w ( 7 + 3 a, (13)
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The equipartition theorem of statistical mechanics states that each quadratic mode should
have an average energy equal to kg7'/2, which leads to:
kgT
(an) = - : (14)
2(

Kpm2n? TL?
L + 8

Using Parseval’s theorem, we obtain the expression for fOLO (6%)dsq from Eq. 14, which finally
leads to the force-extension relation of a chain under uniform 7:

k BT T LO 1 2K, b T L(z)

— —————=|coth | Loy/ — | — —1/— | + : 15
" 4/KyrLo2 ( ’ 2Kb> Lo\ 7Lo| " 2K, 1)
Here again the last term is the independent contribution from the stretching energy FE..
Once again, we see that the force-extension relation, in the large 7 limit, has the same form
as a wormlike chain under a large effective end-to-end force Fog = 7Ly/2. Hence, we have

shown that this equivalent relation holds for both small and large 7. Following Marko and
Siggia [2], the force-extension relation for a filament under uniform 7 can be written as:

TLgp_1(1 x>_2 1 o 7L

2%kpT 4\ Lo

(Ax) =1L

1T R

(16)

From here on, we will focus on the large 7 limit only because the filament under small loads
behaves as a linear entropic spring.

We saw in the above discussion that the Fourier series method works only when 7 is a
constant. It is possible to deal with non-uniform distributed force if one ignores the boundary
conditions and applies the wormlike-chain constitutive law to an infinitesimal segment on
the continuous filament, and then integrates to recover the end-to-end extension of the entire
filament. In particular, let f(so) be the internal force along the filament in the tangential
direction. Balance of forces on an infinitesimal segment dsy reads (Fig. 2A):

f(so+dso) — f(so) +1dsy =0, (17)
which leads to 0f/0sy = —7, whose solution with boundary condition f(Ly) = 0 is:

F(s0) = / " (s0) dso. (18)

S0

This tells us that, when 7 > 0, the internal stress decreases from the fixed end to the other

end, which makes sense because 7 is positive when pointing away from the fixed end. On

the other hand, the stretch A(sg) = €(sg) + 1 for a 2D extensible wormlike chain is [3]:
A=—=1

f 1 Ky f

Plugging Eq. 18 into Eq. 19, eliminating f and solving the ODE for x(sg), we can obtain
Ax = x(Ly) — x(0). Note that this procedure works regardless of whether 7 is a constant.
In particular, if 7 is uniform along the length of the filament, the result is:

kgT sinh w L3
+
27’L0 2K5 ’

8x k)BT

<AZ’> = LO —

log { (20)

w
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where w = L/TLo/K,. Eq. 20 is not exactly the same as Eq. 15. This is because to derive
Eq. 20, we have ignored the boundary condition that leads to the force-extension relation
of a wormlike chain, and used it as the constitutive relation for an infinitesimal segment.
However, we will show later (Fig. 2B) that the force-extension curves from the two equations
are close though not exactly the same.

The advantage of analyzing a continuous filament as we have done above is that we
get analytic closed form results. However, as we have already seen, the analysis is either
limited to special cases or relies on some additional assumptions that are not easy to verify.
To get the exact thermal fluctuations of a filament under general distributed loads, it is
convenient to first discretize it into segments. The partition function of the system, which
is a path integral for a continuous filament, becomes a multi-dimensional Gaussian integral
for a discretized filament or chain, and can be evaluated easily [14, 7]. In the limit where
the discretized segment length [j — 0, the number of discretized segments N — 400, while
Ly = Nly is kept constant, the discrete chain becomes the desired continuous filament.
Below, we discuss a discrete fluctuating filament under distributed forces.

2.2 Energy of a discretized elastic filament or semi-flexible chain

We use the following notations for a discrete chain. Kj;, K;; are the stretching and bending
moduli of segment i of the chain. They can be different for different i, and i € [1, N].
The reference coordinate of the ith node of the chain is (z;, y;) = (ilo,0), so that the
chain is straight lying on the z axis. Under distributed loads 7; and ¢; per unit length
on the ith segment, the node moves to (z;, y;) = (ilp + u;, w;), with (u;, w;) being the
nodal displacements. The axial strain for each segment is represented by the vector €7 =
€1, €2, ,€en]|. Furthermore, we define the discrete version of the tangent angle 6(sy) =
dw/dsq as follows: 0; = (w; — w;_1) /lop. We wish to write the energy of the discrete chain in
terms of the strains € and the angles 6 = [0y, - - - 6y].

The discretized version of the energies (Eq. 4 and 5) are quadratic expressions which can
be written compactly in matrix form. In particular, the discretized version of the energy

term involving € is (Eq. 4):

N i
Ksi ZO
E, = [ 5 6? — Tilg Z ej] , (21)

i—1 j=1

and it can be written compactly as:
1 —
Eo=5é" [KJé+ BT -¢ (22)

with the N x N stiffness matrix being [KJ, i = Kiilodij, and the ith component of the vector

R. being —I2 Z;V:z 7;. Similarly, the energy term involving only w (Eq. 5) can be written in

terms of 0:
sz’ Tilz : :
E, = o (0; — 0;_1)* + 20 >0 —aly ) 0 (23)
i—1 j=1 j=1
1- Lo
= §9T- [K9}6’+R9T-6’. (24)



We note that the stiffness matrix [Ky] is a sparse tridiagonal matrix.
Finally, to impose the boundary condition and to constrain the end of the chain such
that w(Lg) = 0, we add a penalty energy:

E, = [; [w(Lo) — 0] (Zelo) (25)

—

_ %57“ K, (26)

Eq. 24 and Eq. 26 can be combined, and therefore, we can write the total energy of the
chain £ = E, + E,, + E, as:

M

1 . 1. > sp o
E = {-gT [KJe+ R *} + {§0T : [Kep]0+R9T-0}, (27)

where [Ky,| = [Kg| + [K,].
As for a continuous filament, the ground state of the discrete chain is computed first by
solving OF /0¢; = 0 and OE/00; = 0. These result in two linear sets of equations:

[Ke] g‘min = _é€7 [Kep] emm == _éey (28)

which are solved to determine the ground state around which the chain fluctuates.

We next consider the thermal fluctuation around the ground state. We define the devi-
ations from the ground state as A€ = € — €yin, A =6 —0.,,. Then the energy (Eq. 27) in
terms of these deviation variables is simply:

1 1, - -
E = Euin + §A€T - [K] A€+ EAHT - [Kg,] AG, (29)

where E,;, is the ground state energy. Note that the linear terms disappear when the energy
is expressed in terms of the deviation variables.

2.3 Partition function and free energy

For a semi-flexible chain, the elastic and potential energies are usually comparable to the
thermal energy kT at room temperature, where kp is the Boltzmann constant and 7" is the
temperature in Kelvin, set to be 300K in this study. Therefore, the chain does not stay in the
ground state forever. Instead, it fluctuates and samples different configurations, labelled as
v below, around the ground state with Boltzmann statistics: P, ~ exp(—FE,/kgT). Here P,
is the probability that a configuration v with energy FE, is sampled. The thermo-mechanical
behavior of this fluctuating elastic chain can be evaluated using statistical mechanics by
computing the partition function Z, which is the sum of Boltzmann factors over all the
allowed configurations. In our case, the energy of the system has been written in a quadratic
matrix form (Eq. 29) and the partition function is:

Z7 = /m /+Ooexp< - T) d (A8) d(A5> (30)
_ e-wm.wizfﬁg Vg;k;g;f | 61
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where § = 1/kgT and K, and Ky, are N x N matrices. From the partition function Z, we
get the free energy G of the system:

G = —kgTlogZ (32)
kBT kBT
= B+ 5 log det [K] + = log det [Kg,] — kT N log(2rkpT).  (33)

We note that G is the Gibbs free energy because the partition function (Eq. 31) is evaluated
for a fixed temperature, fixed loads ensemble. Therefore, we have:

N
dG = =S -dT =Y "u;-d(7ily) — Z w; - d (glo) . (34)
=1

By differentiating the free energy we can get the thermo-mechanical properties, like the
force-extension relation, of the chain.

2.4 Force-extension relation

Noticing that 7yly and ux (distributed force on the last segment and longitudinal displace-
ment of the last node) is a conjugate pair with respect to the energy (Eq. 34), we have:

0G
6 (TNZ()) '

(1) = - (3)

In this paper, (-) denotes the usual ensemble average of all sampled configurations weighted
by the Boltzmann factor. The average end-to-end extension of the chain is (Ax) = (x(Lg) —
x(0)) = (x(Lg)) = Lo + (un), which turns out to be:
T

(Az) = AZpin — k2B_lO . 8?1\7 (log det [Kg,)) - (36)
where Az, is the extension of the chain in the ground state without thermal fluctuation.
Here we have used the facts that Ly — 0Fwyin/0 (lo7Tn) = Axmin, and also that the stiffness
matrix [K.| does not depend on the distributed loads 7. We note that the last term in Eq. 36,
which is proportional to the thermal energy kgT', is the contribution of the average extension
from thermal fluctuation. When 7' = 0 and there is no thermal fluctuation, (Ax) = Az,
as it should be, because the only configuration sampled is the minimum energy state.

2.5 Thermal fluctuation around the ground state

For the quantities that do not have clear conjugate pairs, their fluctuations can be evaluated
directly from a Boltzmann weighted sum. The key is to use the following multi-dimensional
Gaussian integral formula [16]:

ﬁ 0 (T A dF (S e 00
(f(@) = fexp(—% T [A]f) 07 = exp <§Z:1[A]zg (9_3513_:L‘J> f(Z)

=



Here f(Z) can be some general polynomial functions which are weighted by the Boltzmann
factor in the numerator. The denominator on the left-hand-side is just the partition function,
which serves as the normalization factor to the weighted average. On the right-hand-side, the
exponential operating on the differential operator is understood as a power series: exp(a) =
l+a+a?/2+---.

Using Eq. 37, the thermal fluctuation in strain can be evaluated. In particular, for
the strain e, the mean deviation and mean square deviation from the ground state are
respectively:

_ (SZkBT
(Aei-Aej) = kpT K = K (39)
Similarly, the fluctuation in the angles 0 is:
(20) = 0 (40)
(A6; - AG;) = kpT Koyl (41)

We see that the mean square thermal fluctuations around the ground state increase linearly
as we increase the temperature, and decrease as the we increase the mechanical stiffness of
the system, in agreement with intuition.

In experiments one typically measures the fluctuations in displacements. These can be
calculated directly from Eq. 37, or alternatively, using Eq. 39 and 41. In particular, the
fluctuation in the transverse displacement is:

i

(Aw)) = 1oy (6m) =0, (42)

m=1
i J

(Aw; - Awy) = 15> ) (A6, - AG,). (43)
m=1 n=1

Similarly, the fluctuation in displacement u can be obtained by using the fourth moment of
the multi-dimensional Gaussian distribution:

(Au;) = —%0 (02), (44)
+§ l Z ((A82,) (AG2) + 2(A0,, - AO,)? + 40,0, (NG, - A,,)) . (46)

m=1 n=1

Here 6 is the angle for the ground state configuration. We note that while (Aw; - Aw;) is
the fluctuation around the ground state, (Awu; - Au;) is not; because (Aw;) = 0 and (Aw;) is
not.
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Figure 2: Comparison between the continuous models and the discrete model. (A) Force
balance for an infinitesimal segment of a continuous rod. (B) Comparison of the results for a
continuous rod (Black curve: Fourier series method and Eq. 15; Blue (almost overlaps with
the black curve): method using force balance on infinitesimal segment and Eq. 20) and a
discrete chain (red circles). The filament is under constant 7 along the arc length so that
Fourier series method can be applied. Here a 100nm chain is discretized into 1000 segments.
The results match quite well.

3 Results

We first show in Fig. 2 that the theories for a continuous rod and the theory for a discrete
chain yield the same result when 7 is a constant along the arc length. For large 7, the
thermal fluctuations are already stretched out, so that the force-extension curve is almost
linear, due to elastic stretching.

We next focus on the results from the discrete model and compare the behavior of a
chain under distributed force and end-to-end force. Average end-to-end extension of the
semi-flexible chain (Ax) versus 7 is plotted again in Fig. 3 in red solid line. If we turn off the
thermal fluctuations, the chain behaves just as a linear elastic rod and the force-extension
relation is shown in red dashed line in the same figure. To make a comparison, we apply
a point force F' at the end of the chain. Under the same net force: F = 7Lg, the chain
under end-to-end force suffers larger extension (Fig. 3 blue) than the one under distributed
load. This is in agreement with result from the Fourier series method for a continuous rod,
which tells us the effective end-to-end force for a distributed load is 7Ly /2, instead of 7Lg.
Another way to understand this result is by doing force balance on the chain. Under end-
to-end applied force, the stress along the chain is uniform: o = F/A = 7Ly/A, where A
is the cross sectional area of the chain. Under distributed force, on the other hand, the
stress along the chain varies linearly o = 7(Lg — sg)/A, and it is smaller than the stress in
the previous case everywhere except at s = 0. Therefore, it is not surprising that a chain
under end-to-end force suffers larger extension. The fact that uniform distributed 7 causes
less internal tension in the chain than the end-to-end force F' = 7L is also reflected in the
transverse fluctuation profile (Fig. 4). Because internal tension stiffens the filament, a chain
with less internal tension is expected to have larger thermal fluctuation. Indeed, our result
shows that the magnitude of transverse fluctuation is significantly larger for a chain under
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Figure 3: Force-extension relations for a wormlike chain (1: red solid line) under uniform
distributed load 7 with thermal fluctuations, (2: red dashed line) under uniform distributed
load 7 without thermal fluctuations, (3: blue solid line) under end-to-end force F' = 7Lg
with thermal fluctuations, and (4: blue dashed line) under end-to-end force without thermal
fluctuations. The reference contour length of the chain is Ly = 50nm. The persistence length
is bnm. The segment length is 0.5nm with N = 100 segments.

uniform distributed force. Moreover, unlike the end-to-end force case, internal tension is
not a constant along the arc length when the chain is subjected to uniform 7; therefore, the
transverse fluctuation profile is not symmetric. The end of the chain with less internal force
has more fluctuations, as shown in Fig. 4.

Next, as a practical application of our methods, we analyze the stretching and fluctuations
of a piece of DNA in a linear microfluidic channel and a constant-strain-rate channel, both of
which have been fabricated in experiments [15]. For a linear channel, the channel width varies
as w(z) = ax + b, where a and b are two constants. On the other hand, a constant-strain-
rate channel has a shape w(z) = a/(1 + x/b) (Fig. 5A). Since the fluid velocity is inversely
proportional to the channel width w, a polymer confined in the channel experiences drag
force 7 = dyw(x) that varies along its arc length. Here d; is the drag coefficient per unit
length and it is set to dy = 1.2pN - ms - um~2 [15] in our calculation. Fig. 5B and C show
respectively the extension and fluctuations of the polymer in fluid flow. With the same
entrance width (width on the leftmost side) and exit width (width on the rightmost side),
a constant-strain-rate channel is narrower in most of its middle region compared to a linear
channel. Therefore, a polymer suffers larger drag force and less transverse fluctuations in
a constant-strain-rate channel. This leads to a larger end-to-end extension. In Fig. 5C, we
also compare the fluctuations of a hinged-hinged polymer (dashed line) and a hinged-free
polymer, whose right end is not constrained on the x axis. The fluctuation for the hinged-free
polymer is larger than that for the hinged-hinged polymer, as expected. In this study, we
neglect the entropic force due to the non-uniform channel width.

Finally, in Fig. 6, we show the transverse fluctuation of a chain subjected to uniform 7
plus a point load in the middle. The figure shows that the point load stretches the left half
of the chain and reduces the fluctuation there.
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Figure 4: Transverse fluctuation of a chain under uniform distributed 7 = 5pN/nm (red),
and under end-to-end applied force F' = 7Lg (blue). Under distributed force, the chain has
larger thermal fluctuations with an asymmetric fluctuation profile.

4 Conclusions

We analyze the thermoelastic behavior of a fluctuating elastic filament under distributed
loads in this paper. We obtain, by means of a Fourier analysis on a continuous filament,
analytic results when the polymer is under uniform distributed load. We find that a fila-
ment under uniform distributed load 7 per unit reference length can be viewed as one under
an effective end-to-end force of 7Ly/2 if we are only interested in the force-extension re-
lation. However, to get the fluctuations of a filament under general loadings, we need to
first discretize the filament and approximate the path integral for the partition function as
a multi-dimensional Gaussian integral. Once the partition function is calculated, all other
quantities can be obtained by differentiation using standard thermodynamic techniques. As
an illustration, we apply our methods to DNA under non-uniform distributed loads as is the
case for DNA stretched by flow fields in microfluidic channels.

Acknowledgements
We acknowledge partial support from an NSF CAREER award to PKP through grant num-
ber NSF CMMI-0953548.

References

[1] Bustamante C, Marko JF, Siggia ED, Smith S. 1994. Entropic elasticity of lambda-
phage DINA. Science 265:1599-1600.

[2] Marko JF, Siggia ED. 1995. Stretching DNA. Macromolecules 28:8759-8770.

[3] Odijk T. 1995. Stiff chains and filaments under tension. Macromolecules. 28:7016-
7018.

14



.
. 4
.
9 '
' ’ v
% : : ! 0 h . !
%4 4.6 48 5 0 02 04 06 08 1
constant-strain-rate channel <Ax> (um) 5,11,

Figure 5: DNA in non-uniform microfluidic channels. (A) A piece of DNA confined in a
linear channel and a constant-strain rate channel. Both channel types have been fabricated
in experiments [15]. (B) The velocity in the non-uniform channel is inversely proportional
to the channel width. Therefore, given the velocity vy at the exit (rightmost) end, the entire
velocity profile inside the channel is known, which then leads to the drag force 7 = d;v along
the polymer. Here the end-to-end extension of the polymer is plotted against vy. As we
increase the flow velocity, the strain along polymer increases, resulting in a larger end-to-end
extension. Red: DNA in a linear channel. Blue: DNA in a constant-strain-rate channel.
Dashed/Solid lines: extension with/without the contribution of thermal fluctuations. (C)
Transverse fluctuations along the polymer arc length. Red and blue for DNA in a linear and
a constant-strain-rate channel respectively. Solid line is for a DNA with one end hinged and
the other end free to fluctuate. Dashed line is for the same DNA with both ends hinged on
the x aixs.

[4] Nelson P. 2008. Biological Physics: Energy, Information, Life. updated first ed.
W. H. Freeman and Company, New York.

[5] Purohit PK, Arsenault ME, Goldman Y, Bau HH. 2008. The mechanics of short
rod-like molecules in tension. Int. J. Non-linear Mech. 43(10):1056-1063.

[6] Arsenault ME, Purohit PK, Goldman YE, Shuman H, Bau HH. 2010. Comparison
of brownian-dynamics-based estimates of polymer tension with direct force
measurements. Phys. Rev. E 82:051923.

[7] SuT, Purohit, PK. 2010. Thermomechanics of a heterogeneous fluctuating chain
J. Mech. Phys. Solids. 58:164-186.

[8] Larson RG, Perkins TT, Smith DE, Chu S. 1996. Hydrodynamics of a DNA
molecule in a flow field. Phys. Rev. E 55:1794-1797.

[9] Phillips R. 2008. Physical Biology of the Cell. Garland Science.

[10] Wang J, Gao H. 2007. Stretching a stiff polymer in a tube. J. Mater. Sci. 42:8838-
8843.

[11] Maier B, Seifert U, Rédler JO. 2002. Elastic response of DNA to external electric
fields in two dimensions. Europhysics Letters 60:622-628.

15



-

(Aw)* (nm?)
o o
> &

o
~

o
N

0 0.2 0.4 0.6 0.8 1
s /L

0 0
Figure 6: Transverse fluctuation of a chain under uniform distributed 7 plus a point load F’
in the middle. The left half of the chain has less fluctuation because the stretching of the
point loads reduces the thermal fluctuations.

[12] Benetatos P, Frey E. 2004. Linear response of a grafted semiflexible polymer to
a uniform force field. Phys. Rev. E 70, 051806.

[13] Hori Y, Prasad A, Kondev J. 2007. Stretching short biopolymers by fields and
forces. Phys. Rev. E 75, 041904.

[14] Zhang YL, Crothers DM. 2003. Statistical mechanics of sequence-dependent cir-
cular DNA and its application for DNA cyclization. Biophys. J. 84:136-153.

[15] Larson JW, Yantz GR, Zhong Q, Charnas R, D’Antoni CM, Gallo MV, Gillis KA,
Neely LA, Phillips KM, Wong GG, Gullans SR, Gilmanshin R. 2006. Single DNA

molecule stretching in sudden mixed shear and elongational microflows. Lab
Chip. 6:1187-1199.

[16] Chirikjian GS. 2009. Stochastic models, information theory, and Lie groups.
Birkhauser.

16



