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Abstract

We measure the thermal fluctuation of the internal segments of a piece of DNA confined in a nanochannel
about 50−100nm wide. This local thermodynamic property is key to accurate measurement of distances
in genomic analysis. For DNA in ∼100nm channels, we observe a critical length scale ∼10µm for the
mean extension of internal segments, below which the de Gennes’ theory describes the fluctuations with
no fitting parameters, and above which the fluctuation data falls into Odijk’s deflection theory regime.
By analyzing the probability distributions of the extensions of the internal segments, we infer that folded
structures of length 150−250nm, separated by ∼10µm exist in the confined DNA during the transition
between the two regimes. For ∼50nm channels we find that the fluctuation is significantly reduced since
the Odijk regime appears earlier. This is critical for genomic analysis. We further propose a more
detailed theory based on small fluctuations and incorporating the effects of confinement to explicitly
calculate the statistical properties of the internal fluctuations. Our theory is applicable to polymers with
heterogeneous mechanical properties confined in non-uniform channels. We show that existing theories
for the end-to-end extension/fluctuation of polymers can be used to study the internal fluctuations only
when the contour length of the polymer is many times larger than its persistence length. Finally, our
results suggest that introducing nicks in the DNA will not change its fluctuation behavior when the nick
density is below 1 nick per kbp DNA.

Introduction

Stretching DNA in nanochannels has emerged as an important technique for separating DNA, perform-
ing genome mapping, and also studying repressor-DNA interactions, etc [1–3]. On the other hand, DNA
confined in nanochannels also serves as a simplified model for studying single polymer behavior in con-
centrated polymeric solutions and melts [4, 5]. For these reasons, mechanical behaviors of DNA inside
nanochannels have attracted a long-standing interest. The two most well-known scaling theories in this
field are those described by de Gennes [5] and by Odijk [6]. de Gennes’ blob theory, which was later
generalized by Schaefer and Pincus [7], assumes that the channel width D is much greater than the
persistence length ξp of the polymer. It models the moderately confined DNA as a chain of spherical
blobs inside a cylindrical channel and gives the following expression for the end-to-end extension 〈x〉 of
the polymer [5, 7, 8]:

〈x〉
L

= A

(
w ξp
D2

)1/3

, (1)

where L,w are the contour length and effective molecule width of the DNA respectively. The prefactor
A is found to be close to unity [9]. Odijk’s theory, on the other hand, works for DNA under strong
confinement in which D << ξp. In this regime, the polymer is deflected back and forth by the channel
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Figure 1. Measurement of the fluctuations of the internal segments of confined DNA. (A)
Image of a dye label (Alexa-546) on a DNA backbone (backbone not shown) with 80ms exposure time.
(B) 2D surface plot of the raw image (intensity of the dye vs. the X Y coordinates). (C) Image of one
T4 DNA fragment (∼ 36 microns) with backbone (red) and internal labels (green). (D) Time series (8
seconds) of the DNA showing the fluctuations of backbone and internal labels. In (D), the red trace is
the backbone and the green traces are the trajectories of internal dye labels.

walls and the end-to-end extension is predicted to be [6]:

〈x〉
L
≈ 1− α◦

(
D

ξp

)2/3

, (2)

where α◦ = 0.17 is a constant whose value was determined recently by simulations [10]. Aside from the
scaling theories, Wang and Gao [11] showed that the end-to-end extension of a strongly confined polymer
in the Odijk regime can be derived analytically by modeling the confinement effect as a quadratic potential
U = 1/2 Ξ|~r⊥|2. Here Ξ is the stiffness of the effective quadratic potential, which depends on the channel
width D, and ~r⊥ is the transverse displacement of the polymer from the axis of the nanochannel. Wang
and Gao considered a confined chain under end-to-end applied force F and obtained an expression for
the total extension 〈x〉 as a function of Ξ and F . We set F = 0pN, substitute the relation between Ξ and
D (see Supporting Information) into their expression, and find:

〈x〉
L

= 1− 1

5

(
D

ξp

)2/3

, (3)

which is the same as Eq.2, confirming the scaling theory of Odijk, and at the same time validating the
use of quadratic confinement potentials in the strongly confined regime.

Both de Gennes’ and Odijk’s theories have been tested by experiments as well as simulations over the
years [10, 12–16]. However, most of the studies so far have focused on the properties of the entire DNA,
for example, the end-to-end extension 〈x〉, the corresponding end-to-end fluctuation σx, and also the
relaxation time τ of the entire DNA etc. Local properties of a confined polymer, on the other hand, like
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Figure 2. Internal fluctuation of λ DNA confined in a 80nm×130nm channel. (A) The
measured rms fluctuation σ versus mean extension 〈x〉 for the internal segments of the DNA agrees very
well with de Genne’s theory with no fitting parameters (red curve, Eq.4). (B) A linear σ2 − 〈x〉 profile
confirms the 0.5 power law of σ ∼ 〈x〉1/2 of the de Gennes’ theory. Note, however, that here we have
maximum 〈x〉 . 10µm. As shown in a subsequent figure (Fig.4) and in the text, for longer polymer with
a maximum 〈x〉 & 10µm, the data deviates significantly from de Gennes’ theory and even the 0.5 power
law is lost.

the extension and fluctuation of its internal segments, are rarely investigated. In fact, local conformation
and alignment of the confined DNA have been probed only recently [17,18]. It is also not well understood
whether the existing theories developed for an entire piece of DNA can be applied locally for its internal
segments. These are important issues because, if one considers the case of genome mapping, it is the
local fluctuation of the internal segments that determines the resolution of the mapping.

In this paper, we measure the longitudinal internal fluctuation of a piece of DNA confined in rectangu-
lar channels about 50−100nm wide. We show that neither de Gennes’ blob theory nor Odijk’s deflection
theory can completely describe the measured internal fluctuation versus mean extension profile. A critical
length scale of ∼10µm for the mean extension is observed, below which the internal DNA segments are
more ‘blob’-like, and above which Odijk’s deflection theory works better. From the histograms of exten-
sion of the internal segments, we further infer that there exist folded structures of length 150−250nm
separated by ∼10µm along the backbone of the DNA during the transition between the two regimes. To
justify the use of existing theories for studying the internal fluctuation, we focus on the Odijk regime
and propose a method to explicitly calculate the internal fluctuation of a strongly confined DNA. We
model the confinement effects by quadratic potentials and show that one can use the existing theories for
end-to-end extension/fluctuation to describe the internal segments of the DNA when the contour length
of the polymer is many times larger than its persistence length. Our model, which views the confined
DNA as a discrete wormlike chain, can describe the fluctuations of heterogeneous polymers confined in
non-uniform channels. It is also capable of capturing effects, like the influence of nicking sites on the
DNA fluctuation profiles, which we will discuss at the end of the paper.

Results and Discussion

To visualize the internal segments, dye-labeled (Alexa-546) nucleotides are introduced into the backbones
of the nicked λ DNA (48.5kbp, L ≈ 16.5µm), T4 DNA (166kbp, L ≈ 56.4µm) and bacterial artificial
chromosome (BAC) human DNA clones (MCF7 BAC clone 9I10, fragmented, full length ∼ 180kbp,
L ≈ 61.2µm) (Fig.1) [19]. The DNA molecules are then driven by electric field into the nanochannels.
With the Alexa-546 labels excited by light, extension of each internal segment is recorded frame-by-frame.
Average extension 〈x〉 and the root mean square (rms) fluctuation σ =

√
〈x2〉 − 〈x〉2 for each internal
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Figure 3. Probability distributions P (x) for 2 internal segments of λ DNA inside a
80nm×130nm channel. The experimental data is fitted to Eq.7 (red). The fitting value C (Eq.7),
when plugged back to Eq.6-2, recovers de Gennes’s formula Eq.4.

segmenet are calculated and plotted in the σ − 〈x〉 profile.
In Fig.2, we first show the result for λ DNA confined in a 80nm×130nm channel. The maximum

〈x〉, which is roughly the mean extension of the entire DNA, is about 10µm, in agreement with the
measurements of Tegenfeldt et al [12]. The internal fluctuation σ increases with 〈x〉 with a 0.5 power
law. This 0.5 power law and even the magnitude of the fluctuation can be well captured by de Gennes’
theory (discussed below) with no fitting parameters.

The longitudinal fluctuation of the confined DNA in de Gennes’ theory can be evaluated using the
effective stiffness keff of the polymer: σ2 = kBT/keff

∼= (4/15)L(wξpD)1/3 [12, 20]. Using this expression
and Eq.1 to eliminate L, we get the relation between σ and 〈x〉:

σ ∼=
√

4D

15
·
√
〈x〉. (4)

Therefore, de Gennes’ theory predicts a 0.5 power law for the σ − 〈x〉 profile. It is interesting to note
that the prefactor in Eq.4 depends only on the channel width D, but not on the effective molecule width
w, nor on the persistence length ξp. This implies that the σ − 〈x〉 profile is independent of the ionic
strength of the experimental buffer. To compare the theory with the measured internal fluctuation, we
plot Eq.4 together with the experimental data in Fig.2. Surprisingly, the data matches with the theory
very well without any fitting parameters. Both the 0.5 power law and the magnitude of the fluctuation
are correctly predicted by Eq.4.

de Gennes’ theory also gives the distribution of the extension P (x), which we can compare to our
measurement. We consider the recently proposed “renormalized” Flory-type free energy F for a confined
polymer [21] and its corresponding prediction of the longitudinal fluctuation:

βF = A
x2

(N/g)D2
+B

D(N/g)2

x
, σ2 =

(
∂2 (βF)

∂x2

)−1

, (5)

where β = 1/kBT , A,B are two constants, N, g are the total number of monomers and the number of
monomers inside a blob respectively [21]. Both of the relations can be rewritten in terms of 〈x〉 (which
is the solution of ∂F/∂x = 0) as:

βF = C

(
x2

2D〈x〉
+
〈x〉2

Dx

)
, σ =

√
D

3C

√
〈x〉, (6)



5

0 10 20 30
0

0.5

1

<x> (µm)

σ 
(µ

m
)

0 10 20 30
0

0.2

0.4

0.6

<x> (µm)

σ 
(µ

m
)

0 5 10 15
0

0.2

0.4

<x> (µm)

σ
 (µ

m
)

de Gennes theory

Odijk’s de�ection theory

de Gennes theory

Odijk’s de�ection theory

de Gennes theory

Odijk’s de�ection theory

A B C

Figure 4. Fluctuation of the internal segments of (A) T4 DNA in 80nm×130nm, (B) T4 DNA in
60nm×100nm and (C) λ DNA in 50nm×70nm channels. For all cases, the maximum mean extension
〈x〉 > 10µm. For (A) and (B), the data 〈x〉 . 10µm agrees with de Gennes’s theory (red, no fitting
parameters). Deviation from de Gennes’ theory begins at a critical 〈x〉 ∼ 10µm, above which the data
falls into the black curve predicted by the deflection theories of Odijk [6], Wang and Gao [11]. For
tighter channels (C), the transition occurs earlier with most data falling in the deflection regime.

with C = (2A)2/3B1/3 being a constant. The probability distribution P (x) is therefore:

P (x) = P0 exp(−βF) = P0 exp

[
−C

(
x2

2D〈x〉
+
〈x〉2

Dx

)]
. (7)

Here P0 is a constant determined by the normalization condition. In our experiments, we record the
extension x of each internal segment frame-by-frame and then calculate the distribution P (x) for each
segment. Fig.3 shows the measured P (x) for two internal segments and their fitting results to Eq.7 (red).
The result again implies that, for λ DNA confined in a 80nm×130nm channel, the behavior of the internal
segments can be well captured by de Gennes’ theory. Moreover, by fitting the distribution P (x) to Eq.7, we
obtain the constant C, which, when plugged back into Eq.6-2, yields: σ = 0.58

√
D
√
〈x〉 ≈

√
4D/15

√
〈x〉

(here D =
√

80× 130 = 102nm). Therefore, starting from the “renormalized” Flory-type free energy
Eq.5, we recover Eq.4 with the same prefactor. This indicates that the prefactor in Eq.4 is quite accurate
although it is derived from a scaling theory. It also explains why Eq.4 matches with the measured σ−〈x〉
profile without any fitting parameters (Fig.2). It is important to note that, for λ DNA confined in a
80nm×130nm channel, the maximum 〈x〉 is less than ∼10µm (Fig.2). We shall show next that for longer
DNA whose maximum 〈x〉 is greater than ∼10µm, the measurement no longer agrees with de Gennes’
theory. In particular, the 0.5 power law in the σ − 〈x〉 profile is lost.

Fig.4A shows the σ − 〈x〉 profile for the internal segments of T4 DNA in a 80nm×130nm channel.
The maximum 〈x〉, which is roughly the mean extension of the entire DNA, is about 30µm, in agreement
with the simulation result of Jung et al [14]. Fitting of σ ∼ 〈x〉γ to the experimental data yields γ = 0.19,
which is very different from the prediction of de Gennes’ theory (Eq.4). Similar results are found for
DNA in channels of different sizes: γ = 0.15 for T4 DNA confined in 60nm×100nm channels (Fig.4B)
and γ = 0.11 for λ DNA in 50nm×70nm channels (Fig.4C). In all these cases the maximum 〈x〉 is greater
than 10µm. We note, however, that in Fig.4, the experimental data for segments with 〈x〉 . 10µm still
matches with de Gennes’ theory (except for the 50×70nm channel case, which we will explain later). It
is the data with 〈x〉 & 10µm that deviates significantly from de Gennes’ prediction. In fact, if we plot
the fluctuation results for short segments with 〈x〉 . 10µm for λ and T4 DNA together, the two profiles
are almost identical, satisfying de Gennes’ theory (see Supporting Information Fig. S1).

To rule out the possibility that the observed difference between λ DNA and T4 DNA stems from
sequence variations, we perform the same experiments on the bacterial artificial chromosome (BAC)
human DNA clones (MCF7 BAC clone 9I10), which also has maximum 〈x〉 & 10µm. As shown in
Fig. 5, the results for the BAC DNA are almost identical to those for the T4 DNA. In particular, for
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Figure 5. Internal fluctuation σ versus mean extension 〈x〉 for BAC (red squares) and T4
DNA (black circles) in a 80nm×130nm channel. This figure shows that DNAs from two different
sources give almost identical results, which suggests that agreement with de Gennes theory for short
internal segments, and deviation from de Gennes’ theory for long internal segments, are both sequence
independent.

small 〈x〉 < 10µm, both match with de Gennes’ prediction without any fitting parameters, while for
〈x〉 > 10µm, both identically deviate from de Gennes’ prediction. This suggests that the deviation from
de Gennes’ theory for long internal segments truly stems from segment size, not from sequence variations.

To better understand the deviation from de Gennes’ prediction, we further look into the local struc-
tures of the confined DNA. Odijk showed recently that even in a 135nm channel, DNA can fold back on
itself, giving rise to a global persist ence length much larger than 50nm, the intrinsic persistence length
of the DNA [18,22]. Because of this, Odjik argued that the transition from Odijk’s regime to de Gennes’
regime could be delayed with the increase of the channel size [18]. To check whether such local folded
structures exist in the DNA in our experiments, we measure the extension distribution P (x) for each sin-
gle internal segment (see “Materials and Methods” for details). We find that for most internal segments
whose mean extension is longer than 10µm, the distribution P (x) shows two or more peaks (Fig.6B-C).
From this observation, we infer that there indeed exist some folded structures in those internal segments
– one peak in the distribution corresponds to the folded configuration, and the second peak corresponds
to the extended configuration (Fig.6). The existence of folded structures can be also inferred from the
typical extension x versus time plot as shown in Fig. 6D, where the steps in x correspond to different
states of the internal segments. Furthermore, we find that in the distribution P (x), the measured dis-
tances between any two peaks are always integral multiples of 400−500nm, indicating that the difference
in extension of a single folded structure and its extended form is about 500nm, ten times the persistence
length of the DNA. This further implies that each branch of the folded structure is about 150−250nm,
if we assume each folded structure has two (loop) or three (hairpin) branches (Fig.6). Also, by check-
ing the location of the internal segments that show multiple-peak distributions, we find that the folded
structures are separated by ∼10µm, which roughly agrees with the value of 〈x〉 above which de Gennes’
theory fails to match with the experimental data (Fig.4). In the following we show that for 〈x〉 & 10µm
the fluctuation data is better described by Odijk’s deflection theory.

To exactly (rather than in a scaling sense) evaluate the fluctuation of DNA in the Odijk deflection
regime, we extend the theory recently developed by Wang and Gao [11]. This theory represents the DNA
as a strongly confined wormlike chain (fluctuating elastic rod) subjected to an additional end-to-end
force F and produces the relation between the mean extension 〈x〉 and Ξ, the stiffness of the effective



7

~ 10     m µ ~ 10     m µ

D~100nm 

6 8 10
0

0.1

0.2

0.3

x (µm)

P
(x

)

<x> = 8.4 µm

0 1 2 3 4

13

13.5

14

14.5

15

15.5

time (second)

x 
(  

 m
)

8 9 10 11
0

0.1

0.2

x (µm)

P
(x

)

<x> = 9.5 µm

B

A

C

D

µ

Figure 6. (A) Folded structures in the backbone of confined DNA. Each branch of the structure is
about 150− 250nm, about the width of the channel size. The structures are separated by a distance
∼10µm. (B, C) Distribution of extension P (x) for 2 internal segments that contain the folded
structures. In disagreement with de Gennes’ prediction, the distributions show 2 peaks, from which we
infer the existence of the folded structures. However, the structures are not stable as the two peaks in
the distributions are comparable in height. The red curves fitted to the left peaks on the histogram are
from de Gennes’ theory (Eq.7) and the ones superimposed on the right peaks are from the deflection
theory (Eq.10). (D) Extension x versus time for a single internal segment that shows two peaks in the
distribution P (x). The extension of this particular internal segment seems to fluctuate around two
values shown by the dashed lines. This gives rise to the two peaks seen in the probability distribution.
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confinement potential (which is a function of the channel width D):

〈x〉 = L− kBTL

2
√
κ

1√
F + 2

√
Ξ(D)κ

, (8)

where again, kBT is the thermal energy, κ is the bending modulus of the polymer, and in a rectangular

channel the stiffness of the confinement potential can be expressed as Ξ = 4c4
[
kBT/(κ

1/4D2)
]4/3

, with c

being a constant. Using Eq.8, we calculate the effective stiffness of the DNA as keff = (∂〈x〉/∂F )
−1

, and
then evaluate the fluctuation as σ2 = kBT/keff:

σ =
D

2
√

8ξpc3
·

[
1− 1

4c

(
D

ξp

)2/3
]−1/2√

〈x〉. (9)

Leaving c as a free parameter, we fit Eq.9 to the experimental data with 〈x〉 > 10µm in Fig.4A-C (black
curves) and obtain c = 1.03, 0.94 and 0.99 respectively. For the BAC DNA confined in 80nm×130nm
channels shown in Fig. 5, we obtain c = 0.9 from a similar fit. The fact that all the four sets of
experimental data for different channel widths yield the same c ≈ 1 makes sense because c is expected
to be a universal constant independent of D. Moreover, the constant c comes from the expression for
the free energy of confined chains in the Odijk regime and it has been estimated by Burkhardt to be
c = 1.1 [23], which is very close to our fitting results. This strongly suggests that in the large mean
extension regime 〈x〉 > 10µm, the DNA segments are better described by the deflection theory.

Furthermore, from Fig.4A to C, we observe that the length of the error bars decreases with the
decrease of the channel size. The reason for this may be that for moderately confined DNA, the local
folded structures can form and unravel with comparable rates, as indicated by the similar height of the two
peaks in the distribution in Fig.6B-C. Therefore, the behaviors of the confined polymer is a competition
between de Gennes’ type and Odijk type regimes and the error bar is large. As the channel size becomes
smaller, Odijk’s theory begins to dominate, resulting in smaller error bars.

By integrating the force-extension relation Eq.8, we obtain the free energy expression G(x) in the
Odijk (or Wang and Gao) deflection regime (see Supporting Information), which further leads to the
distribution for the extension P (x):

P (x) = P0 exp

(
Bx− A

L− x

)
, (10)

where A = L2/4ξp, B = 4c2ξ
1/3
p /D4/3 and P0 is the normalization factor. We fit this expression to

the right peaks in Fig.6B-C and find that reasonable parameters (L ≈ 15µm, ξp ≈ 50nm) give excellent
matches with the measured probability distributions in experiments. In fact, we can use this free energy
expression to understand the transition from a different point of view. We note that the internal segments
are expected to stay in the regime with lower free energy, and that regime transition occurs when the
free energies in the two regimes are equal. By comparing the free energies in the two regimes, we draw
a phase diagram on the L − D plane in Fig. 7. The result shows that as D decreases, the transition
length L decreases. Theoretically, the phase diagram involves an undetermined constant, which we fit
such that transition occurs in the range L ≈ 8 − 12µm when D = 100nm. Then the result shows that
at D = 60nm, the transition length is 3− 5µm, which roughly agrees with our experimental result for λ
DNA in a 50nm×70nm channel (Fig. 4C). The phase diagram shows that transition from de Gennes’ to
Odijk’s regime can occur when D decreases with L fixed, or when L increases with D fixed.

We also measure the end-to-end extension for DNA with different lengths (longer than 10 microns)
in a 60nm×100nm channel and the result agrees with Odijk’s theory (Fig. S3).

In the above analysis, we have applied the theories (de Gennes, Odijk, Wang and Gao) for the end-
to-end extension/fluctuation to evaluate the internal, or local extension/fluctuation of a confined DNA.
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Figure 8. Discrete wormlike chain model for confined DNA in a nanochannel. The confined
wormlike chain, subjected to and end-to-end applied force in general, has bending energy represented by
a spring of stiffness κ at each node.

The assumption behind this is that when the internal segments are much longer than the persistence
length of the DNA, the behavior of the segments is not very different from that of the entire DNA (with
the same length) because the boundary conditions do not play a significant role [24–26]. To verify such
an assumption, we explicitly calculate the internal fluctuation in Odijk’s regime by extending a theory
we developed earlier [26], and then compare our results to the theories developed for an entire piece of
DNA.

Following the procedure in ref. [26], we model the polymer as a confined discrete N−segment wormlike
chain, or fluctuating elastic rod (Fig.8). The Hamiltonian consists of 3 terms (Eq.11): (1) bending energy,
(2) confinement energy, and (3) potential energy of an end-to-end applied force as shown in Fig.8.

H =

∫ L

0

κ(s)

2

∣∣∣∣ dt̂ds
∣∣∣∣2 ds+

∫ L

0

Ξ

2
y2ds− F∆x (11)

=
1

2
~θT ·K~θ − FL. (12)

In the bending energy term, κ(s) is the bending modulus of the DNA and it can vary along the arc
length s so that the polymer is not necessarily homogeneous in mechanical properties. t̂ is the tangent
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Figure 9. Fluctuation versus mean extension of internal segments of the strongly confined
DNA in 60nm channels (Eq.13 and Eq.14). The contour lengths of the DNA are (A) L = 10µm,
(B) 5µm, (C) 1µm and (D) 250nm. For a long DNA (A and B), data from internal segments of various
locations of the chain collapse on the a curve with 0.5 power law (light green). The result agrees with
Eq.9 (blue), which is derived for the end-to-end fluctuation of a confined DNA. For short DNA however
(C and D), no power law is found as data from various locations of the chain do not collapse onto a
single curve (light green). Therefore, formulae derived for the end-to-end fluctuation of the confined
DNA, such as Eq.9 (blue), cannot be used for internal fluctuation. The boundary effect is so significant
that the rms fluctuation σ not only depends on 〈x〉, but also on the location of the internal segments.

vector along the polymer. For the confinement potential term, we follow Wang and Gao’s approach [11]
and use an effective quadratic energy characterized by the coefficient Ξ, with y being the transverse
displacement. In general, Ξ can be a function of the arc length s in case the confinement is not uniform.
Also, for 3D chains in rectangular channels, Ξ can be different in the two transverse directions. For the
potential energy term, we consider the chain subjected to an end-to-end force F , which can be set to
zero if no force is applied. ∆x = x(L) − x(0) is the end-to-end extension of the chain. Up to a second
order approximation, the Hamiltonian can be written in matrix form as shown in Eq.12, with θi being
the discretized tangent angles and K being the N ×N stiffness matrix of the chain [26].

It has been shown that when there are no constraints on twist (as is the case here), thermodynamic
properties of a 3D chain can be easily generated from those of two 2D chains [26]. Therefore, for simplicity,
here we describe the theory for 2D chains and plot the results for the corresponding 3D chains.

To get the internal fluctuation, we first need to calculate (1) the partition function, and (2) the angle
fluctuation 〈θiθj〉. These are evaluated in the “Materials and Methods” section. Finally, for any internal
segment between node i and node j of the discrete chain, the mean extension 〈xij〉 and the corresponding
rms fluctuation can be explicitly calculated as:

〈xij〉
l

= (j − i)−
〈θ2
i+1〉+ · · ·+ 〈θ2

j 〉
2

, (13)

σ2
ij

l2
=
〈(xj − xi)2〉 − 〈xj − xi〉2

l2
=

1

2

j∑
m=i+1

j∑
n=i+1

〈θmθn〉2, (14)

where l is the segment length of the discrete chain. In Fig.9, we consider DNA in 60nm×60nm channels
and plot σij versus 〈xij〉 for all the pairs of internal nodes (i, j) and see if the profiles match with
the theories developed for the entire piece of DNA. Fig.9(A) shows the result for a chain with contour
length L = 10µm, which is much larger than its persistence length ξp = 50nm. The internal fluctuation
profile agrees exactly with Eq.9, which is derived for the end-to-end fluctuations. In particular, all the
data collapses into a single curve with 0.5 power law. As the contour length of the polymer decreases,
however, (Fig.9B-D), the internal fluctuation profile begins to scatter around the curve for the end-to-end
fluctuation. This implies that, for short chains, the magnitude of internal fluctuation can be different,
even if two internal segments have the same mean extension. The magnitude of the fluctuation depends



11

0 50 100 150 200 250
0

5

10

15

20

25

30

Position (nm)

σ 
(n

m
)

Figure 10. Fluctuation as a function as the position of an internal segment for a short
chain. The contour length of the entire chain is short (250nm), so that the fluctuation not only
depends on the length of the internal segment, but also on its position. Here we plot the fluctuation
versus position for internal segments with the same size: 50nm (red) and 10nm (blue). For the internal
segments close to the boundaries, the fluctuation is larger because they have more freedom compared to
the segments inside the chain.

strongly on where the internal segment is located. In fact, we show in Fig. 10 that the internal segments
located at the two boundaries have larger fluctuation because they have more freedom to fluctuate
compared to the segments inside the chain. The strong boundary effects on short chains (such as, DNA
with contour length 0.6-7µm) have been discussed by several groups recently [24–26]. Our results suggest
that the accuracy of DNA sizing depends on the DNA contour length. For a short DNA with contour
length L < 1µm confined in a 60nm×60nm channel, the uncertainty of the measurement will be high.
For the experimental results we discussed earlier, the λ DNA, T4 DNA and BAC DNA all have contour
lengths of tens of microns, for which boundary effects can be neglected. Therefore, it is safe to use the
formulae for end-to-end extension/fluctuation to estimate the internal properties of the confined DNA in
our experiments.

To measure the internal fluctuation, we have introduced nicks into the DNA so that internal sites
along the DNA can be labeled. Since the theory discussed above allows for arbitrary bending modulus
κ(s) as a function of the arc length s, we can model the effect of nicking by setting κ = 0 on some
nodes of the discrete chain and see whether the nicks have significant effects on the behavior of the DNA.
For simplicity, we assume here that the nicks are equally spaced along the chain. Fig.11 shows that the
fluctuation profile does not significantly deviate from the homogeneous chain with uniform κ when there
are less than 50 nicks along a 18µm chain (∼50kbp DNA in a 60nm×60nm channel). In our experiments,
the fluorescent tagging is introduced at the nicking endonuclease recognition sequence sites, which have
much lower density than 1 nick/kbp in λ, T4 and BAC DNA. Therefore, the nicks will not significantly
affect the DNA internal fluctuation.

To summarize, in this paper, we have investigated the thermal fluctuations of the internal segments of
a piece of confined DNA in a nanochannel. The channel size is on the order of the persistence length of the
DNA and we have compared the fluctuation data to several theories in literature. We have found that for
channel widths on the order of 100nm there exists a critical length scale ∼10µm for the mean extension
of an internal segment below which the de Gennes’ theory describes the internal fluctuations and above
which the data agree better with Odijk’s deflection theory. For long DNAs confined in nanochannels we
have inferred that there are folded structures whose branches are about 3 times the persistence length
of DNA which are separated by segments with mean extension ∼10µm. We surmise that these folded
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1 nick/kbp 

Figure 11. Fluctuation of a 18µm long chain with persistence length ξp = 50nm confined in
a 60nm×60nm channel. From bottom to top: (1) 4: no nicks; (2) +: 10 nick in 18µm; (3) ©: 50
nicks in 18µm; (4) ×: 100 nicks in 18µm; (5) �: 200 nicks in 18µm. This figure shows that when the
density of nicks is lower than 50 nicks per 18µm, or 1 nick per kbp of DNA, the fluctuation profile is
almost the same as that for a chain without nicks.

structures are indicative of a transition from the Odijk regime, in which the DNA is relatively straight,
to the deGennes regime, in which the DNA is more blob-like. We have also presented a more detailed
theory based on small fluctuations and incorporating the effects of confinement. We have shown that one
can use the existing theories for end-to-end extension/fluctuations to study the statistical properties of
internal segments only when the contour length of the chain is much larger than the persistence length of
the molecule so that boundary effects play no role. Our calculations suggest that introducing nicks into
the DNA can change its fluctuation behavior if the density of nicks is greater than about 1 nick per kbp
DNA.

Materials and Methods

Sequence specific labeling and DNA staining

In a 20µl reaction native, duplex DNA samples 50ng/µl (λ, T4 DNA and also MCF7 BAC clone 9I10)
are incubated with 0.5U of Nb.BbvCI (0.5U/µl) (NEB, Ipswich, MA) in 1× NEB buffer 2 (NEB) for 1
hr at 37◦C and 20 min at 65◦C. The nicked DNA samples (12.5ng/µl) are then incubated for 30 min
at 50◦C in 1×NEB thermopol buffer with DNA polymerase Vent (exo-) (NEB) at 0.5U/µl in presence
of a mixture of 75nM dAGC and 75nM Alexa-546 labeled dUTP. Then, the DNA (4ng/µl) samples are
stained with intercalating dye YOYO-1 iodide at 1 dye molecule per 10 base pairs of DNA (Invitrogen
Inc, Carlsbad, CA) in presence of 0.4M DTT (Promega Inc, Madison, WI).

Loading DNA into nanochannels

Fabrication of silicon based nanochannel chips has been described elsewhere [27,28]. The DNA sample is
diluted by 2 times using the flow buffer consisting of 1×TBE, 3.6% Tween, and 10% Polyvinylpyrrolidone
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(PVP). Ultrapure distilled water is used for making solutions (Invitrogen Corp., Ultrapure water). The
DNA molecules are driven by electric field (3 − 5V) at the port of entrance of the chip and allowed to
populate there for 2− 3 minutes [29]. Under higher voltage (∼10V), the populated molecules are moved
to the locos and then through the micro pillar structure of the chip to convert from a compact globular
conformation to an open relaxed one. At the 300nm channel area the molecules adopt a more relaxed
linear form with some heterogeneity on the backbone. With one end entering the nanochannel under the
electric field, the DNA molecules elongate to a linear conformation with almost homogeneous backbone.
Most of the structural heterogeneity progressively disappears as it interacted with the nanochannels,
adopting fully confined equilibrium conformation after the field is off (relaxation time 10−15s). A buffer
consisting 0.5×TBE, 1.8% Tween 20, 5% PVP has been used to flow the DNA molecules resulting in a
stretch of 65%.

Microscopy and image processing

The epi-fluorescence imaging is done in Olympus microscope (Model IX-71, Olympus America Inc,
Melville, NY) using a 100×SAPO objective (Olympus SApo 100X/1.4 oil). YOYO-1, the DNA backbone
staining dye (∼491nm absorption, ∼509nm emission) is excited using 488nm laser (BCD1, Blue DDD
Laser Systems, CVI Melles Griot, Rochester, NY) whereas Alexa-546 (∼550nm absorption, ∼570nm
emission) is excited using 543nm green laser (Voltex Inc, Colorado Springs, CO). The same filter cube
consisting triple band dichroic and dual band pass emission filters (Z488/532/633rpc, z488/543m respec-
tively) (Custom made, Chroma Technology Corp. Rockingham, VT) is used for detection of YOYO-1
and Alexa-546 emission by alternative laser excitation (using external laser shutters, Thorlabs, Newton,
NJ). The emission signal is magnified 1.6× and detected by a back-illuminated, thermoelectric cooled
charge coupled device (EMCCD) detector (iXon) (Andor, Ireland). About 200 sequential images of the
labeled DNAs confined in nanochannels are recorded at 60−80ms exposure time in blue-green alternative
laser excitation.

Recording and calculations

The intensity profile I(x, y) of each Alexa-546 label is fitted by a 2D Gaussian function to determine
the position of the label (xc, yc) in the channel (Fig.1B). The position of each internal label is followed
frame-by-frame at a time interval of about 160ms. The probability distribution, the mean value and the
corresponding standard deviation of the distance between each pair of internal labels are calculated.

Partition function and angle fluctuation

The partition function for a confined DNA, whose Hamiltonian is expressed in Eq.12, is: Z =
∫

exp (−H/kBT ) d~θ =

exp (FL/kBT )
√

(2πkBT )N/det K, where N is the number of segments in the discrete chain. The angle
fluctuation or correlation is the Boltzmann weighted average of (θiθj) over all the configurations [26,30]:

〈θiθj〉 =
1

Z

∫
θi · θj exp

(
− H
kBT

)
d~θ = kBT

(
K−1

)
ij
. (15)

Using Eq.15, we can explicitly calculate the mean extension and fluctuation of the internal segments
(Eq.13-14).
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1 End-to-end extension 〈x〉 versus channel width D relation for

Wang and Gao’s theory

For a strongly confined DNA under force F , the total extension 〈x〉 as a function as F and Ξ
(stiffness of the effective confinement potential) is found to be [1]:

〈x〉 = L− kBTL

2
√
κ

1√
F + 2

√
Ξ(D)κ

, (1)

where κ is the bending modulus of the polymer, Ξ relates to the channel width D in the following
way:

Ξ =
c4

4

(
kBT

κ1/4D2

)4/3

, (2)

and c = 2.5 is a constant for a cylindrical channel [1]. Setting F = 0 and plugging Eq.2 into Eq.1,
we obtain:

〈x〉 = L

[
1− 1

5

(
D

ξp

)2/3
]
. (3)

2 Fluctuation for short internal segments

The fluctuation for short internal segments is expected to be in the de Gennes’ moderately confined
regime. In Fig. S1, we plot the internal fluctuation profiles for short segments with 〈x〉 < 10µm
for 4 different sets of DNA: (1) λ DNA, (2) T4 DNA, (3) fragmented T4 DNA and (4) BAC DNA.
Note that here we not only have short DNA, like λ DNA, but also long DNA like T4 and BAC
DNA, but we discuss only the short internal segments on them in this section. The results for all
the 4 sets of DNA are almost identical, and they all match with de Gennes’ theory with NO fitting
parameters. This result suggests that for all internal segments with 〈x〉 ≤ 10µm, irrespective of the
sequence and length, de Gennes’ theory works.

3 Heterogeneity on the backbone of DNA

In experiments, we observe heterogeneity in the intensity profile of the YOYO-1 dye along the
backbone of the DNA (Fig.S2), which can be evidence for the formation of local folded structures.

1
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Figure S1: σ versus 〈x〉 profile for the 〈x〉 ≤ 10µm region. Fluctuation of short internal DNA

segments from different sources matches with de Gennes’ theory with NO fitting parameters.

For the left figure of Fig.S2, in the intensity profiles corresponding to 0s and 1.6s, localized peaks
are clearly apparent (Fig.S2). These localized peaks could represent the deGennes’ blobs or local
folded structures. On the other hand, regions of uniform intensity could correspond to DNA in
the Odijk regime. Heterogeneity in the DNA backbone fluorescence intensity is also shown in the
right figure of Fig.S2. This figure shows two internal labels coming together, which is evidence
for formation of local folded structure. Although these images gives us a visual picture of DNA
confined to a nanochannel, we believe that the two-peak probability distributions shown in the main
text provide much stronger evidence of the transition between the deGennes’ and Odijk regimes
than the fluorescence intensity profiles.

4 Total extension versus L relation

As another evidence that the deflection theory works for segments with 〈x〉 & 10µm, we measure the
end-to-end extension for DNA with different lengths (but with mean end-to-end extension greater
than 10 microns) in a 60nm×100nm channel and plot the result against the contour length (Fig.S3).
A linear relation is found with a fitting result of 〈x〉 = 0.5L. This is consistent with the deflection
theories (formulae shown below), which, with numerical values plugged in, gives 〈x〉 ≈ 0.7L.

〈x〉
L
≈ 1− α◦

(
D

ξp

)2/3

, α◦ = 0.17, (Odijk, [2]) (4)

〈x〉
L

= 1− 1

5

(
D

ξp

)2/3

, (Wang and Gao, [1]) (5)

5 Distribution of extension in the deflection regime

The force-extension relation for a 3D confined chain in Odijk’s regime is given in Eq.1 [1].

2
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Figure S2: (A) The backbone intensity images of a confined DNA fragment (∼34µm) stained

with YOYO-1 iodide in a 80nm×130nm channel. The images are recorded at time interval of 1.6s.

From the heterogeneity of the intensity profile, we infer that there exist some local structures on

the backbone. (B) Images of the time series (8 seconds) of a T4 DNA fragment (∼32µm). The

backbone of the DNA is shown in red and the internal dyes are shown in green. The region with high

fluorescence density is the area with local folded structures. The green traces are the trajectories of

internal dye labels in the time series. This image shows two internal dyes coming together, which

is evidence of formation of local folded structures.
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Figure S3: Mean end-to-end extension 〈x〉 versus contour length L of confined DNA in

a 60nm×100nm channel. The fitting result is x = 0.5L, which is consistent with the prediction

of the Odijk deflection theory: x = 0.7L.
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Since dG = −xdF , we can integrate Eq.1 to obtain the free energy G = G(F, T ):

G = −
∫
xdF (6)

= −
∫ [

L− kBTL

2
√
κ

1√
F + 2

√
Ξκ

]
dF (7)

= −(kBTL)2

4κ

2x− L
(L− x)2

+ const (8)

This is the free energy in a fixed force ensemble, i.e G(F, T ) = E − TS −Fx. We need the free
energy in a fixed extension ensemble. Therefore:

G(x, T ) = G(F, T ) + Fx (9)

=
(kBTL)2

4κ

1

L− x
− 2
√

ΞKx+ const (10)

Denote ρ = x/L, then the free energy is:

G(ρ, T )

kBT
=

A

1− ρ
−Bρ+ const, (11)

where

A =
L

4ξp
, B =

4c2ξ
1/3
p L

D4/3
, c = 1.1 (12)

Therefore, the probability distribution is:

P (ρ) = P0 exp

[
Bρ− A

1− ρ

]
(13)

with A,B given in Eq. 12 and P0 being the normalization constant.
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