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Abstract. - We present a model that describes mechanical unfolding behavior in rod-like macro-
molecules. We propose that the unfolding occurs via the motion of a folded/unfolded interface
along the molecule. We predict the speed of this interface as a function of the pulling velocity
such that the resulting force-extension curve replicates the overstretching transition typical of
coiled-coils and DNA. We model the molecules as one-dimensional continua capable of existing
in two metastable states under an applied tension. The interface separates these two metastable
states and represents a jump in stretch, which is related to applied force by the worm-like-chain
relation. The Abeyaratne-Knowles theory of phase transitions in continua governs the mechanics
of the interface.

Introduction. – Single-molecule experiments have
been performed using atomic force microscopy and optical
tweezers [1–4], in which long molecules are stretched be-
tween rigid and semi-rigid supports in a fluid flow. In
a constant velocity setup, for example, one end of the
molecule is attached to an AFM tip, which is held sta-
tionary. The other end is attached to a cover slip which is
moved at a fixed speed. Similarly, in a constant force
setup, the cover slip is moved in such a way that the
force experienced at the AFM remains close to a fixed
value. Both kinds of experiments yield different insights
regarding the forced unfolding process. However, all ex-
periments have shown that molecules, such as DNA and
myosin coiled-coils undergo massive structural changes
(often called ‘overstretching transitions’), initiated by the
achievement of a certain force threshold at a point in the
molecule. The force threshold varies with the type of
molecule being examined and the solution conditions [2]
and temperature [5]. The structural change is accompa-
nied by absorption of energy due to the breaking of bonds
and is characterized by force-extension curves that have
a force plateau bookended by two steep rises in the force.
The plateau region of the curve corresponds to the grad-
ual unfolding of the molecule as it undergoes the struc-
tural transition. The steeply rising parts of the curve have
been shown to be well fit by the Worm-Like Chain (WLC)
model of polymer elasticity [13].

This transition has largely been studied through the
perspective of the force-extension curves obtained. How-
ever, the mechanism by which the transition occurs had
only been speculated about till now. In the absence of
experimental evidence, a number of theories attempted to
explain this phenomenon. These include characterizing
the transition as a conversion of the native state of DNA,
B-DNA to a new state termed S-DNA [6,8,19], and over-
stretching as a force-induced melting to single-stranded
DNA [5, 11, 12]. These developments are summarized,
among others, in Williams et al [10] and in Whitelam
et al [7].

In this paper, we propose a mechanism for this process
by employing the Abeyaratne-Knowles Theory of phase
transitions [22]. We propose that the unfolding occurs via
the motion of a folded/unfolded interface along the length
of the molecule. Such interfaces have been shown to exist
in the recent experiments of van Mameren et al. [9]. This
is probably the first instance in which a continuum theory
of phase transitions with a moving interface is used to de-
scribe an evolving structural transition in a biopolymer.
This is also the first attempt to make predictions for the
speed of the interface as a function of the mechanical prop-
erties of the folded and unfolded phases and boundary con-
ditions. We first introduce a one-dimensional model for a
molecule which is in the completely folded state and state
the force balance and constitutive relations. Next, we de-
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Fig. 1: The molecule is represented as a one-dimensional con-
tinuum (lines underneath the cartoon of the partially unfolded
molecule) with an interface separating two metastable phases.
Black circles on the lines indicate nodes used in the numer-
ical scheme. Open circles indicate position of the interface.
One end of the molecule is fixed while the other is pulled at a
constant velocity.

scribe the two-phase model and the modified constitutive
equation which allows for the presence of discontinuities in
stretch. We then give the force and kinematic jump con-
ditions at the discontinuities and introduce the concept of
the thermodynamic driving force. Finally, we discuss the
computation scheme and obtained results.

Elements of rod-like molecule model. – A
schematic diagram of the model is presented in fig. 1. The
molecule is assumed to exist, at any given time, as a mix-
ture of two metastable states – a folded native state (low
strain phase) and an unfolded state with broken bonds
(high strain phase). Prior to the achievement of the force
threshold, the molecule remains exclusively in the folded
state, and can undergo stretching and relaxation. Fol-
lowing the achievement of the force threshold, we pro-
pose that overstretching occurs via the propagation of a
folded/unfolded interface (or ‘phase boundary’ in phase
transitions terminology) moving through the molecule. As
it moves, the interface progressively converts the folded re-
gion into the unfolded state, till the molecule is completely
unfolded. The speed of the interface depends on the force
applied at the end of the molecule through a kinetic rela-
tion. In this paper, we have considered only unidirectional
motion of the interface, i.e. only unfolding has been ex-
plored and not subsequent refolding. At the interface,
tension, strain and particle velocities are determined by
jump conditions obtained from the governing equations.

We begin our description of the model by first consider-
ing the situation where the applied forces are small enough
that the entire molecule is in a single phase. The molecule
is conceptualised as a slender rod, in which there is a
single position parameter, namely the arc length s, with
0 ≤ s ≤ L in a reference configuration. The position of
material point s in the deformed configuration at time t

is z(s, t). The balance of forces on the rod is expressed as

∂f

∂s
= dw (v − vf ) , (1)

where f is the internal axial force in the rod, dw is the
axial drag coefficient due to the surrounding fluid and
v(s, t) = ∂z

∂t is the velocity of the segment of the molecule
at reference position s. vf is the fluid velocity, which is
non-zero in experiments in which a fluid flow is used to
stretch the molecules in the place of optical tweezers or
AFM. The axial drag coefficient dw is calculated from slen-
der body theory for low Reynolds number flow [18], viz.,
dw = 2πµ

log( 2l
a )+c where µ is the fluid viscosity, 2l is the

length of the body, a is the radius of gyration of the body
and c is a constant that depends upon the shape of the
body. The rod is assumed to follow the worm-like chain
constitutive law [20,21], i.e.

f =
1

4β2Kb (1− λ)2
(2)

where λ = ∂z
∂s is the position- and time-dependent stretch

of the molecule. Kb = ξpkBT is the bending modulus
of the molecule, where ξp is the persistence length, and
β = 1/kBT where kB is the Boltzmann constant and T
is the absolute temperature. We have assumed here that
the persistence length ξp is much shorter than the con-
tour length of the rod and that the process of pulling
the molecule is quasistatic so that the worm-like-chain re-
lation derived using equilibrium statistical mechanics is
valid. (1) together with (2) can be numerically integrated
for appropriate boundary and initial conditions by a finite
difference scheme to predict the relaxation behaviour of
stretched DNA.

We have confirmed that a single drag coefficient gives
excellent fits to the relaxation data of Perkins et al. [16]
for λ > 0.6. These experiments were modeled by imposing
zero fluid velocity and comparing the decrease in length
as a function of time. Furthermore, we looked at the spe-
cial case in which a stretched molecule has reached steady
state in a uniform flow. For this case, an explicit solution
is easily found by putting ∂z

∂t equal to zero. For this case,
we have confirmed that the error in the computed results
(obtained by letting the system evolve to steady state)
with respect to the analytical solution decreases as we in-
crease the number of nodes in the finite difference scheme.
We can predict the stretching behavior of the molecule in
any fluid velocity field by specifying it on the right hand
side of (1). The stationary fluid is a special case of the
same.

The folded/unfolded interface. – Having ascer-
tained that the model is sound in its handling of a sin-
gle folded state system, we now add to this description,
the proposition that the molecule be considered as a
one-dimensional continuum that is capable of undergo-
ing phase transitions between two stable phases, i.e. a
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folded and an unfolded phase. These phases are separated
by an interface that is modeled as a phase boundary be-
tween the low-strain (folded) and high-strain (unfolded)
phases. The motion of this phase boundary is assumed to
be governed by the Abeyaratne-Knowles theory of phase
transitions [14,22].

The Abeyaratne-Knowles theory in one dimension deals
with solid-solid transitions in tensile bars. The origins of
the theory go back to Ericksen [15] who showed that solids
with two metastable states or phases can be described by a
nonmonotonic (up-down-up) stress-strain relation. Thus,
for a given range of stress, the one-dimensional continuum
may exist in a configuration in which the stress is constant
throughout, while the strain is only piecewise constant.
Such a state is termed as a phase mixture, and the points
at which there are discontinuities in strain are called phase
boundaries. In pulling experiments with macromolecules,
similar conditions have been shown to exist [9]. Hence,
the motivation to employ this theory.

The presence of a discontinuity in the continuum ne-
cessitates the consideration of the behavior of quantities
at the interface. The equation of motion (1) still holds,
but the constitutive description of the rod changes. The
expressions for tension in the low-strain and high-strain
phases become

f =

{ 1

4β2KbL(1−λ
r )2 for low-strain phase

1
4β2KbH (1−λ)2

for high-strain phase
(3)

where KbL and KbH are the bending moduli for the low-
and high-strain phases respectively. λ is the stretch with
respect to the reference (fully stretched state in the com-
pletely unfolded phase) configuration. The parameter r
is the ratio of inter-basepair distances in the folded and
unfolded states. For simplicity, we have not included the
intrinsic stretching modulus of the molecule in this con-
stitutive law since our focus is on moving interfaces.

At interfaces such as the ones considered by the
Abeyaratne-Knowles theory, quantities, such as, particle
velocity, stretch and energy density can be discontinuous,
but balance laws constrain these jumps in a non-trivial
way. In particular, continuity of the deformed configura-
tion, i.e. no breaks in the material, gives a kinematic jump
condition,

[|v|] + ẋ [|λ|] = 0 (4)

where [|y|] = y(x+, t)−y(x−, t) is the jump in y(s, t) across
an interface located at s = x(t) in the reference configu-
ration. Similarly, the balance of forces gives a force jump
condition,

[|f |] = 0, (5)

since inertial effects are negligible. This says that the ten-
sion is continuous across the interface.

We now turn our attention to the interface itself. We
assume that at any given time, there can be at most one

interface propagating through the molecule. The pres-
ence of a single interface is consistent with recent obser-
vations of van Mameren et al. [9] though their interfaces
were static. The Abeyaratne-Knowles theory specifies two
fundamental conditions for the existence and propagation
of this interface. The first of these is a nucleation crite-
rion. We have predicated the formation of the boundary
on the achievement of a critical force at any point along
the molecule. As the molecule is stretched, the force expe-
rienced at different points along the molecule varies with
time. In particular, this force can be shown to be max-
imum at the end which is being pulled, and decreasing
monotonically along the molecule (for an experiment in
which one end is kept fixed and the other end is pulled
away at constant velocity). Clearly then, the critical force
will be achieved first at the end being pulled, and the nu-
cleation criterion states that this is the point where the
interface or phase boundary is formed. This again is con-
sistent with the experiments of van Mameren et al. [9].
This phase boundary then proceeds along the molecule as
an unfolding front in accordance with the second required
condition, which is the kinetic relation.

The kinetic relation specifies the way in which the ve-
locity of the phase boundary varies with the thermody-
namic driving force (which is, in general, different from
the mechanical force felt at the interface) across it, i.e.
ẋ = ẋ(fdriv). Alternatively, fdriv is the jump in the free
energy across the interface and is responsible for driving
the interface. The Abeyaratne-Knowles theory provides
an expression for this driving force in terms of the jump
in stored energy per unit reference length and the jump in
strain across the phase boundary. It is given by

fdriv = [|W |]− fx [|λ|] , (6)

where W is the stored energy per unit length, fx is the
tension in the molecule at the phase boundary (same on
either side) and λ is the stretch. W is calculated using
W =

∫ λ
λmin

f(λ
′
)dλ

′
, where f(λ) is obtained from (3). For

the high-strain phase, in addition to the integral above we
include the average energy per unit length WB required
to make the transition from the low-strain to the high-
strain phase. We choose λmin to be the lower limit of the
stretch at which the WLC formula for the force-extension
behavior of the polymer can be applied and λ is the current
stretch which is equal to λL in the low-strain phase and λH
in the high-strain phase. It is noteworthy that the strains
λL and λH are functions of the tension at the interface (as
given by (3)), and hence, the driving force is a function of
only the tension at the interface.

Computation. – We now explain how we reproduce
the plateau in the force-stretch response of the molecules.
We integrate (1) together with the force-stretch relation
(3), allowing for one phase boundary whose position in the
reference configuration is x(t) and is governed by jump
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Fig. 2: Nodes represented by zL and zH are fixed in the ref-
erence configuration, while the extra node for the interface,
represented by zx, is a moving node. Also shown are the vari-
able length sub-elements, ∆sL and ∆sH , which are such that
0 ≤ ∆sL, ∆sH ≤ ∆s.

conditions (4) and (5), and by the boundary conditions(
∂z

∂t

)
s=L

= vP , z(0, t) = 0, (7)

where vP is a pulling velocity imposed at one end of the
molecule. At t = 0, the entire molecule is assumed to be in
the low-strain phase. For the experiments we have sought
to model, the fluid velocity is zero, and the molecule is
pulled at the end s = L at a constant velocity vp. As a
result, as long as the force in the molecule has not equili-
brated, it will be a maximum at s = L. A phase boundary
is nucleated at s = L when the tension there reaches a
threshold. Its subsequent motion is governed by another
condition, which is a kinetic relation in a general phase
transition. However, in the case at hand, its function is
performed by the condition that the force at the interface
should remain constant for the duration of the unfolding
process. This is discussed later in the paper.

We modify our finite difference numerical scheme to ac-
count for the presence of the moving phase boundary by
adding a mobile node to our existing discretization [23].
In the neighborhood of the phase boundary, the jump con-
ditions are imposed. Assuming that the molecule on both
sides of the phase boundary is governed by the worm-like
chain constitutive law (3), the force jump condition (5)
reduces to (

1− λL
r

)
=

√
KbH

KbL

(1− λH) , (8)

where λL and λH are the stretches in the low- and high-
strain phases respectively. In our finite difference scheme
the stretches λL and λH can be expressed in terms of
the position of the discontinuity zx (in the deformed con-
figuration) and the higher and lower nodes, zH and zL
respectively, as (see fig. 2)

λL
r

=
zx − zL
r∆sL

and λH =
zH − zx

∆sH
, (9)

where ∆sL + ∆sH = ∆s is the distance separating two
nodes bracketing the node representing the moving phase
boundary in the reference configuration. From the per-
spective of obtaining a numerical solution, the quantities

available to us at each time step are the fixed node posi-
tions. The position of the interface, however, is not known.
Thus, it is convenient to formulate the stretches in terms
of the positions of the fixed nodes. Eliminating zx between
(8) and (9), we obtain expressions for the strains in terms
of node positions.

λL =

√
KbH (zH − zL) + ∆sH(

√
KbL −

√
KbH )

(
√
KbH r∆sL +

√
KbL∆sH)

(10)

λH =

√
KbL(zH − zL) + r∆sL(

√
KbH −

√
KbL)

(
√
KbH r∆sL +

√
KbL∆sH)

(11)

Note that we assume z(x+(t), t) = z(x−(t), t) = zx is con-
tinuous, hence the kinematic jump condition is automati-
cally satisfied.

At this point, we introduce another quantity, which is
the rate of dissipation associated with the motion of a
phase boundary across a material. It is defined as the
product of the thermodynamic driving force with the in-
terface velocity, both appropriately signed (ẋ is positive
if it moves from smaller to larger values of arc length s).
The second law of thermodynamics requires that the dis-
sipation be non-negative at all times during the motion of
the phase boundary. Hence, we must have

D = fdrivẋ ≥ 0 (12)

In other words, if the rate of dissipation is negative, the
motion is aphysical and cannot occur. A check for this
criterion is applied at each time step of our computation.

Results. – In order to determine the interface speed,
and hence describe the motion of the phase boundary x(t),
that produces the overstretching plateau, we assume in our
computation that the tension at the interface fx is a given
constant which determines λL and λH . This is equivalent
to specifying a kinetic relation since (9) and the condi-
tion that ∆sL + ∆sH = ∆s allows us to determine ∆sL
and ∆sH at each time step from which ẋ follows automat-
ically. Starting from a completely folded configuration,
and with the constant force condition imposed, we com-
puted the variation of ẋ. The results are shown in fig. 3.
This exercise reveals the remarkable result that for a given
plateau force and pulling velocity, the speed at which the
phase boundary moves is constant for the duration of the
unfolding, and is uniquely determined. We have made
predictions for four different pulling velocities (0.3 µm/s,
0.7 µm/s, 1.5 µm/s and 3.0 µm/s) and for four different
plateau forces. ẋ is a constant independent of time but
a function of the plateau force and the pulling velocity.
Further, we find that the ratio ẋ

vp
remains constant for a

given plateau force. This ratio decreases as the plateau
force increases (see fig. 3 inset).

Building upon this result, we find the force-stretch re-
sponse for several different values of the tension fx with
pulling velocity vP = 3µm/s. In each of these cases, we

p-4



Moving interfaces in rod-like macromolecules

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

In
te

rf
ac

e 
Sp

ee
d 

(m
ic

ro
ns

/s
, i

n 
re

fe
re

nc
e 

fr
am

e)

 

Plateau Force = 49 pN, slope = 3.86
Plateau Force = 65 pN, slope = 3.58
Plateau Force = 80 pN, slope = 3.41
Plateau Force = 100 pN, slope = 3.27

Pulling Velocity (microns/s, in laboratory frame)

40 60 80 100
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Plateau Force (pN)

In
te

rf
ac

e 
Sp

ee
d

Pu
lli

ng
 V

el
oc

ity

Fig. 3: Prediction for interface speed for given plateau force
and pulling velocity. Note that each plateau forces corresponds
to a unique ratio ẋ

vp
which is given by the slope of the lines.

Inset: Variation of ẋ/vp with plateau force. The calculations

have been performed assuming
KbL
kBT

= 50nm,
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and r = 0.586, with kBT=4.1 pN-nm at room temperature.
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Fig. 4: A: Comparison of the force-extension curve for DNA
obtained from the model with experimental data of Smith et al
[9]. B: Comparison of curve obtained for Myosin II with data of
Schwaiger et al [1]. C: Force-extension curves produced by the
model for different plateau forces. The interface propagation
model is able to reproduce all parts of the force-extension curve.
The parameters in panel C are KbL=50 nm.kBT and KbH=0.75
nm.kBT .

employ a different, but constant ẋ, in accordance with
the predicted value in fig. 2. We note that this phase-
transition based model handles extremely well all the parts
of the force-stretch curve (see fig. 4), including the early
pliability, the stiffening at high extensions, and the struc-
tural transition.

We have found that both the thermodynamic driving
force fdriv, and the phase boundary speed ẋ, are constant
while the molecule is undergoing the structural transition.
The obvious inference from these results is that their prod-
uct, the dissipation, as defined in (12), is also a constant
for a given plateau force fx, i.e. D = fdrivẋ = DS .

We also compared the value of dissipation with that of
the rate of work done on the molecule at the boundary
s = L and found that it is negligible in comparison to
the rate of work done at this boundary. According to the
Abeyaratne-Knowles theory [14, 22], the thermodynamic
driving force fdriv should be equal to zero in a reversible
process. Since the interface speed ẋ is non-zero, zero driv-
ing force implies a zero dissipation, or a reversible process.
Our computation uses Rouzina and Bloomfield’s estimate
for the Gibbs free energy of DNA melting [5] to calculate
the difference in strain energy densities across the inter-
face. We assume that it is the average of the energies
for the two limiting cases considered by them. Negligible
dissipation in our computation is consistent with the idea
that most of the work is stored as elastic energy in the
molecule. We point out that though the force plotted in
the force-extension curve is the force experienced at the
end of the molecule, not the force at the interface, these
two forces are so close to each other in value for fluid vis-
cosities used in our computations, that, they can be used
interchangeably.

The physical parameters used above for the folded and
unfolded parts are those of DNA. The persistence lengths
for the two phases are ξPH=0.75 nm and ξPL=50 nm. The
folded-to-unfolded length ratio r is 0.586. The contour
length in the folded configuration is 30.5 µm for the exper-
imental comparison, and 2 µm for other results for DNA
in fig. 4. The transition free energy per unit length, WB

is 2.95 kBT/nm. Of the four plateau forces used for our
computations (see fig. 4), namely 49 pN, 65 pN, 80 pN and
100 pN, the 65 pN plateau is most commonly associated
with the overstretching transition in DNA. It has been
shown that the plateau force may be varied by modifying
the solution conditions. In our computations, we find that
while the nature of the transition remains the same at dif-
ferent plateau forces, the interface speed is different (for
the same pulling velocity). Our model successfully repro-
duces the force-extension behavior for myosin II as well,
the physical parameters for which, are ξPH=0.4 nm and
ξPL=25 nm. The folded-to-unfolded length ratio r is 0.4.
The contour length in the folded configuration is 150 nm.
Thus, the model succeeds in modeling unfolding behavior
at length scales separated by two orders of magnitude.

If the interface speed is increased or decreased around
the value that yields a plateau, we expect that in these sce-
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Fig. 5: Force-extension behavior in DNA for non-plateau-
generating interface speeds. Solid lines correspond to interface
nucleation at 65 pN. Dashed lines are plateau force-extension
curves for the same ẋ

vp
as the corresponding solid lines. For

example, the green solid line has been generated by nucleating
the discontinuity at 65 pN and ẋ

vp
=3.40, while the green dotted

line is produced with parameters 80.6 pN and ẋ
vp

=3.41.

narios, we should not see plateaus being formed. That is
indeed the case. However, even though the force-extension
curve does not remain flat for the entire duration of the
unfolding, there is an unambiguous tendency to approach
a constant force as the unfolding proceeds (see fig. 5).
The remarkable result from this observation is that the
ẋ
vp

value that produces this behavior (while nucleation oc-
curs at 65 pN) , is almost equal to the ẋ

vp
value that would

produce a complete plateau at the same force. For exam-
ple, the green solid line has been generated by nucleating
the discontinuity at 65 pN and with ẋ

vp
=3.40, while the

green dotted line is produced with parameters 80.6 pN
and ẋ

vp
=3.41. This suggests that the initial part of the

force-extension curve is much more sensitive to the inter-
face speed chosen than the later part. Also, it strongly
indicates a link between ẋ

vp
and the plateau force.

Summary. – We have developed a model for moving
interfaces in rod-like macromolecules and shown that it
can reproduce the force-stretch response seen during the
overstretching transition in DNA and coiled-coil molecules
like myosin II. Our model can predict unfolding behavior
for a variety of bending moduli, plateau forces and pulling
velocities. We have shown that a special ratio of interface
speed to pulling velocity produces plateaus in the force-
stretch response and that this special ratio is a function of
the value of the plateau force. Finally, our model shows
that the force-stretch response has some unique features
if we impose a different ratio than the one dictated by a
plateau force. Our predictions suggest that experiments
such as those of van Mameren et al. [9] could be extended
or modified to verify these results. The plateau forces

could be changed by varying the ionic conditions or tem-
perature. Average values of ẋ could be determined by
measuring the time taken for the transition to complete.
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