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Abstract

In this paper we present a theory to efficiently calculate the thermo-mechanical properties of
fluctuating heterogeneous rods and chains. The central problem is to evaluate the partition
function and free energy of a general heterogeneous chain under the assumption that its
energy can be expressed as a quadratic function in the kinematic variables that characterize
the configurations of the chain. We analyze the effects of various types of boundary conditions
on the fluctuations of the rods and chains and show that our results are in agreement with
recent work on homogeneous rods. The results for the heterogeneous chains are verified
through Monte Carlo simulations. Finally, we consider a special heterogeneous chain with
only two bending moduli and use it as a model to interpret experiments on partially unfolded
protein oligomers.

Key words: heterogeneous wormlike chain, force-extension behavior, protein forced
unfolding, Monte Carlo simulation.

1. Introduction

Single molecule mechanical experiments on rod-like biomolecules, such as, DNA and
actin have for long been interpreted using a model of a homogeneous fluctuating elastic rod
(Bustamante et al., 1994; Marko and Siggia, 1995; Odijk, 1995; Nelson, 2008). However,
advanced single molecule techniques are now capable of probing the structure and properties
of macromolecules at length scales of a few nanometers. At these length scales it is no longer
sufficient to think of the molecules as having homogeneous mechanical properties. In fact,
several recent studies have revealed the remarkable effects of the heterogeneous properties of
some biopolymers on their conformations as well as their mechanical behaviors (Popov and
Tkachenko, 2007; Moukhtar et al., 2007). For example, heterogeneous mechanical properties
are encountered in partially unfolded protein oligomers in atomic force microscopy (Su and
Purohit, 2009). Sequence specific mechanical properties of DNA are already well known and
it has been suggested that DNA binding proteins can sense these heterogeneities, making
them biologically significant (Hogan et al., 1983; Hagerman, 1988; Zhang and Crothers,
2003). Also, it has been noted that localized softening in DNA can have significant influence
on looping probabilities which ultimately affect genetic activity (Purohit and Nelson, 2006;
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Wilson et al., 2007). These examples show that heterogeneous mechanical properties have
been observed in experiments on biomolecules and that even at relatively large length scale,
they can have significant biological consequences which the homogeneous models cannot
capture. They motivate us to examine the consequences of heterogeneity through detailed
mathematical models.

A simple way of introducing heterogeneity in polymer models is to group monomers into
hydrophilic and hydrophobic types as has been done in some recent articles (Geissler and
Shakhnovich, 2002; Jarkova et al., 2005). Another model which accounts for heterogeneity is
the two-state worm-like-chain model of Ahsan et al. (1998), which reduces to the fluctuating
rod model in the low force limit, and to the Ising model at high forces (Ahsan et al., 1998).
The approach in this paper is different from these methods in that we allow the bending
modulus Kb(s) of our fluctuating rod to vary as an arbitrary function of the arc length
s. We first evaluate the partition function of the rod in a constant force and constant
temperature ensemble, and then compute the free energy and a host of other thermal and
mechanical properties of the rod. The results are verified through Monte Carlo simulations.
A special case of our model is one in which there are only two possible values of the bending
modulus KI and KII along the chain. We call this the ‘special heterogeneous chain’ and
use it to interpret the force-extension data from the forced unfolding experiments on protein
oligomers.

Our method also allows us to determine the consequences of constraints imposed on
the rod. In particular, we can determine the force-extension relation and the magnitude of
transverse fluctuations under different types of boundary conditions. Boundary conditions
siginificantly affect the fluctuations if the length of the rod is comparable or shorter than its
persistence length (Seol et al., 2007). The effect of boundary conditions on the fluctuations of
homogeneous rods has been analyzed only recently by a few authors (Purohit et al., 2008). In
this paper we apply three different boundary conditions on the rod and compare our results
with those of Purohit et al. (2008) for homogeneous rods and find excellent agreement. The
method used in this paper is more general than that of Purohit et al. (2008) which is based
on the equipartition theorem and can only be applied to homogeneous rods.

This paper is organized as follows. We first use the equipartition theorem to derive
some general results for heterogeneous chains with arbitrary boundary conditions. We then
demonstrate a method for calculating the thermo-mechanical properties of chains and rods
under three different boundary conditions. We use Monte Carlo simulations and comparisons
with earlier work to show that our method gives accurate results. Finally, we apply our
method to interpret data from force-extension experiments on the protein ubiquitin.

2. Description of the Model

We study the thermo-mechanical properties of a fluctuating heterogeneous elastic chain
in this paper. A theory for a 2D chain is presented first and then the results are generalized
to 3D.

Let {X̂, Ŷ } be a standard reference dyad in 2D space, an N -segment chain with one end

fixed at the origin and the other end subjected to an external force ~F = FX̂ is fluctuating
around its equilibrium state. As shown in Fig. 1, each configuration of the chain is char-
acterized by N tangent angles θi, formed by the segments with respect to the X̂ axis. We

2



assume that (1) the length of the segment l is a constant independent of the applied force,
and therefore, the chain is inextensible with contour length being L = Nl; (2) the chain is
untwistable 1. Therefore, the elastic energy of the chain arises only from bending and it is
given by:

E =
N−1∑
i=1

Ki

2l
(θi+1 − θi)2, (1)

where Ki is the bending modulus that varies along the heterogeneous chain. A continuum
version of this energy is obtained by taking the limit as l → 0 and N → ∞ while Nl = L
remains fixed and is given by:

Erod =

∫ L

0

K(s)

2
θ̇(s)2ds, (2)

where s is the arc length along the rod and θ̇ is the derivative of θ with respect to s.
Up to a quadratic approximation, the Hamiltonian of the chain (or rod in the continuum

limit) in a fixed T (temperature in Kelvin) and F (force) ensemble is:

β(E − Fx) =

∫ L

0

βK(s)

2
θ̇(s)2ds− βF

∫ L

0

cos θds (3)

≈ β
N−1∑
i=1

κi(θi+1 − θi)2 + βf
N∑
i=1

θ2
i − βFL, (4)

where β = (kBT )−1 and kB is the Boltzmann constant, x is the extension (end-to-end distance
projected onto the X̂ axis) of the chain and κi, f are respectively the bending modulus and
the force in energy units:

κi =
Ki

2l
, f =

Fl

2
. (5)

For a short chain whose contour length L is comparable to its persistence length ξp ∼
K/kBT

2, we expect the thermomechanics and the fluctuation of the chain to depend on the
boundary conditions. We consider three different boundary conditions in this paper (Fig. 1):
(1) hinged-hinged chain: both ends of the chain are hinged on the X̂ axis with no moments
acting on them; (2) partially clamped chain: one end of the chain is clamped at the origin
while the other end, with slope constrained to be zero, is free to have transverse displacement
in the Y direction. (3) clamped-clamped chain: both ends of the chain are clamped on the X̂
axis. All these three boundary conditions have been realized in experiments using different
types of apparatuses (Purohit et al., 2008). Note that for a long chain with L >> ξp, we
expect the thermomechanics of the chain to be insensitive to the boundary conditions.

1Although twist may be important in some cases, we neglect it here and focus on (1) the effects of hetero-
geneity and (2) different boundary conditions. Nelson (2008) gives some explanation about the simplification
of neglecting the twisting energy.

2Here we define the persistence length ξp as 〈t̂(s0) · t̂(s0 + s)〉 = e−s/ξp , where t̂ is the unit tangent vector
of the chain. This definition leads to ξp = 2K/kBT for a 2D chain and ξp = K/kBT for a 3D chain (Kulić,
2004)
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3. Theory

3.1. Statistical mechanical and thermodynamic description of the chain

For a chain in a fixed temperature T and F ensemble, the partition function is:

Z =
∑
ν

exp [−β (Eν − Fxν) ] , (6)

where the summation is over all the allowed configurations ν, with Eν and xν respectively
being the energy and the extension of the chain. From the definition of the partition function
(Eq. 6), we get:

〈E − Fx〉 =
1

Z

∑
ν

(Eν − Fxν) exp [−β (Eν − Fxν) ] = −
(
∂ logZ

∂β

)
F

, (7)

where 〈A〉 denotes the ensemble average of a quantity A and ‘log’ denotes the natural loga-
rithm in this paper.

On the other hand, since the Hamiltonian is quadratic in the configuration angles θi
(Eq. 4), we have the equipartition theorem for a fixed T , F ensemble:

〈E − Fx+ FL〉 =
D

2
kBT, (8)

where D is the number of degrees of freedom of the system.
Eq. 7 together with Eq. 8 leads to a partial differential equation for the partition function

Z: (
∂ logZ

∂β

)
F

= −D
2β

+ FL, (9)

integrating which we get:

logZ = −D
2

log β + FLβ −W (F ), (10)

where W (F ) is an unknown function of F . Note that Eq. 10 holds for any heterogeneous
chain with any boundary condition, and all this information is included in W (F ), which is
independent of the temperature T . Also, regarding to the units in Eq. 10, we shall see in
the later sections (Eq. 34, Eq. 49 and Eq. 59) that W (F ) includes D terms of the logarithm
of quantities in energy units, which combine with the term −D

2
log β in Eq. 10 to make the

argument of the ‘log’ dimensionless.
Using the relation between the partition function Z and the free energy G, we obtain

G(T, F ) expressed in terms of W (F ):

G(T, F ) = −kBT logZ =
D

2β
log β − FL+

W (F )

β
. (11)

Eq. 11 shows how the free energy G(T, F ) depends on T and F up to an unkown function
W (F ). Note that G(T, F ) is the fundamental quantity for a fixed T, F ensemble because
all thermo-mechanical quantities can be derived from it (Callen, 1985). Here, by using

4



the equipartition theorem, we have been able to deduce a form for G(T, F ) in which the
dependences on T and F are conveniently decoupled. All thermo-mechanical quantities can
now be expressed in terms of W (F ). More importantly, we will see that W (F ) and its
derivative, which we denote as ∆(F ) = W ′(F ), have clear physical meanings and unlike
G(T, F ), can be measured directly in a single force-extension experiment.

We derive the thermo-mechanical quantities in terms of W (F ) and its derivatives ∆(F ),
∆′(F ) below. The entropy of the chain is given by:

S = −
(
∂G

∂T

)
F

=
1

2
DkB [ 1 + log(kBT ) ]− kBW (F ). (12)

Eq. 12 shows that the contributions of T and F to the entropy are decoupled.
The extension of the chain is given by a simple formula:

〈x〉 = −
(
∂G

∂F

)
T

= L− kBT ·∆(F ). (13)

where again ∆(F ) is the derivative of W (F ): ∆(F ) = W ′(F ). Note that as a special case,
the well-known formula for the 2D hinged-hinged homogeneous wormlike chain has exactly
the form of Eq. 13, with ∆(F ) given by (Purohit et al., 2008):

∆homo(F ) =
1

4

[
L√
KF

coth

(
FL√
KF

)
− 1

F

]
. (14)

It is interesting that the simple expression Eq. 13 holds for any general chain, with all the
complexity of the heterogeneity and boundary information appearing only in the function
∆(F ). Also note that the dependence on T of 〈x〉 is the same for all chains with any
heterogeneity and boundary conditions (Eq. 13). In fact, this conclusion is true for all the
thermo-mechanical quantities shown below.

More importantly, Eq. 13 implies that the unknown function ∆(F ) is actually the ‘shrink-
ing’ of the chain (L−〈x〉) scaled by the inverse of the thermal energy β = (kBT )−1. Therefore,
this unkown function of F can be measured in a single force-extension experiment and its
independence of T can also be tested. Further, to reveal the physical meaning of W (F ), we
integrate Eq. 13 with respect to F once to get:

kBT ·W (F ) = LF −
∫
〈x〉dF. (15)

The integral on the right-hand-side of Eq. 15 is the complementary energy of the chain
(Fig. 2), therefore, kBT ·W (F ) is the difference between LF and the complementary energy,
which corresponds to the shaded area beneath the force-extension curve shown in Fig. 2
and can be measured in a single force-extension experiment. Once W (F ) and ∆(F ) are
measured, all the other thermo-mechanical properties of the chain are known, as we will
show below. We note that kBT ·W (F ) is not exactly the energy stored in the chain, which
is
∫
Fdx = Fx −

∫
xdF . We also note that W (F ) can only be measured up to a constant

because of the indefinite integral in Eq. 15. However, this constant will not appear in ∆(F ),
which is the derivative of W (F ).

5



The variance of extension is related to the derivative of 〈x〉 with respect to F (Callen,
1985) and it is given by:

〈(∆x)2〉 = kBT

(
∂〈x〉
∂F

)
T

= −(kBT )2 ·∆′(F ), (16)

where Eq. 13 has been used. Eq. 16 implies that the variance of extension always scales as
T 2. Note that 〈(∆x)2〉 is non-negative, so ∆′(F ) ≤ 0 and therefore ∆(F ) is a decreasing
function, as it should be, because it is the ‘shrinking’ of a chain under a force F .

Using basic thermodynamic relations (Callen, 1985), the average energy of the chain and
its variance can also be expressed in term of ∆(F ) and ∆′(F ):

〈E〉 = 〈E − Fx〉+ F 〈x〉 = kBT

[
D

2
− F ·∆(F )

]
, (17)

〈(∆E)2〉 = −
(
∂〈E〉
∂β

)
F/T

= (kBT )2

[
1

2
D − 2F ·∆(F )− F 2 ·∆′(F )

]
. (18)

thermo-mechanical properties, such as heat capacity CF , coefficient of thermal expansion
α as well as the isothermal extensibility χ, are second derivatives of the free energy G (Callen,
1985). Using Eq. 11, Eq. 12 and Eq. 13, we get:

CF = T

(
∂S

∂T

)
F

=
kBD

2
, (19)

α =
1

〈x〉

(
∂〈x〉
∂T

)
F

=
−kB ·∆(F )

〈x〉
=

1

T [ 1− βL/∆(F ) ]
, (20)

χ =
1

〈x〉

(
∂〈x〉
∂F

)
T

=
−kBT ·∆′(F )

〈x〉
=

∆′(F )

∆(F )− βL
. (21)

Note that the heat capacity CF is a constant independent of both T and F .
From Eq. 20, we find that the inverse of the coefficient of thermal expansion is linear

with respect to T :
1

α
= T − L

kB ·∆(F )
. (22)

This can be tested in a single thermal expansion experiment with constant force F acting
at the end of the chain. We further note that the condition 〈x〉 ∈ [0, L] on Eq. 13 leads to
α ≤ 0 in Eq. 22, which means the chain shrinks in response to an increase in temperature.

Moreover, Eq. 13 combined with Eq. 20 suggests that if one does a force-extension experi-
ment and a thermal expansion experiment, one should find the results of the two experiments
related by:

〈x〉
L

=
1

1− αT
, (23)

with both sides evaluated at the same F and T . Note that this relation (Eq. 23) does not
invlove the unknown function W (F ) and therefore it is not affected by the heterogeneity and
boundary condition of the chain. It (Eq. 23) implies that a stiffer chain, which has a larger
value of 〈x〉/L, will have a smaller value of |α| and therefore is less sensitive to the change
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of temperature. In addition, Eq. 23 constitutes a falsifiable prediction of our theory and can
be tested in experiments.

To sum up, we have been able to express the thermo-mechanical properties for any
heterogeneous chain with any boundary conditions in terms of a single-variable unknown
function W (F ), instead of G(T, F ) and Z(T, F ). Moreover, unlike G(T, F ) and Z(T, F ),
W (F ) and its derivative ∆(F ) have clear physical meanings and are easy to measure in a
single force-extension experiment using Eq. 133. Therefore, by doing a single experiment,
one can get all the thermo-mechanical properties for the chain, without assuming the chain
is homogeneous and regardless of the type of boundary condition applied. Finally, we note
that the results in this section hold for the 2D chains as well as the 3D chains except that
the prefactor in Eq. 14 should be replaced by 1/2 in 3D case (see Kulić (2004) and also the
discussions on the relation between 2D and 3D chains in the latter section 3.6).

3.2. Hinged-hinged 2D chain

As has been shown in the previous section, all the thermo-mechanical quantities can be
expressed in terms of W (F ) and its derivatives. In what follows we obtain analytic expres-
sions for this function for a general 2D heterogeneous chain with hinged-hinged boundary
conditions.

For a hinged-hinged chain (Fig. 1(a)), one end of the chain is fixed at the origin while the
other end is constrained on the X̂ aixs, in other words, the Y coordinate of the end of the
chain is 0. This position constraint expressed in terms of the configuration tangent angles θi
is:

g(θi) =
1

l
·
∫ L

0

sin θ ds ≈
N∑
i=1

θi = 0. (24)

g is called the constraint function and it has been nondimensionalized. We will use the
Laplace method (Carrier et al., 2005) below to evaluate the partition function, so it is
sufficient to expand sin θ up to the first order in Eq. 24 (see the discussions below and also
footnote 4).

The partition function (Eq. 6), which sums over all the allowed configurations determined
by the constraint function g(θi) (Eq. 24), can be written in an integral form:

Z =

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp [−β(E − Fx) ] δ(g) d~θ, (25)

where d~θ = [ dθ1 dθ2 · · · dθN ] and δ(g) is the Dirac delta function acting on g(θi).
Note that the exact integral limits should be θi = ±π. But, noticing that the term

β(E − Fx) reaches its minimum value (−βFL) at θi ≡ 0, we have applied the Laplace

3Note that the shrinking ∆(F ) can be measured directly while the energy W (F ) can be measured only
up to an undetermined constant. But, from Eq. 13 to Eq. 21, we see that most of the thermo-mechanical
quantities are expressed only in terms of ∆(F ), instead of W (F ), so they can be determined exactly by
measuring ∆(F ).
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method to approximate the integral by extending its limit to θi = ±∞ (Carrier et al., 2005).
Further, by using the Fourier transform of the Dirac delta function δ (Carrier et al., 2005):

δ(g) =
1

2π

∫ +∞

−∞
exp(Ikg)dk, (26)

where I is the imaginary identity that satisfies I2 = −1, we can rewrite the partition function
Eq. 25 as:

Z =
1

2π

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp [−β(E − Fx) + Ikg] d~θ dk. (27)

Consider the exponent in the partition function Eq. 27: the Hamiltonian β(E − Fx) is
quadratic in θi and independent of k (see Eq. 4) and the constraint function g is linear in
θi (see Eq. 24). So the whole exponent [−β(E − Fx) + Ikg] is quadratic in θi and k and

therefore we can write it in a matrix form4 −~ΘTM~Θ (excluding a constant term βFL, which

can be taken out of the integral), where ~Θ = [θ1, θ2, · · · θN , k]T . Then the partition function
Eq. 27 can be evaluated analytically:

Z =
eβFL

2π

∫ +∞

−∞
exp

[
−
(
~ΘTM~Θ

)]
d~Θ (28)

=
eβFL

2π

√
πN+1

det M
. (29)

The (N + 1) dimensional matrix M, whose upper N ×N submatrix is a tridiagonal matrix,
can be written compactly as5:

[M]ij =

{
β(κi−1 + κi + f)δij − βκt · δ(|i−j|,1) 1 ≤ i, j ≤ N

−[1− δi,(N+1)δj,(N+1)] · I/2 otherwise
(30)

where t = min(i, j) and δ is the Kronecker delta. A similar mathematical technique for
evaluating the partition function has been applied for circular DNA by Zhang and Crothers
(2003).

Eq. 29 is the analytic expression for the partition function that involves a determinant
det M. We calculate this determinant in Appendix A and the result is:

det M =
NβN−1

4
×

N−1∏
i=1

λi, (31)

where λi is a sequence that contains information about the bending modulus sequence κi:

λ1 = 2κ1 + f, λi = (2κi + f)− κiκi−1

λi−1

(i = 2, 3, · · ·N − 1). (32)

4One of the three steps in the Laplace method is to expand the exponent around its minimum point
(Carrier et al., 2005), so it is proper to use the Taylor expansion expressions Eq. 4 and Eq. 24.

5Here to make the expression compact, we introduce κ0 = κN = 0
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Plugging the expression for det M (Eq. 31) into the partition function (Eq. 29), we get:

logZ = −N − 1

2
log β + FLβ − 1

2
log

(
N
∏N−1

i=1 λi
πN−1

)
. (33)

Comparing Eq.33 with Eq. 10 and noticing that the number of degrees of freedom is
D = (N − 1) because we have one position constraint on the end of the chain, we get the
analytic expression for W (F ):

W (F ) =
1

2

[
N−1∑
i=1

log λi + log

(
N

πN−1

)]
. (34)

Therefore,

∆(F ) =
dW (F )

dF
=

1

2

N−1∑
i=1

λ′i
λi
, (35)

where λ′i = dλi/dF .
By substituting Eq. 34 and Eq. 35 into Eq. 12 through Eq. 21, we get all the thermo-

mechanical quantities for the 2D heterogeneous hinged-hinged chain. In particular, the
force-extension relation is:

〈x〉 = L− kBT ·∆(F ) = L− kBT

2
·
N−1∑
i=1

λ′i
λi
. (36)

To verify our result, we apply Eq. 36 to a homogeneous chain and compare it with the
known theory for the homogeneous hinged-hinged continuous rod. We consider the limit
as the segment length l → 0 while the contour length L = Nl is held fixed so that the
discrete chain becomes a continuous rod. We show in Appendix B that in this special limit
case, Eq. 36 exactly reduces to the well-known force-extension relation for a homogeneous
fluctuating rod (Purohit et al., 2008):

〈xhomo〉 = L− LkBT

4
√
KF

coth

(
FL√
KF

)
+
kBT

4F
. (37)

Another special case is a continuous rod with 2 separated regions of bending modu-
lus KI and KII respectively. This special heterogeneous rod is suitable for studying the
forced-unfolding of proteins because the bending moduli of folded and unfolded proteins
are expected to be different. Let LI and LII be the contour length of the 2 homogeneous
sub-rods (LI + LII = L). We show in Appendix C that the extension of such a rod is given
by:

〈x〉 = L−kBT
2

 1
E1

√
F

cosh
(√

F
F1

)
+ 2K−1/2

F
sinh

(√
F
F1

)
+ 1

E0

√
F

cosh
(√

F
F0

)
+ ∆K−1/2

F
sinh

(√
F
F0

)
4K−1/2 sinh

(√
F
F1

)
+ 2∆K−1/2 sinh

(√
F
F0

) − 1

F

 ,
(38)
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where

K−1/2 =
1

2

(
1√
KI

+
1√
KII

)
, ∆K−1/2 =

1√
KI

− 1√
KII

, (39)

E1 =

(
L√

KIKII

+
LI
KI

+
LII
KII

)−1

, E0 =

(
L√

KIKII

− LI
KI

− LII
KII

)−1

, (40)

F1 =

(
LII√
KII

+
LI√
KI

)−2

, F0 =

(
LII√
KII

− LI√
KI

)−2

. (41)

Note that in general, the extension of the rod is not the sum of the extensions of the two
homogeneous sub-rods (Eq. 37) because (1) the two sub-rods do not necessarily satisfy the
hinged-hinged boundary conditions so Eq. 37 is not applicable to either of them; (2) there
is bending cooperativity at the interface of the two sub-rods.

3.3. Partially clamped 2D chain

For the partially clamped conditions, one end of the chain is still fixed at the origin but
the other end is free to have transverse displacement instead of being constrained on the X̂
axis (Fig. 1(b)). However, moments are applied such that both angles at the two ends are
zero:

θ1 = θN = 0. (42)

With the conditions in Eq. 42, the Hamiltonian (Eq. 4) can be rewritten in terms of only
(N − 2) angles from θ2 to θN−1:

β(E − Fx) =
N−1∑
i=2

β(κi−1 + κi + f)θ2
i − 2

N−2∑
i=2

βκiθiθi+1 − βFL. (43)

The partition function for a partially clamped chain is:

Z =

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp [−β(E − Fx)] d~θ, (44)

where d~θ = [ dθ2 · · · dθN−1 ].
We plug in the Hamiltonian (Eq. 43) into Eq. 44 and again write the exponent in Eq. 44

in matrix form −(~θTM~θ) (excluding a constant term βFL, which can be written outside the
integral), so that the partition function now becomes:

Z = eβFL
∫ +∞

−∞
exp

[
−~θTM~θ

]
d~θ = eβFL

√
πN−2

det M
, (45)

where in this case, M is a (N − 2) dimensional tridiagonal matrix and it can be written
compactly as:

[M]ij = β (κi + κi+1 + f) δij − βκt+1δ|i−j|,1, (46)

with t = min(i, j).
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By performing elementary row operations on M and evaluating its eigenvalues, we find
that its determinant is given by:

det M = βN−2 ×
N−2∏
i=1

λi, (47)

where the sequence λi, different from the one in the hinged-hinged case, is given by:

λ1 = κ1 + κ2 + f, λi = (κi + κi+1 + f)− κ2
i

λi−1

(i = 2, 3, · · ·N − 2). (48)

By substituting Eq. 47 into Eq. 45 and comparing the expression of logZ with Eq. 10,
we obtain the analytic expression for W (F ) and ∆(F ):

W (F ) =
1

2

[
N−2∑
i=1

log λi − (N − 2) log π

]
, (49)

∆(F ) =
1

2

N−2∑
i=1

λ′i
λi
, (50)

where again λ′i = dλi/dF .
Suprisingly, ∆(F ) has the same form as in the hinged-hinged case. But, we emphasize

that the sequence λi here is different from the one in the hinged-hinged case (Eq. 32 and
Eq. 48).

Again, by substituting Eq. 49 and Eq. 50 into Eq. 12 through Eq. 21, we obtain all the
thermo-mechanical quantities.

3.4. Clamped-clamped 2D chain

For the clamped-clamped chain, the two tangent angles at the ends are constrained to
zero and the ends of the chain are constrained on the X̂ axis (Fig. 1(c)). The Hamiltonian
is the same as the one in the partially clamped case given in Eq. 43.

The position constraint function, Eq. 24, which states that the end of the chain must lie
on the X̂ axis, can also be expressed in terms of the (N − 2) angles θ2, θ3, · · · θN−1:

g ≈
N−1∑
i=2

θi = 0. (51)

The partition function for a clamped-clamped chain is:

Z =

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp [−β(E − Fx)] δ(g) d~θ (52)

=
1

2π

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp [−β(E − Fx) + Ikg] d~θ dk, (53)

where Eq. 26 has been used and d~θ = [ dθ2 · · · dθN−1 ].
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Again, to evaluate the partition function, we plug Eq. 43 and Eq. 51 into Eq. 53 and
express the exponent in a quadratic form −~ΘTM~Θ (excluding a constant term βFL, which

can be written outside the integral), where ~Θ = [θ2, · · · θN−1, k]T , then the partition function
can be evaluated analytically as:

Z =
eβFL

2π

√
πN−1

det M
, (54)

where the (N − 1) dimensional matrix M in this case is:

[M]ij =

{
β (κi + κi+1 + f) δij − βκt+1δ|i−j|,1 1 ≤ i, j ≤ N − 2

−I(1− δi,(N−1)δj,(N−1))/2 otherwise
(55)

again, t = min(i, j).
We show in Appendix D that in this case, the determinant det M is:

det M =

(
βN−3R

4

)N−2∏
i=1

λi, (56)

with the sequence of λi being the same as the one in the partially clamped case given in
Eq. 48 and the quantity R is given by:

R =
N−2∑
i=1

(κi + κi+1 + f)g2
i − 2

N−3∑
i=1

κi+1gigi+1, (57)

with

gN−2 =
ρN−2

λN−2

, gi =
ρi + κi+1gi+1

λi
(i = N−3, N−2, · · · 1), ρi = 1+

i−1∑
j=1

(
i∏

s=i−j+1

κs
λs−1

)
. (58)

We plug Eq. 56 into Eq. 54, compare the expression for logZ with Eq. 10 to find the
expressions for W (F ) and ∆(F ) (note that the number of degrees of freedom in this case is
D = N − 3):

W (F ) =
1

2

[
N−2∑
i=1

log λi + logR− (N − 3) log π

]
, (59)

∆(F ) =
1

2

[
N−2∑
i=1

λ′i
λi

+
R′

R

]
, (60)

where R′ = dR/dF .
With Eq. 59 and Eq. 60, all the thermo-mechanical quantities can be computed. In

particular, the force-extension relation for a clamped-clamped chain is:

〈x〉 = L− kBT ·∆(F ) = L− kBT

2

[
N−2∑
i=1

λ′i
λi

+
R′

R

]
. (61)
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3.5. Fluctuation of a 2D chain

In addition to the thermo-mechanical quantities discussed above, we are also interested
in the quantity 〈θi · θj〉, because it reflects how much the chain is fluctuating. Also, by
calculating 〈θi ·θj〉, we immediately get the fluctuation of the chain in the Y direction, which
has been measured in experiments for some biopolymers (Arsenault et al., 2007):

〈y2
i 〉 =

〈(
i∑

j=1

l sin θj

)(
i∑

k=1

l sin θk

)〉
≈ l2

i∑
j,k=1

〈θj · θk〉, (62)

where yi is the transverse displacement of the i-th segment in the Y direction (Fig. 1).
The quantity 〈θi · θj〉 by definition is:

〈θi · θj〉 =
1

Z

∑
ν

(θi · θj) exp[−β(Eν − Fxν)]. (63)

By writing it in integral form, we can evaluate it using the following formula (Reichl, 1980;
Zhang and Crothers, 2003):

〈θi · θj〉 =

∫ +∞
−∞ (θi · θj) exp[−~ΘTM~Θ] d~Θ∫ +∞

−∞ exp[−~ΘTM~Θ] d~Θ
(64)

=
1

2

(
M−1

)
ij
, (65)

where the detailed expressions and dimensionality of M and ~Θ depend on the boundary
conditions as has been discussed in the previous sections (Eq. 30, Eq. 46 and Eq. 55). For
the analytic formula of the inverse of a tridiagonal matrix, we refer the reader to da Fonseca
and Petronilho (2001).

Note that for the partially clamped chain, from Eq. 46, we know that:

〈θi · θj〉 =
1

2

(
M−1

)
ij
∼ β−1 ∼ T, (66)

and therefore using Eq. 62, we conclude that the transverse fluctuation of the chain scales
linearly with respect to T:

〈y2
i 〉 ∼ T. (67)

Recall that the variance in the extension x scales as T 2 (Eq. 16). So as temperature
T increases, the fluctuation in x should be more significant compared to the transverse
fluctuation.

We show in Appendix E that Eq. 66 also holds for the hinged-hinged chain and the
clamped-clamped chain. So the conclusion that the transverse fluctuation scales as T holds
for all the boundary conditions discussed in this paper.
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3.6. Theory for the 3D chains

We will show in this section that by choosing a suitable set of angles that represents the
configuration of the chain, the results for a 2D chain can be easily generalized to a 3D one.

Let X̂, Ŷ and Ẑ be the standard reference triad in 3D space. As before, a force ~F = FX̂
is acting on one end of the chain while the other end is fixed at the origin. We denote the
unit tangent vector of the 3D chain as t̂(s), which forms an angle θ(s) with respect to the
X̂ axis. The projection of t̂ on the Ŷ -Ẑ plane forms an angle φ with respect to the Ŷ axis
so that t̂(s) can be written as:

t̂ = [cos θ, sin θ cosφ, sin θ sinφ]. (68)

It follows then: ∣∣∣∣ dt̂ds
∣∣∣∣2 = θ̇2 + sin2 θφ̇2, (69)

where θ̇ and φ̇ are the derivative of θ and φ with respect to the arc length s.
We will discuss the 3D hinged-hinged chain below in detail. 3D chains under the other

two boundary conditions can be studied following the same procedure, though some detailed
steps are different, the final results turn out be the same and we will give a summary in the
end of this section.

We define:
ϑx = θ cosφ, ϑy = θ sinφ, (70)

so that:
ϑ2
x + ϑ2

y = θ2, ϑ̇x
2

+ ϑ̇y
2

= θ̇2 + θ2φ̇2. (71)

Representation of the 3D chains using ϑx and ϑy has been discussed in Kulić (2004).
The Hamiltonian of the 3D chain, up to a quadratic approximation, can be written as 6:

H3D = β(E − Fx) =

∫ L

0

βK

2

∣∣∣∣ dt̂ds
∣∣∣∣2 ds− βF ∫ L

0

cos θds (72)

≈
∫ L

0

βK

2

(
θ̇2 + θ2φ̇2

)
ds− βF

∫ L

0

(
1− θ2

2

)
ds (73)

=

[∫ L

0

βK

2
ϑ̇x

2
ds− βF

∫ L

0

(
1− ϑ2

x

2

)
ds

]
+

[∫ L

0

βK

2
ϑ̇y

2
ds− βF

∫ L

0

(
1−

ϑ2
y

2

)
ds

]
+ βFL.(74)

Here Eq. 69 and Eq. 71 have been used. Comparing Eq. 74 with Eq. 3, we conclude that:

H3D = H2D(ϑx) + H2D(ϑy) + βFL, (75)

where H2D(ϑ) represents the Hamiltonian of the 2D chain with tangent angle denoted as ϑ.

6We assume that there are no torsional constraints here. Problems with torsional or other constraints
can be addressed using the same method as long as the Hamiltonian can be expressed as a quadratic form.
Also, see Nelson (2008) for explanations when the twisting energy can be neglected.
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There are two constraints for the 3D chain: the Y and Z coordinates of the end of
the chain should be zero. They relate to the constraint function in the 2D problem in the
following ways (see Eq. 24 for the 2D constraint function):

gY =

∫ L

0

sin θ cosφ ds ≈
∫ L

0

ϑxds = g2D(ϑx), (76)

gZ =

∫ L

0

sin θ sinφ ds ≈
∫ L

0

ϑyds = g2D(ϑy). (77)

Note that the two constraint functions are decoupled in terms of the angles ϑx and ϑy up
to a linear approximation, which is sufficient for using the Laplace method to evaluate the
partition function, as we have shown in the 2D case.

Hence, using Eq. 75, Eq. 76 as well as Eq. 77, the partition function for a 3D chain is:

Z3D =

∫ +∞

−∞

∫ +∞

−∞
exp (−H3D) δ(gY )δ(gZ)d~ϑxd~ϑy (78)

= e−βFL
∫ +∞

−∞
exp [−H2D(ϑx)] δ [g2D(ϑx)] d~ϑx ·

∫ +∞

−∞
exp [−H2D(ϑy)] δ [g2D(ϑy)] d~ϑy(79)

= e−βFL(Z2D)2. (80)

Eq. 80 relates the 3D partition function with the 2D partition function, from which we
further get:

logZ3D = −βFL+ 2 logZ2D = −βFL+ 2

[
−D2D

2
log β + FLβ −W2D(F )

]
(81)

= −D3D

2
log β + βFL− 2W2D(F ), (82)

where Eq. 10 has been used. Here the number of degrees of freedom of a 3D chain is twice
of that of a 2D chain (D3D = 2D2D) because for each segment, we have θi and also φi.
Comparing Eq. 82 with Eq. 10, we get:

W3D(F ) = 2W2D(F ), (83)

and therefore:
∆3D(F ) = 2 ·∆2D(F ), ∆′3D(F ) = 2 ·∆′2D(F ). (84)

With the relations of 2D and 3D ∆(F ), we conclude using Eq. 12 through Eq. 19 that for
a 3D chain, the following quantities are twice of those of the 2D chain: the entropy S, the
shrinking of the chain L− 〈x〉, average energy 〈E〉, the heat capacity CF and the variances
of the extension and the energy 〈(∆x)2〉, 〈(∆E)2〉.

To relate the fluctuation of a 3D chain with a 2D one, note that the transverse displace-
ment of the 3D chain is:

〈 y(s)2
3D + z(s)2

3D 〉 =

〈(∫ s

0

sin θ cosφ ds

)2

+

(∫ s

0

sin θ sinφ ds

)2
〉

(85)

≈

〈(∫ s

0

ϑxds

)2

+

(∫ s

0

ϑyds

)2
〉

(86)

= 2〈 y(s)2
2D 〉. (87)
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So the transverse fluctuation is twice larger for the 3D chain.
Finally, we note that for the partially clamped and clamped-clamped 3D chain, the

corresponding boundary conditions are that for the first and last segment of the chain:

θ = ϑx = ϑy = 0 (88)

The derivations are almost the same as the hinged-hinged chain and are not shown here.
The results of Eq. 83, Eq. 84 as well as Eq. 87 remain the same as for the hinged-hinged
chain.

4. Monte Carlo Simulation

To verify our theory, we have done Monte Carlo (MC) simulations for the 2D fluctuating
chains under an external applied force for all the three boundary conditions. The chain is
represented by the N tangent angles θi as in the theoretical model and it is initially straight.

At each MC step, a new conformation is generated from the existing one by randomly
varying N of the θi. Each valid change of the configuration should satisfy the boundary
conditions. A new conformation is accepted with a probability according to the Metropolis
criterion (Allen and Tildesley, 1987) and the thermo-mechanical quantities and fluctuations
of the chain are recorded. To check if equilibrium has been reached in a given simulation,
we ensure that the equipartition theorem (Eq. 8) is satisfied. Results are recorded only at
equilibrium.

5. Results and Application

5.1. thermo-mechanical properties of the chain

Fig. 3 shows the thermo-mechanical quantities for a homogeneous fluctuating 500-segment
chain under different boundary conditions. The contour length of the chain is L = 2.5nm and
the bending modulus is K = 2.5kBT ·nm so that ξp/L = 2 (2D), where ξp is the persistence
length of the chain. Several interesting results are shown in this figure: (1) All the results
show that the hinged-hinged chain is the most flexible. It has the smallest extension under an
applied force and it has the largest variances in extension and energy. On the other hand, the
clamped-clamped chain is the least flexible, which is expected because it has the smallest
number of degrees of freedom. (2) The variances of extension and energy are decreasing
functions of the applied force F . In other words, force suppresses the fluctuations of the
chain. (3) Coefficient of thermal expansion α is negative and it is increasing with F . (4)
The hinged-hinged chain and partially clamped chain have similar results for the thermo-
mechanical quantities that are determined only by ∆(F ) and ∆′(F ), but not W (F ). This
can be understood by comparing the expressions of ∆(F ) for these two boundary conditions
(Eq. 35 and Eq. 50).

Eq. 23, which relates the response of the chain to the force and to temperature, is verified
in MC simulations. Average extension and thermal expansion coefficient are recorded in
simulations under forces varying from 150pN to 1150pN. The result is shown in Fig. 4.

The force-extension relation for a homogeneous continuous rod has been studied under
all the three boundary conditions (Purohit et al., 2008). To check our results, we plot the
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force extension relation for a homogeneous chain and compare it with the known theory for
the rod in Fig. 5. Here we choose a large N = 50000 so that l = L/N << L and the chain is
approximately a smooth rod. Fig. 5 shows that our formulae for all the boundary conditions
reduce to the known theory for the homogeneous rods when N is large and l is small.

The computational complexity using the formulae for thermo-mechanical properties shown
in this paper is O(N). This is true not only for homogeneous chains, but for any heteroge-
neous chain under all the three boundary conditions. Note that we need at least N values
of Ki to specify an arbitrary heterogeneous chain, so O(N) is the optimal computational
complexity for the problem.

5.2. Fluctuation and correlation of the angle θi

Fig. 6 shows the fluctuation in θi (i.e., 〈θ2
i 〉) along the chain. The profile depends strongly

on the boundary conditions when ξp/L > 1 (Fig. 6(a) shows the case when ξp/L = 5). In this
case, the hinged-hinged chain has maximum fluctuation at the two ends whereas the partially
clamped and clamped-clamped chains have minimum fluctuations there, which is expected
because θ1 = θN ≡ 0 for these two chains. In the middle point of the chain, the hinged-
hinged chain and the partially clamped chain achieve their smallest and largest fluctuations
respectively. It is interesting that the maximum fluctuation for the clamped-clamped chain
does not occur in the middle of the chain (Fig. 6(a) black). When ξp/L becomes small, the
boundary conditions only influence the profile near the two ends of the chain (Fig. 6(b)).
Away from the two ends, the profiles almost coincide for different boundary conditions.

Fig. 7 shows the dependence of the 〈θ2
i 〉 profile on the heterogeneity of the chain. The

theoretical predictions are compared to the MC simulation results for all the three boundary
conditions. For all the cases studied here, a jump in the bending modulus leads to a corre-
sponding jump in the 〈θ2

i 〉 profile. The larger the bending modulus, the smaller the value
of 〈θ2

i 〉. The figures imply that the heterogeneity of the chain has a significant influence on
〈θ2
i 〉.

Fig. 8 shows the correlation in the θ angles. In particular, we show 〈θ(s) · θ(L/2)〉 here.
Clearly, the profiles should have a peak at s = L/2 and decrease as s moves away from L/2.
The smaller the persistence length ξp is compared to the contour length L, the faster the
profile decreases. Again, the results show that the profiles depend strongly on the boundary
conditions when ξp/L ≈ 1. For the partially clamped chain, our theory predicts that the
correlation decreases but remains positive along the chain whereas for the hinged-hinged
and clamped-clamped chains, the correlations can become negative near the two ends of the
chain, although for the clamped-clamped chain, due to the constraints that θ1 = θN ≡ 0,
the correlation is exactly 0 at the ends. The MC simulation results confirm our predictions.
In order to show the theoretical prediction clearly, we plot the simulation results separately
in (b), (d) and (f). In addition, we show in Fig. 8(g) (theory) and (h) (MC simulation) that
the correlation profile is not symmetric for a heterogeneous chain. The correlation decreases
faster where the bending modulus is smaller.

5.3. Transverse fluctuation of the chains 〈y2〉
Fig. 9(a) shows the transverse fluctuation of the chain in the Y direction. As shown in the

figure, the transverse fluctuation depends on the boundary conditions and the heterogeneity
of the chain. For chains with the same bending modulus, the partially clamped chain has the
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largest transverse fluctuation while the clamped-clamped chain has the smallest fluctuation,
which is expected because the clamped-clamped chain has the smallest number of degrees
of freedom. Fig. 9(b) shows that the fluctuation decreases when the force increases. The
theoretical predictions and the MC simulation results match quite well.

Fig. 10(a)-(c) show that for a fixed persistence length, the chain that has longer contour
length has more transverse fluctuation. Our theoretical predictions and the MC simulation
results match quite well for all the three boundary conditions.

5.4. Application to the protein unfolding problem

The mechanical behavior of proteins is studied in experiments by stretching oligomers
in an atomic force microscope. As the protein chain is stretched, the number of unfolded
oligomers increases in steps and this gives rise to a characteristic saw-tooth pattern in the
force-extension profile as seen in Fig. 11 (experimental data from Chyan et al. (2004)). The
loss of structural integrity in the unfolded regions is expected to change the stiffness of the
chain. We can study these effects through our heterogeneous fluctuating chain model. To see
how this can be achieved we refer the reader to the force-extension curves in Fig. 11. The blue
dotted curves in Fig. 11 are the experimental data of forced unfolding of a chain of ubiquitins
under constant velocity pulling from Chyan et al. (2004). Each peak in the profile represents
an unfolding event where the force drops precipitously. There are six experimental curves in
Fig. 11 (see the descriptions in Chyan et al. (2004)) and the last curve corresponds to the
force-extension relation of a chain of purely unfolded ubiquitins. We model the entire protein
oligomer as a fluctuating chain with two bending moduli Kf (for folded proteins) and Ku (for
unfolded proteins), each part with length NfLfs and NuLus, where Nf , Nu are the number
of folded and unfolded proteins (they are changing from curve to curve) and Lfs, Lus are
the contour lengths of a single folded and unfolded protein respectively. We first fit the last
curve, which corresponds to six unfolded ubiquitins, with the homogeneous model (Eq. 37)
and obtain two parameters Ku and Lus for the unfolded protein. Similarly, we fit the first
curve to obtain the other two parameters Kf and Lfs for the folded protein (Fig. 11(a), red
circles are the fitted data and black curves are the fitting results). Then without any more
free parameters, we apply the force-extension relation for a ‘special heterogeneous chain’
(Eq. 38, 3D version) to predict all the intermediate curves using different values of Nf and
Nu (Fig. 11(b), red curves). As shown in Fig. 11(b), our prediction matches the experimental
data quite well.

6. Conclusion

In this paper we have developed a method to determine the thermo-mechanics of hetero-
geneous fluctuating elastic rods and chains with arbitrary boundary conditions. In particular,
we are able to compute the force-extension relation and the variance of transverse fluctuation
of the chain. Our results are in excellent agreement with Monte Carlo simulations. We have
demonstrated the usefulness of our method by using it to interpret experimental data on the
stretching of proteins. Our method assumes that there are no torsional constraints on the
rod. But, problems with torsional or other constraints can be addressed using this method
as long as the energy can be expressed as a quadratic form in the kinematic variables. The
framework developed in this paper is not restricted to one-dimensional rods or chains alone.
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In fact, our goal is to extend this technique to two- and three-dimensional problems, such
as, those involving the mechanics of networks of filaments.
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Appendix

A. det M for the hinged-hinged chain

The (N + 1) dimension matrix M for the hinged-hinged case is given by (Eq. 30), which
is:

M =



β(κ1 + f) −βκ1 0 · · · 0 −I/2
−βκ1 β(κ1 + κ2 + f) −βκ2 · · · 0 −I/2

0 −βκ2 β(κ2 + κ3 + f) · · · 0 −I/2
· · · · · · · · · · · ·

0 0 0 · · · −βκN−1 −I/2
0 0 0 · · · β(κN−1 + f) −I/2
−I/2 −I/2 −I/2 · · · −I/2 0


(89)

To evaluate the determinant of M, we introduce another matrix M∗ as:

M∗ = RTPMQR, (90)

where the (N+1) dimensional matrices R, P and Q are:

P = diag
(
β−1, β−1, · · · , β−1, 2I

)
, (91)

Q = diag (1, 1, · · · , 1, 2Iβ) , (92)

R =



1 0 0 · · · 0 0 0
1 1 0 · · · 0 0 0
1 1 1 · · · 0 0 0
· · · · · · · · · · · ·

1 1 1 · · · 1 0 0
1 1 1 · · · 1 1 0
0 0 0 · · · 0 0 1


(93)

From Eq. 90 and the definitions of the matrics P, Q and R, we get:

det M = −β
N−1

4
det M∗. (94)

Now we need to evaluate det M∗.
Using Eq. 90, we get the matrix M∗:

M∗ =

(
Min

~G
~GT 0

)
, (95)
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where the N dimensional Min is given by:

Min =


Nf (N − 1)f (N − 2)f · · · 2f f

(N − 1)f κ1 + (N − 1)f (N − 2)f · · · 2f f
(N − 2)f (N − 2)f κ2 + (N − 2)f · · · 2f f

· · · · · · · · · · · ·
2f 2f 2f · · · κN−2 + 2f f
f f f · · · f κN−1 + f

 (96)

and N dimensional vector ~GT is given by:

~GT = [N,N − 1, N − 2, · · · , 2, 1] . (97)

But for the type of matrix in form of Eq. 95, we have the following formula (see Zhang
and Crothers (2003)):

det M∗ = − det Min

(
~GT ·M−1

in
~G
)
. (98)

So now we need to compute det Min as well as ~GT ·M−1
in
~G.

We first perform elementary row operations on Min, transform it into a diagonal matrix
and find its determinant given by:

det Min = f
N−1∏
i=1

λi, (99)

where the sequence λi is given by:

λ1 = 2κ1 + f, λi = (2κi + f)− κiκi−1

λi−1

(i = 2, 3, · · ·N − 1). (100)

Next, to evaluate ~GT ·M−1
in
~G, we define ~g as:

Min ~g = ~G, (101)

so that
~GT ·M−1

in
~G = ~gT ·Min ~g, (102)

where the symmetry property of Min has been used. But Eq. 101 is easy to solve and one
can verify that:

~gT =
[
f−1, 0, 0, · · · , 0, 0

]
, (103)

and therefore using Eq. 96, Eq. 102 and Eq. 103, we get:

~GTM−1
in
~G =

N

f
. (104)

Finally, Eq.94, Eq. 98, Eq. 99 together with Eq. 104 leads to:

det M =
NβN−1

4
×

N−1∏
i=1

λi. (105)
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B. Force-extension relation for a homogeneous wormlike chain

For a homogeneous chain, we have Ki ≡ K and κi ≡ κ. Using the definition of the
sequence λi for a hinged-hinged chain (Eq. 32), one can verify by mathematical induction
that:

N−1∏
k=i

λk = λi · pN−i−1 − rd · pN−i−2, (i ≤ N − 2) (106)

where r, d are given by:

r =
2κ+ f +

√
4κf + f 2

2
, d =

2κ+ f −
√

4κf + f 2

2
, (107)

and the sequence pi is given by:

pi =
ri+1 − di+1

r − d
. (108)

Using Eq. 106 to Eq. 108 and also Eq. 32, we get:

N−1∏
k=1

λk = λ1 · pN−2 − rd · pN−3 =
rN − dN

r − d
. (109)

Hence,

N−1∑
k=1

λ′i
λi

=
d

dF

(
log

N−1∏
k=1

λk

)
(110)

=
Nr′

r
·

1−
(
d
r

)′ · (d
r

)N−1

1−
(
d
r

)N − r′

r
·

1−
(
d
r

)′
1−

(
d
r

) . (111)

Using the definitions of r, d (Eq. 107) as well as those for κ, f (Eq. 5), we get:

r =
K

2L
N +

√
KF

2
+O(N−1), (112)

r′ =
1

4

√
K

F
+

L

4N
+O(N−2), (113)

d =
K

2L
N −

√
KF

2
+O(N−1), (114)

d′ = −1

4

√
K

F
+

L

4N
+O(N−2). (115)

Plugging Eq. 112 to Eq. 115 into Eq. 111, taking the limit as N → +∞, we get:

lim
N→∞

N−1∑
k=1

λ′i
λi

=
1

2

[
L√
KF

coth

(
L

√
F

K

)
− 1

F

]
. (116)

Putting Eq. 116 into Eq. 36, we recover the force-extension relation for a homogeneous
hinged-hinged continuous rod (Purohit et al., 2008):

〈xhomo〉 = L− LkBT

4
√
KF

coth

(
FL√
KF

)
+
kBT

4F
. (117)
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C. Force-extension relation for a special heterogeneous wormlike chain

For a special heterogeneous wormlike chain, we have

κi =

{
κI 1 ≤ i ≤ s

κII (s+ 1) ≤ i ≤ N
(118)

Here s is an integer indicating the segment that separates the two regions of the chain (s is
not the arc length in this section).

Hence, under hinged-hinged conditions, the sequence λi is (Eq. 32):

λi =


2κI + f i = 1

2κI + f − κ2
I

λi−1
2 ≤ i ≤ s

2κII + f − κIκII

λs
i = s+ 1

2κII + f − κ2
II

λi−1
s+ 2 ≤ i ≤ (N − 1)

(119)

Using mathematical induction, one can verify that:

N−1∏
k=i

λk =


pN−i−1λi − r2d2 · pN−i−2 (s+ 1) ≤ i ≤ (N − 2)

pN−s−1λs − κIκII · pN−s−2 i = s

pN−i−1λi − r1d1 · pN−i−2 1 ≤ i ≤ (s− 1)

(120)

where pi, ri and di are given by:

pi =


ri+1
2 −di+1

2

r2−d2 0 ≤ i ≤ (N − s− 2)

(r2 + d2)pN−s−2 − r2d2pN−s−3 i = N − s− 1
ri−N+s+2
1 −di−N+s+2

1

r1−d1 · pN−s−1 − ri−N+s+1
1 −di−N+s+1

1

r1−d1 · κIκII · pN−s−2 N − s ≤ i ≤ (N − 2)

(121)

r1 =
2κI + f +

√
4κIf + f 2

2
, d1 =

2κI + f −
√

4κIf + f 2

2
, (122)

r2 =
2κII + f +

√
4κIIf + f 2

2
, d2 =

2κII + f −
√

4κIIf + f 2

2
. (123)

In particular, using Eq. 120 and setting i = 1, we get:

N−1∏
k=1

λk =

(
rN−s2 − dN−s2

) (
rs+1

1 − ds+1
1

)
− κIκII

(
rN−s−1

2 − dN−s−1
2

)
(rs1 − ds1)

(r1 − d1)(r2 − d2)
. (124)

Note that Eq. 124 reduces to the homogeneous case (Eq. 109) when we set s = 0, or s = N−1,
or r1 = r2, d1 = d2.

Using Eq. 122, Eq. 123 as well as Eq. 5, we have:

r′i
ri

=
L

2Ki

√
Ki

F

1

N
+O(N−3), (125)

23



di
ri

= 1− 2L
√
KiF

KiN
+

2FL2

KiN2
+O(N−3), (126)

(
di
ri

)u
= exp(

−2uL
√
KiF

NKi

) +O(N−2) (127)

where u is a function of N and it satisfies u(N) ∼ N as N → +∞.

d′i
r′i

= −1 + 2L

√
F

Ki

1

N
+O(N−2), (128)

κi
ri

= 1− L
√
KiF

KiN
+O(N−2). (129)

Here to make the formulae compact, we use κ1, κ2, K1, K2 to denote κI , κII , KI and
KII . Note that the subscripts 1 and 2 in this section do not mean the 1st and 2nd segments
of the chain.

Similarly as in Appendix B, we can use Eq. 125 to Eq. 129 to evalute
∑
λ′i/λi and then

the function ∆(F ) (take N → +∞ while keeping Nl = L fixed), the result is:

∆(F ) =

1
E1

√
F

cosh
(√

F
F1

)
+ 2K−1/2

F
sinh

(√
F
F1

)
+ 1

E0

√
F

cosh
(√

F
F0

)
+ ∆K−1/2

F
sinh

(√
F
F0

)
8K−1/2 sinh

(√
F
F1

)
+ 4∆K−1/2 sinh

(√
F
F0

) − 1

2F
.

(130)

The meanings of K−1/2, ∆K−1/2, E1, E0, F1 and F0 are given in Eq. 39 to Eq. 41. Using
x = L− kBT∆(F ) (Eq. 13), we get the force-extension relation for a special heterogeneous
rod, which is shown in the main text (Eq. 38).

D. det M for the clamped-clamped chain

The (N − 1) dimensional matrix M for the clamped-clamped chain is given by Eq. 55,
which is:

M =



β(κ1 + κ2 + f) −βκ2 0 · · · 0 −I/2
−βκ2 β(κ2 + κ3 + f) −βκ3 · · · 0 −I/2

0 −βκ3 β(κ3 + κ4 + f) · · · 0 −I/2
· · · · · · · · · · · ·

0 0 0 · · · −βκN−2 −I/2
0 0 0 · · · β(κN−2 + κN−1 + f) −I/2
−I/2 −I/2 −I/2 · · · −I/2 0


(131)

To evaluate the determinant of M, we introduce another matrix M∗ as:

M∗ = PMQ, (132)
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where the (N − 1) dimensional matrix P and Q are:

P = diag
(
β−1, β−1, · · · , β−1, 2I

)
, (133)

Q = diag (1, 1, · · · , 1, 2Iβ) . (134)

Note that the matrics P and Q defined here are the same as those defined for the hinged-
hinged chain (Eq. 91 and Eq. 92) except that their dimensionalities are different.

From Eq. 132 and the definitions of the matrics P, Q, we get:

det M = −β
N−3

4
det M∗. (135)

Now we need to evaluate det M∗.
Using Eq. 132, we get the matrix M∗:

M∗ =

(
Min

~G
~GT 0

)
, (136)

where the (N − 2) dimensional Min in this case is given by:

Min =


κ1 + κ2 + f −κ2 0 · · · 0
−κ2 κ2 + κ3 + f −κ3 · · · 0

0 −κ3 κ3 + κ4 + f · · · 0
· · · · · · · · ·

0 0 0 · · · −κN−2

0 0 0 · · · κN−2 + κN−1 + f

 (137)

and (N − 2) dimensional vector ~GT is given by:

~GT = [1, 1, 1, · · · , 1, 1] . (138)

Again, for the type of matrix in form of Eq. 136, we have the formula (Zhang and
Crothers, 2003):

det M∗ = − det Min

(
~GT ·M−1

in
~G
)
. (139)

So now we need to compute det Min as well as ~GT ·M−1
in
~G.

We first perform the elementary row operations on Min and find that its determinant is
given by:

det Min =
N−2∏
i=1

λi, (140)

where the sequence λi is given by:

λ1 = κ1 + κ2 + f, λi = (κi + κi+1 + f)− κ2
i

λi−1

(i = 2, 3, · · ·N − 2). (141)
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Next, to evaluate ~GT ·M−1
in
~G, which we will denote as R below, we again define ~g as:

Min ~g = ~G, (142)

so that
R = ~GT ·M−1

in
~G = ~gT ·Min ~g. (143)

We solve Eq. 142 and get ~g:

gN−2 =
ρN−2

λN−2

, gi =
ρi + κi+1gi+1

λi
. (i = N − 3, N − 4, · · · 1) (144)

where the sequence ρi is given by:

ρi = 1 +
i−1∑
j=1

(
i∏

s=i−j+1

κs
λs−1

)
. (145)

Therefore using Eq. 137, Eq. 143 and Eq. 144, we get:

R =
N−2∑
i=1

(κi + κi+1 + f)g2
i − 2

N−3∑
i=1

κi+1gigi+1. (146)

Finally, Eq.135, Eq. 139, Eq. 140, Eq. 143 together with Eq. 146 lead to:

det M =

(
βN−3R

4

)N−2∏
i=1

λi. (147)

E. Transverse fluctuation scales as T

We need to show 〈y2
i 〉 ∼ T for the hinged-hinged and clamped-clamped chain in this

section. For chains under both the boundary conditions, the matrix M have the form (see
Eq. 89 and Eq. 131):

M =

(
βJ ~v
~vT 0

)
. (148)

Using Eq. 148, one can verify by matrix multiplication (or see Zhang and Crothers (2003))
that:

M−1 =

(
β−1

[
J−1 − J−1~v

(
~vTJ−1~v

)−1
~vTJ−1

]
J−1~v

(
~vTJ−1~v

)−1(
~vTJ−1~v

)−1
~vTJ−1 −β

(
~vTJ−1~v

)−1

)
. (149)

Note that 〈θi · θj〉 is determined by the upper corner submatrix of M−1 (Eq. 65, the rest
of the elements in the matrix M−1 correspond to 〈θi ·k〉, which we are not interested in. Here
k is from the Fourier transform of the Dirac delta function in Eq. 26). Therefore, noticing
that both J and ~v do not depend on β, we have:

〈θi · θj〉 =
(
M−1

)
ij

= β−1
[
J−1 − J−1~v

(
~vTJ−1~v

)−1
~vTJ−1

]
ij
∼ T. (150)

Finally, using the relation between 〈y2
i 〉 and 〈θi · θj〉 (Eq. 62), we conclude that:

〈y2
i 〉 ∼ T. (151)
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Captions

Figure 1

Model of the 2D chain. A thermally fluctuating N−segment 2D chain is subjected to
an external applied force ~F = FX̂. The configuration of the chain is characterized by its
N tangent angles θi, formed by the segments with respect to the X̂ axis. The transverse
displacement of the chain, denoted by yi in the figure, reflects how much the chain fluctuates.
(a) Hinged-hinged boundary conditions: both ends of the chain are constrained on the X̂
axis, but no moment is acting on them; (b) partially clamped boundary conditions: one end
of the chain is clamped on the X̂ aixs while the other end, with slope also constrained to
be zero, is free to have transverse displacement in the Y direction. (c) clamped-clamped
boundary conditions: both ends are clamped on the X̂ axis.

Figure 2

The unkown function W (F ) can be measured in a single force extension experiment.
The shaded area above the force-extension curve is the complementary energy and the area
beneath the force-extension curve is kBT ·W (F ) by Eq. 15.

Figure 3

Thermo-mechanical quantities for a fluctuating chain. Blue: hinged-hinged boundary
conditions; red: partially clamped boundary conditions; black: clamped-clamped boundary
conditions. (a) Force-extension profile of the chain. Inset: local profile shows that the
hinged-hinged chain (blue) has smaller extension and thus is more flexible (to show the
figure clearly, we have changed the circles into lines with the same colors); (b) Variance of
the extension. Inset: local profile shows that the hinged-hinged chain (blue) fluctuates more
than the partially clamped chain (to show the figure clearly, we have changed the circles into
lines with the same colors); (C) Average energy of the chain versus the applied force; (D)
Variance of the energy; (E) Thermal expansion coefficient α versus the applied force; (F)
Isothermal extensibility χ versus the applied force.

Figure 4

Verifying Eq. 23. Solid line: theoretical prediciton; circles: MC simulation results. Sim-
ulations have been done under 11 different forces varying from 150pN to 1150pN with an
increasement of 100pN. Temperature is set to be 300K. Relative extension as well as ther-
mal expansion coefficient are recorded. The result shown is for a homogeneous chain with
contour length L = 25nm and bending modulus K = 2.5kBT · nm.

Figure 5

Force-extension relation for homogeneous chains (blue curve) and rods (red circle, theory
in Purohit et al. (2008)). (a) Hinged-hinged boundary conditions; (b) partially clamped
boundary conditions; (c) clamped-clamped boundary conditions. K = 2.5kBT · nm, L =
2.5nm. The figures show that our force-extension relations for the chains reduce to the known
formulae for the continuous rods when N → +∞ with L = Nl fixed. Here N = 50000 for
the blue curves.
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Figure 6
Dependence of the fluctuation of θ angles on the boundary conditions. Blue: hinged-

hinged chain, the fluctuation in θ is at maximum and minimum respectively at the two ends
and in the middle of the chain; red: partially clamped chain, the fluctuation is at maximum
and minimum respectively in the middle and at the two ends; black: clamped-clamped
chain, the fluctuation is at minimum at the two ends, but the maximum is not achieved in
the middle of the chain. Also, the partially clamped chain (red) fluctuates more than the
clamped-clamped chain (black). (a) ξp/L = 5, the dependence on the boundary conditions is
significant througout the chain; (b) ξp/L = 0.2 the dependence on the boundary conditions
is significant only at the two ends of the chain. To make the figures clear, the MC simulation
results are not shown in the same figures.

Figure 7
Dependence of the fluctuation of θ angles on the heterogeneity of the chain. Blue: ho-

mogeneous chain with K = 2.5kBT · nm; black: corresponding MC simulation results; red:
heterogeneous chain with two bending moduli: KI = 0.5kBT ·nm at the first half of the chain
and KII = 4.5kBT · nm at the second half; black dashed curve: corresponding MC simula-
tion results. (a), (b) and (c) are for hinged-hinged, partially clamped and clamped-clamped
boundary conditions respectively. The figures show that jumps in the bending modulus re-
sult in jumps in the fluctuation in the 〈θ2〉 profile. The larger the bending modulus, the
smaller the fluctuation in θ.

Figure 8
Correlation in the tangent angle θ. (a-f): results for the homogeneous chains. Blue:

ξp/L = 5; red: ξp/L = 1; black: ξp/L = 0.2. (a),(c),(e) are the theoretical results for
the hinged-hinged, partially clamped and clamped-clamped chains respectively. To make
the plots clear, we plot the corresponding MC simulation results separately in (b),(d) and
(f) (circles). The figures show that the correlation in θ depends strongly on ξp/L. When
ξp/L > 1 (blue), the profile also significantly depends on the boundary conditions. (g-h):
results for a heterogeneous chain with L = 1nm. The first half and the second half of the
chain have bending moduli of KI = 0.5kBT · nm and KII = 4.5kBT · nm respectively. (g) is
the theoretical predictions and (h) is the MC simulation results. Blue, red and black colors
are for the hinged-hinged, partially clamped and clamped-clamped boundary conditions
respectively. The correlation profile loses its symmetry and decreases faster at the first half
of the chain where the bending modulus is smaller.

Figure 9
Transverse fluctuation 〈y2〉. (a): blue: hinged-hinged chain; red: partially clamped chain;

black: clamped-clamped chain. Solid curve: homogeneous chain with K = 2.5kBT · nm;
dashed curve: heterogeneous chain with KI = 0.5kBT · nm for the first half of the chain
and KII = 4.5kBT · nm for the second half. In (a), L = 1nm for all the curves. Since the
curves are close to each other, to make the theoretical results clear, we do not plot the MC
simulation results in (a). (b): transverse fluctuation decreases when the force increases. The
results are for a homogeneous hinged-hinged chain with L = 25nm and K = 2.5kBT · nm.
The corresponding forces are labeled in the figure. Circles: MC simulation results; solid
lines: theoretical predictions.
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Figure 10

Dependence of the transverse fluctuation on the countour length of the chain. K =
2.5kBT ·nm for all the curves. Black solid curves (theory) and blue circles (MC simulation):
L = 5nm; black dashed curves (theory) and red circles (MC simulation): L = 25nm; (a)
hinged-hinged boundary conditions; (b) partially clamped boundary conditions; (c) clamped-
clamped boundary conditions. The figures show that for a fixed persistence length, the longer
the chain, the more the fluctuation. Also, our theoretical results and the MC simulation
results match quite well. Note that here ξp/L ≤ 1 and the results for hinged-hinged chain
and clamped-clamped chains are quite similar, which is confirmed by the simulation results.

Figure 11

Unfolding of six copies of ubiquitins under constant velocity pulling condition. Blue
dotted curves are the experimental data from Chyan et al. (2004). Each peak in the profile
represents a unfolding event where the force drops. The first and the last experimental
curves are fitted to obtain the contour lengths and the bending moduli of the folded and
unfolded proteins (Fig.(a): red circles are the fitted data and the black curves are the fitting
results). The intermediate curves are then predicted without any free parameters using the
3D version of Eq. 38 (Fig.(b), red curves). Figure.(b) shows that the predictions match well
with the experimental data.
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