
	 Teaching	Statement	
	

Rahul	Mangharam	

My	teaching	goal	is	to	make	students	enjoy	learning	algorithms	for	autonomous	systems	which	operate	at	
their	extreme	limits,	eliminate	exams	(!)	and	yet	get	every	student	to	 intellectually	stretch	themselves.	The	
courses	 I	 develop	 are	 intense,	 organized,	 and	 open	 source.	 For	 example,	 the	 F1Tenth	Autonomous	Racing	
course	and	user-generated	videos	have	over	1	million	views,	2000+	active	users	on	the	f1tenth-teams	Slack,	
and	 has	 resulted	 in	 over	 15	 international	 competitions,	 workshops,	 and	 tutorials.	 The	 course	 material	 I	
developed	is	taught	in	TU-Vienna,	Lehigh,	UVA,	TU-Munich,	Clemson,	Oregon	State,	ETH	Zurich,	Uni.	of	Lincoln	
Nebraska,	Carnegie	Mellon,	UT	Austin,	KAIST	and	other	universities.		In	every	teaching	session,	2/3rd	time	is	
for	instruction	and	the	remaining	is	for	hands-on	tutorials	which	we	do	with	the	students.	This	incorporates	an	
apprenticeship	model	which	communicates	not	just	the	material	but	the	nuances	of	how	to	approach	the	topic	
conceptually	and	as	a	learned	skill.		

The	central	thread	of	my	teaching	is	to	approach	everything	as	a	system.	Unlike	traditional	courses	in	signal	
processing,	computer	vision	or	circuits	which	are	taught	in	isolation,	here	students	get	to	view	all	aspects	of	
the	system	 from	perception,	planning,	 control,	power	systems,	GPGPU	processing,	 real-time	operation,	and	
vehicle	dynamics.	By	creating	platforms	that	are	complex	enough	but	not	too	complex,	students	get	to	approach	
the	system	as	a	whole.	They	then	learn	to	identify	how	to	partition	the	problem	across	the	different	subsystems	
and	build	pipelines	to	accomplish	Simultaneous	Localization	And	Mapping	(SLAM),	Model	Predictive	Control	
(MPC),	Rapidly	exploring	Random	Trees	(RRT)	motion	planners	and	understand	performance	bottlenecks	from	
bottom-up	and	also	across	hardware	and	software	boundaries.		

	
Teaching	Philosophy:	

My	teaching	goal	mirrors	my	inter-disciplinary	approach	towards	research:	I	aim	to	ensure	that	students	
cultivate	a	holistic	view	of	life-critical	and	safety-critical	system	development	by	drawing	stronger	connections	
between	autonomous	systems,	embedded	systems,	control	systems,	formal	methods,	and	hands-on	machine-
learning	at-the-edge	of	platform	development.	I	design	courses	that	have	a	significant	experimental	component,	
where	students	work	in	teams	to	develop	sizable	distributed	embedded	systems	that	integrate	concepts	across	
electrical	 and	 computer	 engineering,	 computer	 science,	 bioengineering	 and	mechanical	 engineering.	 These	
include	building	 testbeds	 for	energy-efficient	heating/cooling	 systems,	EV	powertrain	 systems,	Heart-on-a-
Chip	medical	devices,	biofeedback	control	systems	and	leader-follower	quadrotor	aircraft	systems1.		

By	emphasizing	learning	by	doing,	I	aim	to	develop	students’	confidence	in	deconstructing	a	design	problem,	
iterating	 over	 several	 inefficient	 designs,	 presenting	 intermediate	 results,	 and	 incorporating	 creativity	 in	
engineering	solutions.	In	following	this	design-driven	approach,	every	student	is	continually	making	decisions	
on	how	to	partition	functionality	to	different	sub-systems,	how	to	keep	things	simple,	how	to	define	clean	and	
generic	interfaces	at	hardware/software	boundaries	and	finally	how	to	demonstrate	the	core	ideas	within	the	
operational	system	in	an	effective	way.	This	emphasis	on	developing	hands-on	critical	thinking	skills	forms	the	
bedrock	of	my	teaching	approach.	

In	 the	 rest	of	 this	 statement,	 I	will	 summarize	 the	Autonomous	Racing,	TinyML	Tiny	Machine	Learning,	
Embedded	Systems	and	Model-based	Embedded	Systems	courses	I	have	developed	at	Penn	and	discuss	plans	
for	a	broader	curriculum	towards	a	Department	of	Autonomy.	I	will	describe	my	efforts	in	developing	cross-
school	 collaborations	 within	 Penn,	 student	 and	 faculty-based	 teaching	 events,	 and	 establishing	 Penn	 as	 a	
recognized	force	across	global	engineering	communities.		
	

A.	F1Tenth	Autonomous	Racing	–	Learn	to	Build,	Code	and	Race.																								
In	order	to	facilitate	research	and	education	in	autonomous	systems,	I	developed	an	open-
source	research	platform	of	high-performance	autonomous	racing	cars	that	are	1/10th-
scale	 of	 Formula-1	 cars	 and	 can	 reach	 a	 top	 speed	 of	 50mph.	 F1Tenth	
[http://f1tenth.org/]	 enables	 a	 wide	 range	 of	 machine	 learning	 engineering	 with	
perception,	 planning,	 control	 and	 coordination	 modules.	 In	 addition	 to	 the	 platform	
hardware,	my	teaching	team	developed	an	autonomous	vehicle	software	stack	and	a	set	

1	For	a	really	exciting	compilation	of	ESE350	project	videos,	see	http://tinyurl.com/ese350videos		

	
of	 simulators	 as	 plug-and-play	 replacements	 for	 the	 1/10th-scale	 platform	 itself.	 The	 course	 covers	 five	
modules	and	include	three	races	for	evaluation:	

1.	 Introduction	 to	 ROS,	 F1/10	 &	 the	 Simulator:	
Introduction	to	self-driving	hardware	and	full	
software	stack,	automatic	emergency	braking,	
LiDAR,	 rigid	 body	 transformations,	 Laplace	
domain	 dynamics,	 and	 PID	 control	 for	 wall	
following.		

2.	Driving	using	Reactive	Methods:	Build	a	vehicle,	
tune	 the	 electronic	 speed	 controller,	 and	
implement	 reactive	 driving	methods	 such	 as			
‘follow	the	gap’	and	complete	Race	1.	

3.	 AV	Mapping	 &	 Localization:	 Understand	 key	
elements	 of	 SLAM	 by	 implementing	 scan	
matching	 and	 particle	 filters;	 use	 Google	
Cartographer	SLAM;	implement	pure	pursuit	driving;	complete	Race	2	using	maps.	

4.	 AV	 Planning:	 Learn	 Moral	 Decision	 Making	 for	 autonomous	 systems;	 implement	 planning	 with	 rapidly	
exploring	random	trees	(RRT)	and	understanding	model-predictive	control	(MPC)	for	race	line	optimization.		

5.	Learning	&	Vision:	Design	and	implement	algorithms	for	object	detection	and	pose	estimation,	reinforcement	
learning	and	visual	feature	extraction.		 	 	 	 	

6.	F1/10	Grand	Prix:	Race	3	will	include	a	project	to	implement	racing	strategies	which	combine	fast	perception,	
agile	planning,	and	aggressive	control	for	race	optimization.	

I	deliberately	replaced	midterms	with	races.	The	students	spend	between	10-14	hours	a	week	on	the	course	
and	we	 develop	 an	 environment	 for	 experimentation,	 frequent	 failure	 and	 friendly	 competition.	 The	main	
reason	students	take	this	course	is	because	they	want	to	tie	together	all	the	topics	they	studied	in	isolation	
within	an	applied	and	competitive	context.	The	course	has	8	intense	labs	covering	SLAM,	MPC,	sampling-based	
planners,	learning-based	visual	navigation	and	is	followed	by	a	month-long	team	project	on	a	topic	the	students	
choose.	These	have	gone	on	to	be	publishable	papers	in	ACC,	ICRA	and	IFAC	World	Congress.	This	is	a	popular	
course	with	over	90	students	on	the	waitlist	and	a	quarter	of	the	students	continue	in	the	following	semester	
to	pursue	independent	study	projects.	Several	have	joined	the	Ph.D.	cohort	too.		

	

	

	

	
	
The	International	F1Tenth	Community:	F1Tenth	has	over	80+	university	community	partners	for	research	
and	education.	 In	addition	to	teaching	the	course	at	Penn,	we	have	organized	15	international	autonomous	
racing	 competitions	 for	 multi-vehicle	 racing	 in	 top	 robotics,	 transportation,	 and	 Cyber-Physical	 Systems	
conferences.	 Five	more	 races	 have	 been	 scheduled	 for	 2024	 at	 CPSweek	 (Hong	Kong),	 ICRA	 (Japan),	 IROS	
(UAE),	IEEE	Intelligent	Vehicles	(Korea),	ITSC	(Canada).	The	F1Tenth	research	community	has	published	over	
50	 papers	 using	 the	 platform	 for	 neuromorphic	 computing,	 safe	 ML,	 learning	 Koopman	 operators,	 multi-
friction	racing,	NN-based	localization,	etc.	F1Tenth	is	supported	by	a	$1.5MM	NSF	CISE	Community	Research	
Infrastructure	award	and	industrial	partners	such	as	National	Instruments,	Nvidia,	Intel,	SICK,	etc.	Driving	at	
the	limits	of	vehicle	performance	helps	us	accelerate	the	development	of	safe	autonomous	vehicles.	

	
The	2nd	Korean	F1Tenth	Autonomous	Grand	Prix	was	held	on	October	17-18,	2023.	It	had	31	teams,	and	the	
top	prize	was	$40,000!	F1Tenth	involves	all	top	20	Korean	universities	and	has	become	a	national	program.			

													 	
	

	

	
	
B.	Tiny	Machine	Learning	(TinyML)	curriculum	development:	
My	first	decade	of	teaching	was	on	real-time	embedded	systems.	However,	my	research	had	long	migrated	to	
machine	learning	(ML)	on	the	edge.	A	natural	progression	was	to	develop	and	teach	a	course	on	TinyML,	which	
is	an	exciting	and	emerging	field	at	the	intersection	of	embedded	ML	applications,	algorithms,	hardware,	and	
software.	 TinyML	 differs	 from	 mainstream	 server/cloud-based	 ML	 in	 that	 it	 requires	 not	 only	 software	
expertise,	 but	 also	 embedded-hardware	 expertise.	 This	 course	 emphasizes	 hands-on	 experience	 with	 ML	
training	 and	 deployment	 in	 tiny	 microcontroller-based	 devices	 with	 onboard	 sensors,	 a	 camera,	 and	 a	
breadboard	with	wires—enough	to	unlock	capabilities	such	as	image,	sound,	and	gesture	detection.		
There	are	no	prerequisites	besides	basic	scripting	in	python	but	before	they	know	it,	students	are	implementing	
an	 entire	 TinyML	 application.	 Students	 go	 from	 learning	 the	 fundamentals	 of	ML	 and	 embedded	 systems,	
building	 datasets,	 training,	 and	 compressing	 tiny	 ML	 models	 in	 TensorFlow,	 TensorFlow	 Lite	 and	
TensorFlowLite	Micro	to	conceiving	and	deploying	their	own	TinyML	applications.		
	

TinyML	has	been	a	hit	with	students	who	want	a	hands-on	introduction	to	ML	and	want	to	build	complete	
solutions.	They	think	of	this	as	a	first	course	in	both	machine	learning	and	embedded	systems	and	they	don’t	
need	any	background	in	either.	Here	are	two	example	projects	–	one	team	of	2	freshmen	designed	an	embedded	
camera	 system	 to	 track	 the	 trajectories	 of	 bees	 in	 the	 hive.	 This	 is	 used	 by	 beekeepers	 to	 identify	 the	
approximate	 locations	 the	 bees	 acquired	 the	 nectar	 from	 the	 fields.	 Another	 project,	 LaTeXeR	 captured	
handwritten	text	and	converted	it	to	LaTeX.	Other	projects	included	IMUs,	microphones	and	other	sensors.			

	

	
Curriculum	Development	and	other	courses	developed	at	Penn:	
	
C.	Developing	Embedded	Systems	Programs	at	Penn	

Since	2008,	I	have	been	part	of	the	founding	committee	for	establishing	the	embedded	systems	curriculum	
at	 Penn	 through	 the	 development	 of	 the	 Computer	 Engineering	 (CMPE)	 undergraduate	 program	 and,	
separately,	the	Masters	in	Embedded	Systems	(EMBS)	program	(1st	such	program	in	the	nation).	From	2015-
2019,	 I	 served	as	 the	EMBS	Program	Director.	Both	programs	have	been	 tremendously	popular,	with	high	
quality	students.	Embedded	Systems	graduates,	who	were	under	my	supervision,	during	and	after	taking	my	
courses,	have	gone	on	to	pursue	graduate	studies	in	Stanford	(Kevin	Conley	and	Jeff	Kiske),	Georgia	Tech	(Matt	
Hale),	Duke	(Ashleigh	Thomas),	UCLA	(Paul	Martin),	CMU	(Utsav	Drolia),	MIT	(Max	Li),	among	others.		

Prior	to	2014,	very	few	technology	companies	recruited	from	the	ESE	Department	and	that	has	changed	
tremendously	 with	 both	 programs.	 Students	 joined	 SpaceX,	 Tesla	 Motors,	 NASA	 (Langley),	 GoogleX	 Labs,	
BOSCH	Research,	Intel,	Nvidia,	Qualcomm,	etc.	Students	graduating	from	the	Autonomous	Systems	course	were	
very	successful	in	getting	top	placements	in	Tesla	AutoPilot	group,	Honda’s	and	Nvidia’s	Autonomous	Vehicles	
group,	 Rivian’s	 electric	 drivetrain	 group,	 Aurora’s	 and	 Zoox’s	 motion	 planning	 and	 control	 team,	 nuro’s	
software	 infrastructure	team,	among	others.	This	 is	a	testament	that	the	students	are	nationally	competent	
with	a	broad	and	deep	skillset	of	model-based	and	data-driven	system	design.			

Through	the	120+	undergraduates	and	140+	Masters	students	that	I	have	advised,	I	have	come	to	appreciate	
the	need	to	balance	theory	and	skill	development.	As	we	refined	the	curriculum,	our	goal	was	to	ensure	students	
not	only	get	solid	foundations	in	becoming	“Platform	Architects”	across	the	computing	stack,	but	also	become	
skilled	in	“Systems	Thinking”	for	debugging	and	developing	complex	life-critical	systems.	
	
D.	ESE350	Introduction	to	Embedded	Systems		

This	course	introduces	the	use	of	microcontrollers,	sensors,	and	actuators	in	building	real-time	embedded	
systems	that	interact	with	the	physical	world.	With	an	approach	focused	heavily	on	learning	by	doing,	the	labs	
are	designed	to	be	interactive,	fun,	yet	challenging.	The	students	build:	
• Arduino	from	Scratch	–	in	the	first	2	weeks	students	build	the	entire	Arduino	on	a	breadboard	and	are	

introduced	to	power	management,	bootloaders,	memory	layouts,	and	circuits	with	over	36	components.	
• Build	 a	 musical	 instrument	 with	 Sensors	 and	 actuators	 -	 to	 learn	 timers,	 analog-to-digital	 conversion	

interrupts,	analog	circuits.		
• Interactive	Hand-held	Pong	Game	System	–	learn	to	interface	touchscreens,	LCDs,	and	motion	sensors	to	

make	a	fun	and	interactive	game	system.	
• Balance	Bot	-	develop	a	self-balancing	bot	using	stepper	motors,	motor	drivers,	an	IMU	and	interface	it	

with	a	Zigbee	wireless	remote.	Implement	controls	for	stability	and	position	control	and	race!	
The	 lab	 exercises	 begin	with	well-defined	 instructions	where	 the	 students	 initially	 program	 the	 16-bit	

microcontrollers	 hardware	 in	 C	 at	 the	 bare	 metal.	 The	 labs	 progressively	 get	 more	 open-ended	 and	 the	
students’	progress	to	use	programming	libraries	and	eventually	work	with	embedded	operating	system	(using	
32-bit	ARM	multiprocessors).	This	ensures	the	basics	of	hardware-software	interfaces	are	learned	and	allow	
the	students	to	gradually	abstract	away	the	low-level	details	for	more	system-wide	thinking.		

The	final	4	weeks	feature	a	project	where	students	are	asked	to	build	creatively	on	the	foundations,	they	
have	learned	by	designing	and	developing	an	embedded	system	of	their	own.	Examples	of	such	systems	include	
tele-operated	leader-follower	quadrotors,	body	sensor	games	based	on	hacked	Nintendo/Sega	console	games,	
electro-mechanical	 chess,	 connect-4	 and	basketball	 shootout	machines,	 spherical	 robots,	 etc.	 Projects	 from	
ESE350	have	won	over	16	national	and	international	awards.		
	
E.	ESE519	Real-Time	and	Embedded	Systems		

This	core	graduate	course	covers	the	concepts,	theory,	and	tools	necessary	to	understand,	design,	and	build	
real-time	and	concurrent	embedded	systems.	The	course	is	spread	across	five	major	modules	starting	with	an	
introduction	 to	 networked	 embedded	 systems,	 real-time	 scheduling	 theory,	 concurrent	 programming	 and	
distributed	 systems	 theory,	 life-critical	 systems,	 and	 case	 studies	 in	 embedded	 system	 failures.	 Five	 labs	
introduce	programming	with	a	real-time	operating	system	(RTOS);	networked	operation	across	distributed	
embedded	 systems;	 development	 of	 routing	protocols;	 and	design	of	 safety-critical	 systems.	 Each	 group	 is	

	
given	a	set	of	wireless	embedded	nodes,	32-bit	embedded	multi-processor	boards	(700MHz	and	1GHz)	and	a	
variety	of	sensors	and	actuators.	Final	projects	have	included:		
• Energy-efficient	building	automation	systems,	which	integrate	sensing,	distributed	controls	and	building	

automation	algorithms	for	heating	and	cooling	in	HVAC	systems.	
• Automotive	embedded	systems	that	integrate	control	systems	for	traction,	stability,	anti-lock	braking,	and	

adaptive	cruise	control	with	a	hardware-in-loop	testbed.	
• Robot-soccer	with	multi-robot	consensus	protocols	for	defense/offense,	using	computer	vision.	
• Implementation	of	new	wireless	protocols	(ISA100.11a)	for	industrial	control	and	automation		
Student	projects	from	ESE519	have	resulted	in	over	12	international	conference	publications	and	demos	in	
venues	 such	 as	 ACM/IEEE	 Cyber-Physical	 Systems	 Week,	 ACM	 Embedded	 Systems	 Week,	 ACM	 Building	
Systems	Symposium,	and	the	IEEE	Real-Time	Systems	Symposium	(RTSS).		
	
F.	Model-based	Systems	Curriculum	Development	
I	routinely	experiment	with	new	course	concepts.	To	translate	our	research	into	teaching,	I	developed	a	course	
on	foundations	for	Model-based	Design	for	Cyber-Physical	Systems.	This	course	allows	the	student	to	journey	
from	 specifications	 to	 models	 to	 implementations	 to	 integration	 for	 rigorous	 system	 design	 of	 controls,	
computation	and	communication	to	answer:		
• What	does	it	take	to	design	and	implement	

life-critical	 software	 in	 an	 implantable	
cardiac	defibrillator?		

• How	 to	 certify	 that	 a	 car	 in	 autonomous	
cruise	control	mode	will	drive	itself	safely?	

• How	do	you	develop	and	tune	controls	for	
skyscrapers	that	have	complex	interactions	
with	 the	 environment,	 occupants,	 and	
equipment?	

This	 course	 focuses	 on	 modeling	 for	
verification,	 testing	 and	 control	 of	 such	
safety-critical	 systems.	The	course	 is	50%	 theory	 covering	 the	 foundations	of	 temporal	 logic,	 controls,	 and	
falsification	and	50%	practical	skill	development	with	the	use	of	industry	standard	tools	in	verification,	testing	
and	model-based	development	(MATLAB/Simulink,	EnergyPlus,	UPPAAL).	In	three	month-long	modules,	we	
cover	 in-depth	modeling	 of	 implantable	 cardiac	medical	 device	 software	 and	 systems,	 testing	 of	 advanced	
driver	assistance	software	in	automotive	controllers	and	data-driven	modeling	and	control	of	buildings.	This	
course	provides	the	foundations	and	tools	for	a	career	focus	in	model-based	design	of	embedded	systems.	
	
Recent	 awards	with	 students	 I	mentored	 after	 they	 took	my	 courses:	

1.	 First	Prize	Autonomous	Electric	Go-karting	Competition	
US	Autonomous	Karting	Series	at	Purdue	University	

2023	

2.	 Winner	10th	International	F1Tenth	Autonomous	Racing	Competition	at	ICRA	
International	 Conference	 on	 Robotics	 and	 Automation	

2023	

3.	 Winner	International	JSAE	Autonomous	Driving	Competition	
Japan	Society	of	Automotive	Engineers	

2022	

4.	 DASD	Best	of	Session	Award	
Drone	Conflict	Management	at	the	39th	Digital	Avionics	Systems	Conference	

2020	

5.	 SIGCSE	2nd	Best	Paper	Award	for	Curricula	Initiatives	
ACM	Technical	Symposium	on	Computer	Science	Education	(SIGCSE)	

2020	

6.	 NeurIPS	Best	Demonstration	Award	(Runner-up)	
34th	 Annual	 Conference	 on	Neural	 Information	 Processing	 Systems	 (NeurIPS)	

2019	

	

