Regular Combinators for String Transformations

Rajeev Alur Adam Freilich Mukund Raghothaman

CSL-LICS, 2014
Our Goal

Languages, $\Sigma^* \rightarrow \text{bool} \equiv \text{Regular expressions}

Transformations, $\Sigma^* \rightarrow \Gamma^* \equiv \text{?}$
String Transformations

... are all over the place

- Find and replace
 Rename variable `foo` to `bar`
- Spreadsheet macros
 Convert phone numbers like "(123) 456-7890" to "123-456-7890"
- String sanitization
- ...
String Transformations
Tool and theory support

- Good tool support: sed, AWK, Perl, domain-specific tools, ...
- Renewed interest: Recent transducer-based tools such as Bek, Flash-Fill, ...
- But unsatisfactory theory ...
- Expressibility: Can I express ⟨favorite transformation⟩ using ⟨favorite tool⟩?
- Analysis questions:
 - Is the transformation well-defined for all inputs?
 - Does the output always have some “nice” property? ∀σ, is it the case that \(f(σ) \in L \)?
 - Are two transformations equivalent?
Historical Context
Regular languages

Beautiful theory

Regular expressions \equiv DFA

Analysis questions (mostly) efficiently decidable

Lots of practical implementations
String Transducers

One-way transducers: Mealy machines

Folk knowledge [Aho et al 1969]
Two-way transducers strictly more powerful than one-way transducers

Gap includes many transformations of interest
Examples: string reversal, copy, substring swap, etc.
Regular String Transformations

- Two-way finite state transducers are our notion of regularity
- Known results
 - Closed under composition [Chytil, Jákl 1977]
 - Decidable equivalence checking [Gurari 1980]
 - Equivalent to MSO-definable string transformations [Engelfriet, Hoogeboom 2001]
- Recent result: Equivalent one-way deterministic model with applications to the analysis of list-processing programs [Alur, Černý 2011]
Streaming String Transducers (SST)

If input ends with a \(b \), then delete all \(a \)-s, else reverse

- \(x \) contains the reverse of the input string seen so far
- \(y \) contains the list of \(b \)-s read so far
Streaming String Transducers (SST)

- Finitely many locations
- Finite set of registers
- Transitions test-free
- Registers concatenated (copyless updates only)
- Final states associated with registers (output functions)
Regular String Transformations

Rephrasing our goal

Languages, DFA \equiv Regular expressions
Transformations, SST \equiv ?
Can we Find an Equivalent Regex-like Characterization?

Motivation

- Theoretical: To understand regular functions
- Practical: As the basis for a domain-specific language for string transformations
Base functions: \(R \mapsto \gamma \)

If \(\sigma \in L(R) \), then \(\gamma \), and otherwise undefined

\[
(\{".c"\} \cup \{".cpp"\}) \mapsto "\.cpp"
\]

Analogue of basic regular expressions: \(\{a\} \), for \(a \in \Sigma \)

\(R \) is a regular expression and \(\gamma \) is a constant
If $\sigma \in L(R)$, then $f(\sigma)$, and otherwise $g(\sigma)$

\[
\text{ite } [0-9]^* \ (\Sigma^* \mapsto \text{"Number"}) \ (\Sigma^* \mapsto \text{"Non-number"})
\]

Analogue of unambiguous regex union
Split sum: \(\text{split}(f, g) \)

Split \(\sigma \) into \(\sigma = \sigma_1 \sigma_2 \) with both \(f(\sigma_1) \) and \(g(\sigma_2) \) defined. If the split is unambiguous then \(\text{split}(f, g)(\sigma) = f(\sigma_1)g(\sigma_2) \)

Analogue of regex concatenation
Iterated sum: \text{iterate}(f)

Split \(\sigma = \sigma_1 \sigma_2 \ldots \sigma_k \), with all \(f(\sigma_i) \) defined. If the split is unambiguous, then output \(f(\sigma_1)f(\sigma_2)\ldots f(\sigma_k) \)

- \text{Kleene-*}
- If \textit{echo} echoes a single character, then \text{iterate}(\textit{echo}) is the identity function
Left-iterated sum: left-iterate(f)

Split $\sigma = \sigma_1\sigma_2\ldots\sigma_k$, with all $f(\sigma_i)$ defined. If the split is unambiguous, then output $f(\sigma_k)f(\sigma_{k-1})\ldots f(\sigma_1)$

Think of $\sigma \mapsto \sigma^{rev}$: left-iterate($echo$)
“Repeated” sum: \(\text{combine}(f, g) \)

\[
\text{combine}(f, g)(\sigma) = f(\sigma)g(\sigma)
\]

- No regex equivalent
- \(\sigma \mapsto \sigma \sigma \): \(\text{combine}(id, id) \)
Chained sum: $\text{chain}(f, R)$

$\sigma_1 \in L(R) \; \sigma_2 \in L(R) \; \sigma_3 \in L(R) \; \sigma_k \in L(R)$

$f(\sigma_1 \sigma_2) \; f(\sigma_2 \sigma_3) \; f(\sigma_3 \sigma_4) \; f(\sigma_{k-1} \sigma_k)$

And similarly for left-chain(f, R)
Function composition: \(f \circ g \)

\[
f \circ g(\sigma) = f(g(\sigma))
\]

Regular string transformations are closed under composition
Function Combinators are Expressively Complete

Theorem (Completeness)

All regular string transformations can be expressed using the following combinators:

- **Basic functions:** \(a \mapsto \gamma, \epsilon \mapsto \gamma, \bot\),
- **ite** \(R f g\), **split** \((f, g)\), **combine** \((f, g)\), and
- **chained sums:** **chain** \((f, R)\), and **left-chain** \((f, R)\).
Function Combinators are Expressively Complete

Arbitrary monoids \((\mathbb{D}, \otimes, 0)\)

- Functions \(\Sigma^* \to \mathbb{D}\) for an arbitrary monoid \((\mathbb{D}, \otimes, 0)\)
- All machinery still works: Function combinators remain expressively complete
 Base functions: \(a \mapsto \gamma, \epsilon \mapsto \gamma\), for \(\gamma \in \mathbb{D}\)
- Strings \((\Gamma^*, \cdot, \epsilon)\) just a special case
- Monoid of discounted costs \((\text{cost}, \text{discount}) \in \mathbb{R} \times [0, 1]\)
 \((c, d) \otimes (c', d') = (c + dc', dd')\)
 Identity element: \((0, 1)\)
 Potentially useful for quantitative analysis
The Special Case of Commutative Monoids
Expressive completeness of function combinators

- Integers under addition \((\mathbb{Z}, +, 0)\), and integer-valued cost functions \(\Sigma^* \rightarrow \mathbb{Z}\)
- Example: Count number of \(a\)-s followed by \(b\)

\[
\text{split}(b^* \mapsto 0, \text{iterate}(a^+ \cdot b^+ \mapsto 1), a^* \mapsto 0)
\]

- Smaller set of combinators needed for expressive completeness
 - Basic functions: \(a \mapsto \gamma, \epsilon \mapsto \gamma, \bot\)
 - \(\text{ite} \ R \ f \ g\), \(\text{split}(f, g)\), and
 - \(\text{iterate}(f)\)

- Unnecessary combinators: \(\text{combine}(f, g), \text{chain}(f, R), \text{left-chain}(f, R)\)
A Taste of the Proof

Broadly similar to DFA-to-Regex translation
A Taste of the Proof
Summarize effect of (individual) strings

\[q \]

\[\begin{align*}
 a / & \quad x := xy \\
 & \quad y := a \\
 & \quad z := zb \\
 b / & \quad x := bxa \\
 & \quad y := zy \\
 & \quad z := a
\end{align*} \]

\[q \]

\[\begin{align*}
 ab / & \quad x := bxya \\
 & \quad y := zba \\
 & \quad z := a
\end{align*} \]
A Taste of the Proof

Shapes

\[
\begin{align*}
q & \xrightarrow{ab} x := bxya \\
y & := ab
\end{align*}
\]

\[
\begin{align*}
x & := \gamma_{x1} \\
y & := \gamma_{y1}
\end{align*}
\]

\[
\begin{align*}
q & \xrightarrow{ba} x := bxa \\
y & := yba
\end{align*}
\]

\[
\begin{align*}
x & := \gamma_{x1} \\
y & := \gamma_{y1}
\end{align*}
\]
A Taste of the Proof
Summarizing effect of (a set of) strings

"Summarize" = "Give expression for each patch"

\[x := \xrightarrow{\gamma_{x1}} x \xleftarrow{\gamma_{x2}} y \xrightarrow{\gamma_{x3}} y \]

\[y := \xleftarrow{\gamma_{y1}} \]
A Taste of the Proof
Piggyback on the Regex-to-DFA Translation Algorithm

Summarize all paths $q \rightarrow q'$ with shape S

Start with $Q_r = \emptyset$ and iteratively add states until $Q_r = Q$
A Taste of the Proof
Summarizing loops: Or why the chained sum is needed

Value appended to x at the end of this loop iteration (γ_1) depends on value computed in y during the previous iteration

Chained sum
A Taste of the Proof

Recall the chained sum: \(\text{chain}(f, R) \)
Conclusion

Introduced a declarative notation for regular string transformations
Conclusion

Summary of operators

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Regular Transformations</th>
<th>Regular Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>$R \mapsto \gamma$</td>
<td>${a}$, for $a \in \Sigma$</td>
</tr>
<tr>
<td>Union</td>
<td>$\text{ite } R f g$</td>
<td>$R_1 \cup R_2$</td>
</tr>
<tr>
<td>Concatenation</td>
<td>$\text{split}(f, g)$</td>
<td>$R_1 \cdot R_2$</td>
</tr>
<tr>
<td>Kleene-*</td>
<td>$\text{iterate}(f)$ (also left-iterate(f))</td>
<td>R^*</td>
</tr>
<tr>
<td>Repetition</td>
<td>$\text{combine}(f, g)$</td>
<td></td>
</tr>
<tr>
<td>Chained sum</td>
<td>$\text{chain}(f, R)$ (and left-chain(f, R))</td>
<td>New!</td>
</tr>
<tr>
<td>Composition</td>
<td>$f \circ g$</td>
<td></td>
</tr>
</tbody>
</table>
Future Work

- Design and implement a DSL for string transformations based on these foundations
- Lower bounds on expressibility of certain functions
- Theory of regular functions
 - Strings to numerical domains
 - Strings to semirings
 - Trees to trees / strings (Processing hierarchical data, XML documents, etc.)
 - ω-strings to strings
- Automatically learn transformations
 - from input/output examples
 - from teachers (L*)
Thank you! Questions? Suggestions? Brickbats?