
Darwin-OP Software Example

Stephen McGill, University of Pennsylvania
Seung-Joon Yi, University of Pennsylvania

Robot Basics

Connecting to Darwin-OP, Running the Soccer
programs, Understanding the code structure

Connecting to Darwin-OP
Darwin runs on Ubuntu Linux (adaptable to other systems)
Connection established using VNC or ssh

Darwin-OP's Current Configuration:
Wired ethernet IP address: 192.168.123.1

Set your IP Address to 192.168.123.100

Network Connections

Network Connections

Connecting to Darwin-OP
After turning the robot on, and waiting for a minute...

VNC Connection (Recommended, we will give you the installer)
1. Open your VNC client (tightvnc, Chicken of the VNC, etc.)
2. Connect to 192.168.123.1
3. You're in!

SSH Connection (If VNC not possible)
1. Open your favorite terminal or ssh client (putty)

Connect to 192.168.123.1
You're in!

Username: robotis

VNC Connection

VNC Connection

VNC Connection

Running the Demo program
We're all in this for the kicks, so let's get a taste of Darwin-OP
movin' and groovin'

1. Open a terminal on Darwin-OP (ssh users ignore)

-
Execute "cd Lib"
Execute "lua run_dcm.lua"

This is the motor and sensor updating process. Move the
Darwin-OP's joint around, and watch the numbers change!

Stephen McGill
upenn_humanoid_1.1

Stephen McGill

Stephen McGill

Demo Program

Running the Demo program
Move the head around, one axis at a time, and see how the
DCM output changes.

Shake Darwin-

Running the Demo program
Press "Ctrl-a Ctrl-d" to let this process continue, but as a
background job. Now, let's have Darwin-OP move on its own.

FIRST: place Darwin-OP in a kneeling position

-Execute "lua

This is the "high level" demo process. Darwin-OP should stand
up, march in place, wave, and sit down.

Code Structure
It's alive! Awesome - but let's see how Darwin-OP ticks.

Still in the "opensource/Player" directory, execute "ls" to see
the folders.

There's lot of stuff there, but the directories just organize the
various module's of Darwin-OP's brain.

The Vision directory contains image processing code, the
BodyFSM directory contains finite state machine code for
where Darwin-OP wants to move, etc.

We will analyze these one by one!

Motion

Keyframing, Locomotion, Body state machine

Limb Motion
First, we're going to make Darwin-OP move its head around.

1. Check that your DCM process is still running:
! Execute "screen -r dcm" If all is good, hit "Ctrl-a Ctrl-d"

2. Change into the "Lib" directory: "cd Lib"
Execute "lua" and follow the yellow brick code on the next
page...

Limb Motion
> b = require 'DarwinOPBody' --This provides I/O with DCM
> b.set_head_hardness({.5,.5}) --This sets motor compliance
> b.set_head_command({0,0}) --This moves head to center
> b.set_head_command({1,0})
> b.set_head_command({0,1})
--At this point, feel the stiffness of the head
> b.set_head_hardness({0,0})
--Now feel the stiffness

Play around with some of the other "set" commands.
Hint: try set_larm_hardness

-

Limb Motion
Challenge!

Make the Darwin raise his hands to the Touchdown sign

- .

r dcm

Keyframe Motion
Finally, we're going to make our own keyframe motions. First,
let's execute some of the predefined keyframe motions.

Change into the "Motion" directory. Execute "cd ../Motion"
Open a file to see the keyframe structure

- keyframe file

You can see the general structure. Now, we are going to make
our own keyframe file (for waving a hand), and play it back.

Keyframe Motion
With the DCM process still running, execute

Move the arms of the robot to the side of the body
Hit enter to appropriately set a keyframe position
Do this a few times

appropriate filename.

Locomotion

Walk basics, Setting walk parameters

Playing with Locomotion
We're going to start telling Darwin how to walk. First, ensure

-

Execute "lua test_walk.lua"
1.
2.
3.
4.
5.

Walk Basics
Stationary Walking

-Center of gravity (CoG) always lies in supporting polygon
Dynamic Walking

-ZMP always lies in supporting polygon
-CoG may lie outside of the supporting polygon

ZMP can be regarded as the dynamic version of CoG. If the
ZMP lies in the support polygon during walking, the robot will
be dynamically stable.
Our walk algorithm consists of three steps:
1. Generate foot trajectory according to walk speed
2. Calculate body trajectory to satisfy ZMP criterion
3. Calculate joint angle using inverse kinematics

Foot trajectory generation
-The next torso position is
calculated at the start of each
walk cycle
-Stepping position is
calculated from next torso
position
-Omnidirectional walking is
possible with specifying
separate velocity for x,y,a

ZMP criterion

Joint angle calculation
-We provide front and inverse
kinematics algorithm for all limbs to
get transform matrix from joint
angles and vice versa.

Limb dimensions are defined in
DarwinOPKinematis.h

Forward and Inverse kinematics
defined in DarwinOPKinematics.c

Active stabilization

We provide two ways of
stabilizing the walk against
external disturbances

Propriceptory feedback
Inertial feedback

Walk parameters

Tuning parameters
All walk parameters are defined in Config.lua file

walk.bodyHeight = 0.21;
walk.stepHeight = 0.020;
walk.footY = 0.035;
walk.supportX = 0.035;
walk.supportY = 0.00;
walk.bodyTilt= 7*math.pi/180;
....

Changing Walk Parameters
Try modify the walk parameters a bit.

1. gedit Config
2. Scroll down to the bottom and you will see walk parameters.
3.

--
4. Save the file.

cd
again to see how the changed parameter affects the walking.

In case you do something very wrong, there is
Config.lua.backup file to help.

Playing with Locomotion
We're going to start telling Darwin how to walk. First, ensure

-

Execute "lua test_walk.lua"
1.
2.
3.
4.
5.

Motion FSM

Motion FSM, Managing FSM

What is the motion FSM?
We use a finite state machine named Motion FSM to handle all
low level body movements such as:

Standing up
Walking
Sitting down
Keyframe motion
Detecting fall
Automatic standup

Basic Motion FSM

An example of main FSM file

sm = fsm.new(relax); --Define the FSM, with initial state
sm:add_state(stance); --Add various states
sm:add_state(walk);
sm:add_state(sit);

--Add event transitions
sm:set_transition(relax, "button", stance);
sm:set_transition(stance, "done", walk);
sm:set_transition(walk, "button", sit);
sm:set_transition(sit, "done", relax);

Open the Motion.lua to see an example of an FSM

Testing motion FSM
You can test the motion FSM as follows;

1. First make the DCM process is running.
2. Execute "lua test_walk.lua" at top folder.

Now the body state machine will wait at relax state.
-You can press the button to make it move into stance, and

walk state.
-Try gently setting the robot face down to ground to make it

move into falling state, and then standup state.

Press the left button will make the body state move to sit state,
and then relax state.

Editing motion FSM

to change the action on a button press.

gedit

How about just making Darwin-OP stand, not walk?

Editing motion FSM
nullstate

which does nothing on its update routine.

First, require the nullstate near the top of the Motion.lua file

lua
-OP

stand, and press the button again to have it sit.

Vision

Device I/O, Processing Library

Device I/O
What you need to know:

Darwin-OP has a USB webcam for computer vision.
The webcam communicates via UVC to Linux
Darwin-OP's software contains Video4Linux2 drivers to
sample from the camera at 30Hz
For debugging purposes, each frame is stored in a shared
memory file

Processing library
The Vision system is divided into two areas. First, C++ routines
perform raw calculations on images. Second, a Lua FSM takes
these calculations and updates the global ball location

The C++ routines are located in

The Lua FSM is located, as suspected, in

Processing library
At the heart of the image processing library is the Lookup Table,
or LUT for short. Every pixel in the image is assigned to a

After grabbing an image,
we find the largest
connected components of
ball pixels.

In order to reduce noise,
we partition the image
into 4x4 pixel blocks.

Behavioral FSMs
and main control code

What are behavioral FSMs?
Behavioral FSMs are finite state machines that govern high
level behavior of the robot.

Head FSM
! looking around to find the ball
! Track the found ball

Body FSM
! Search the area until ball is found
! Approach the ball until the ball is close enough to kick
! Kick the ball

The main control code
Main controller code simply initializes a number of behavioral
FSM and continuously updates them.

Motion.entry();
BodyFSM.entry();
HeadFSM.entry();
Vision.entry();

while 1 do
Motion.update()
BodyFSM.update()
HeadFSM.update()
Vision.update();

end

Basic Head and Body FSM

Testing main control code
Now you can run the full player code with all FSM running.

1. First make the DCM process is running.
2. Execute "lua player.lua" at top folder.
3. Press left button to make the robot stand up.

Now Darwin-OP will find a ball, approach the ball, and kick it.
Can you see which state the head and body FSM is in?
After playing for a while, you can press the left button to make
the robot sit down.

Thanks!

Testing Vision

DarwinOP track the ball.

-

