[LABORATOR

Darwin-OP Software Example

Stephen McGill, University of Pennsylvania
Seung-Joon Yi, University of Pennsylvania

[LABORATOR

Robot Basics

Connecting to Darwin-OP, Running the Soccer
programs, Understanding the code structure

mﬁm

o Penn
& Engineering [LABORATOR

Connecting to Darwin-OP

« Darwin runs on Ubuntu Linux (adaptable to other systems)
« Connection established using VNC or ssh

Darwin-OP's Current Configuration:
Wired ethernet IP address: 192.168.123.1

Let's set up your computer to talk with Darwin, accordingly.

Set your IP Address to 192.168.123.100

%Penn |
Engineering Network Connections [agorator

.

eann
<[» || ShowAll ‘Q

Location: | FitPC H

L

. Ethernet
~ Connected : Connected

Ethernet is currently active and has the IP

@ AirPort address 192.168.123.100.
Connected

FireWire

Mot Connected

Configure |Pv4: [Manually H

IP Address: 192.168.123.100

Subnet Mask: 255.255.255.0

Router:

DMS Server:

Search Domains:

802.1X: AirPennNet

(Chdvanced) (@

[Jn Click the lock to prevent further changes. C Assist me...) " Revert) [Apply

Penn |
Engincering Network Connections [aporator

.- E E i r_?"—7 21
Internet Protocol Version 4 (TCP/IPv4) Properties EL . J
S RS i =]

Networking | Sharing General m

You can get IP settings assigned automatically if your network supports
| ‘.2" Broadcom NetLink (TM) Gigabit Ethemet | IPv4 Connectivity: No Internet access this capability. Otherwise, you need to ask your network administrator

for the appropriate IP settings.
IPv6 Connectivity: No network access i o
Media State: Enabled

Connect using:

Connection

(©) Obtain an IP address automatically
This connection uses the following items:

: ! DLt ek (@ Use the following IP address:
% Client for Microsoft Networks Speed:

10.0 Mbps
4B} 0 Packet Scheduler

IP address: 192 . 168 . 123 .
gﬁle and Printer Sharing for Microsoft Networks Subnet mask: 255,255 .255. 0
- |ntemet Protocol Version 6 (TCP/IPv6)

-4 Intemet Protocol Version 4 (TCP/IPv4)
4. Link-Layer Topology Discovery Mapper /0 Driver
4. Link-Layer Topology Discovery Responder

Default gateway: 192 168_123 1]

Obtain DNS server address automatically

. ']
Sent —— &F — Received @ se the following DNS server addresses::

mstal.. | [Uninstal Propeties el

e i ' = Bytes: 184 | 2,302

Description Alternate DNS server:
Transmission Control Protocol/Intemet Protocol. The default

wide area network protocol that provides communication T S % =
across diverse interconnected networks. [EProperties] L) Disable J [Diagnose]

Preferred DNS server:

Validate settings upon exit

- “Ses1utesRin.

L!iﬁﬂ!!l

= Penn -
& Engineering [LABORATOR

Connecting to Darwin-OP

After turning the robot on, and waiting for a minute...

VNC Connection (Recommended, we will give you the installer)

1. Open your VNC client (tightvnc, Chicken of the VNC, etc.)
2.Connect to 192.168.123.1

3.You're Iin!

SSH Connection (If VNC not possible)

1. Open your favorite terminal or ssh client (putty)
— Connect to 192.168.123.1

— You're In!

Username: robotis
Password: 111111 (six 1's)

Penn
Engineering LLABORATOF

VNC Connection

VNC Login

Servers | Host: 192.168.123.100

electrino
HF1
HP2
HP3
HP4
robotis’s remote desktop D Remember Password

WANOP Profile: | Default Profile

LS

Display: 0

Password:

| View only
| Allow other clients to connect
_| Fullscreen display

A

Penn
Engineering LLABORATOF

VNC Connection

TightVNC Server: 192.168.123.1 - . Connect

__* Connection profile ' P—
: () Low-bandwidth connection

VNC

I Eﬂnﬁguratiﬂn... J et H|gh'5ﬂEE-‘d network

@ Default connection options Listening mode

Close

Penn
Engineering VN C Connection = LABORATOF

fno

°&$ Applications Places System @ u

opensource
robotis@DARwIn: ~/Desktop/opensource

File Edit View Terminal Help

robotis@ARwIn:~$ cd Desktop/opensource/
robotis@DARwIn:~/Desktop/opensources$ ls

Doc Install Lib Player WebotsController
robotis@DARwIn:~/Desktop/opensource$

'@ | & robotis@DARWIN: ~/D...

mmm

o Penn :
‘ Engineering [LABORATOR

Running the Demo program

We're all in this for the kicks, so let's get a taste of Darwin-OP
movin' and groovin'

1. Open a terminal on Darwin-OP (ssh users ignore)

— Execute “cd Desktop/epensource/Player”

— Execute “screen -S dcm” A :

_ Execute "cd Lib" upenn_humanoid_1.1

— Execute "lua run_dcm.lua"

This is the motor and sensor updating process. Move the
Darwin-OP's joint around, and watch the numbers change!

Stephen McGill
upenn_humanoid_1.1

Stephen McGill

Stephen McGill

Penn
Eng]'neering

Demo Program

robotis@DARwIn: ~/Desktop/opensource
File Edit View Terminal Help

IMU Gyr: ©.098 0.033 0.033

IMU Angle: 2.785 8.839

Button: @ @

Position:

Head: -12.8960625 11.718750

Larm: 89.355469 2.636719 -29.589344

Lleg: 7.910156 -1.464844 -54.785156 128.613281 -80.566406 -3.515625
Rleg: 5.566406 -5.273438 -60.937500 130.664062 -77.343750 3.222656
Rarm: 90.527344 -9.960938 -32.812500

Controller update: 18.055397 FPS

IMU Acc: -8.287 -1.146 7.456

IMU Gyr: ©.098 0.033 0.000

IMU Angle: 2.686 8.767

Button: @ @

Position:

Head: -12.896625 11.7187560

Larm: 89.355469 2.343750 -29.296875

Lleg: 8.203125 -1.464844 -54.785156 128.613281 -80.566406 -3.515625
Rleg: 5.566406 -5.273438 -60.937500 130.664062 -77.343750 2.929688
Rarm: 90.527344 -9.960938 -33.105469

Penn
Engineering LLABORATOR

Running the Demo program

Move the head around, one axis at a time, and see how the
DCM output changes.

Shake Darwin-OP’s hand, and see the numbers change

mﬁm

] Penn
& Engineering [LABORATOR

Running the Demo program

Press "Ctrl-a Ctrl-d" to let this process continue, but as a
background job. Now, let's have Darwin-OP move on its own.

FIRST: place Darwin-OP in a kneeling position

-Execute "lua demo.lua”

This is the "high level” demo process. Darwin-OP should stand
up, march in place, wave, and sit down.

L!iﬁﬂ!!l

o Penn
‘ Engineering [LABORATOR

Code Structure

It's alivel Awesome - but let's see how Darwin-OP ticks.

 Still in the "opensource/Player" directory, execute "Is" to see
the folders.

There's lot of stuff there, but the directories just organize the
various module's of Darwin-OP's brain.

The Vision directory contains image processing code, the
BodyFSM directory contains finite state machine code for
where Darwin-OP wants to move, etc.

We will analyze these one by one!

[LABORATOR

Motion

Keyframing, Locomotion, Body state machine

Penn
Engineering [. ABORATOR

Limb Motion

First, we're going to make Darwin-OP move its head around.

1. Check that your DCM process is still running:
o Execute "screen -r dem" If all is good, hit "Ctrl-a Ctrl-d"
2. Change into the "Lib" directory: "cd Lib"

— Execute "lua" and follow the yellow brick code on the next
page...

L!lﬁd!!l

e~ Penn ™
‘ Engineering [LABORATOR

Limb Motion

> b = require 'DarwinOPBody' --This provides 1/O with DCM

> pb.set
> pb.set
> b.set
> b.set

nead hardness({.5,.5}) --This sets motor compliance
nead_command({0,0}) --This moves head to center
nead_command({1,0})

nead _command({0,1})

--At this point, feel the stiffness of the head
> b.set head hardness({0,0})
--Now feel the stiffness

Play around with some of the other "set”" commands.
Hint: try set_larm_hardness, with 3 zeros...

Press “Ctrl-d” when done.

Penn
Engineering [LABORATOR

Limb Motion

Challenge!

Make the Darwin raise his hands to the Touchdown sign

Press “Ctrl-d” when done.

Now, reconnect to the DCM (“screen —r dem”) and see the joint
values for Darwin’s arm. Are they familiar?

L!lﬁd!!l

e~ Penn ™
‘ Engineering [LABORATOR

Keyframe Motion

Finally, we're going to make our own keyframe motions. First,
let's execute some of the predefined keyframe motions.

Change into the "Motion" directory. Execute "cd ../Motion"
Open a file to see the keyframe structure

Execute “less km_OP_StandupFromBack.lua”

-Press “q” when finished glancing at keyframe file

You can see the general structure. Now, we are going to make
our own keyframe file (for waving a hand), and play it back.

L!lﬁd!!l

e~ Penn ™ :
‘ Engineering [LABORATOR

Keyframe Motion

With the DCM process still running, execute

 ‘cd ..” to get into the opensource folder

. ‘lua gen_anim_upperbody.lua”
Move the arms of the robot to the side of the body
Hit enter to appropriately set a keyframe position
Do this a few times

When done, press “g” and “Enter” to generate the file.
Enter ‘mykeyframe’ as the filename and hit enter.

Now run “lua test_keyframe.lua” to test your motion. Enter the
appropriate filename.

[LABORATOR

. ocomotion

Walk basics, Setting walk parameters

umm P
cnn
& Engineering [LABORATOR

Playing with Locomotion

We're going to start telling Darwin how to walk. First, ensure
the DCM is running (“screen -r dcm?)

Execute "lua test walk.lua"

1. Press “8” to make the robot stand up

2. Press “i” to make the robot move forward
3. Press “k” to make it move in place

4. Try side stepping with “h” and “;”

5. Turn left, right with %", “I”

Press “7” to make the robot sit down
Press “Ctrl+c” to stop test walk.

L!ﬁd!!l

[ABORATORE

Walk Basics

« Stationary Walking

-Center of gravity (CoG) always lies in supporting polygon
* Dynamic Walking

-ZMP always lies in supporting polygon
-CoG may lie outside of the supporting polygon

ZMP can be regarded as the dynamic version of CoG. If the

ZMP lies in the support polygon during walking, the robot will
' be dynamically stable.

Our walk algorithm consists of three steps:
1. Generate foot trajectory according to walk speed
2. Calculate body trajectory to satisty ZMP criterion
3. Calculate joint angle using inverse kinematics

Penn
Engineering [LABORATOF

Foot trajectory generation

-The next torso position is
calculated at the start of each
walk cycle

-Stepping position is
calculated from next torso
position

-Omnidirectional walking is
possible with specifying
separate velocity for x,y,a

Penn
Engineering LLABORATOR

ZMP criterion

Torso Cart
Acceleration Acceleration
([] { [N]
X X

ZMP criterion: p = x—1,,,,X,

Penn
Engineering
Joint angle calculation

-We provide front and inverse
kinematics algorithm for all limbs to
get transform matrix from joint
angles and vice versa.

* Limb dimensions are defined in
DarwinOPKinematis.h

 Forward and Inverse kinematics
defined in DarwinOPKinematics.c

Penn
Engineering [LABORATOF

Active stabilization

Torso rotation

We provide two ways of
stabilizing the walk against
external disturbances

*Propriceptory feedback
|nertial feedback

Torso error

Penn
Engineering LLABORATOR

Walk parameters

Penn
Engineering [LABORATOR

Tuning parameters

All walk parameters are defined in Config.lua file

walk.bodyHeight = 0.21;
walk.stepHeight = 0.020;
walk.footY = 0.035;
walk.supportX = 0.035;
walk.supportY = 0.00;
walk.bodyTilt= 7*math.pi/180;

L!lﬁd!!l

e~ Penn ™
‘ Engineering [LABORATOR

Changing Walk Parameters

Try modify the walk parameters a bit.

1. Execute “gedit Config/Config.lua”

2. Scroll down to the bottom and you will see walk parameters.

3. Enable commented block of the code by removing “—|[[* and
“--1I” lines.

4. Save the file.

Now go up to Player folder (“cd ..”) and run the test_walk.lua
again to see how the changed parameter affects the walking.

In case you do something very wrong, there is
Config.lua.backup file to help.

umm P
cnn
& Engineering [LABORATOR

Playing with Locomotion

We're going to start telling Darwin how to walk. First, ensure
the DCM is running (“screen -r dcm?)

Execute "lua test walk.lua"

1. Press “8” to make the robot stand up

2. Press “i” to make the robot move forward
3. Press “k” to make it move in place

4. Try side stepping with “h” and “;”

5. Turn left, right with %", “I”

Press “7” to make the robot sit down
Press “Ctrl+c” to stop test walk.

[LABORATOR

Motion FSM

Motion FSM, Managing FSM

Penn
Engineering [LABORATOF

What is the motion FSM?

We use a finite state machine named Motion FSM to handle all
low level body movements such as:

Standing up
Walking

Sitting down
Keyframe motion
Detecting fall
Automatic standup

Penn
Engineering LLABORATOF

Basic Motion FSM

Kick]

done
kick

ic
button done button _
Relax Stance Walk Sit

Tdcrne fall

done
Standup Fall

L!iﬁﬂ!!l

= Penn -
& Engineering [LABORATOR

An example of main FSM file

Open the Motion.lua to see an example of an FSM

sm = fsm.new(relax); --Define the FSM, with initial state
sm:add_state(stance); --Add various states
sm:add_state(walk);

sm:add_state(sit);

--Add event transitions
sm:set_transition(relax, "button", stance);
sm:set_transition(stance, "done", walk);
sm:set_transition(walk, "button”, sit);
sm:set_transition(sit, "done", relax);

L!lﬁd!!l

[ABORATOR

Testing motion FSM

You can test the motion FSM as follows;

1. First make the DCM process is running.
2. Execute "lua test_walk.lua" at top folder.

Now the body state machine will wait at relax state.
-You can press the button to make it move into stance, and

walk state.
-Try gently setting the robot face down to ground to make it

move into falling state, and then standup state.

Press the left button will make the body state move to sit state,
and then relax state.

mﬁm

] Penn
& Engineering [LABORATOR

Editing motion FSM

Now let’s try modifying the State Machine. What we are going
to change the action on a button press.

Open the Motion.lua file with “gedit Motion/Motion.lua”

We see that on a button press from the “relax” state we move
into “stance”, followed immediately by “walk.”

How about just making Darwin-OP stand, not walk??

L!ﬁﬂ!.ll
[ABORATOR

Editing motion FSM

To do this, we are going to take advantage of the “nullstate”
which does nothing on its update routine.

First, require the nullstate near the top of the Motion.lua file

Then, change the transition from stance, on “done” to go to null
state. The null state should then transition to relax on “button”

Try to implement this yourself, and when ready, run “lua
test walk.lua” again. Press the button to have Darwin-OP
stand, and press the button again to have it sit.

[LABORATOR

Vision

Device I/O, Processing Library

Penn
Engineering [LABORATOF

Device |/O

What you need to know:
Darwin-OP has a USB webcam for computer vision.
The webcam communicates via UVC to Linux
Darwin-OP's software contains Video4Linux2 drivers to
sample from the camera at 30Hz

For debugging purposes, each frame is stored in a shared
memory file

mmm

] Penn -
& Engineering [LABORATOR

Processing library

The Vision system is divided into two areas. First, C++ routines
perform raw calculations on images. Second, a Lua FSM takes
these calculations and updates the global ball location

The C++ routines are located in
“~/Desktop/opensource/Lib/ImageProc”

The Lua FSM is located, as suspected, In
“~/Desktop/opensource/Player/Vision”

L!ﬁd!!l

o Penn © RASE
‘ Engineering | LLABORATORK
‘Processing library

At the heart of the image processing library is the Lookup Table
or LUT for short. Every pixel in the image is assigned to a
discrete color label, such as “Orange”, “Green”, “White" etc.

After grabbing an image,
we find the largest
connected components of
ball pixels.

In order to reduce noise,
we partition the image
iInto 4x4 pixel blocks.

Behavioral FSMs

and main control code

mﬁm

o Penn -
& Engineering [LABORATOR

What are behavioral FSMs?

Behavioral FSMs are finite state machines that govern high
level behavior of the robot.

 Head FSM
o looking around to find the ball

o Track the found ball
 Body FSM
o Search the area until ball is found
o Approach the ball until the ball is close enough to kick

o Kick the ball

. Penn
&, Engineering [ABORATOR

The main control code

Main controller code simply initializes a number of behavioral
FSM and continuously updates them.

Motion.entry();
BodyFSM.entry();

HeadFSM.entry();
Vision.entry();

while 1 do
Motion.update()
BodyFSM.update()
HeadFSM.update()
Vision.update();
end

Penn
Engineering [LABORATOF

Basic Head and Body FSM ...

lost
timeout timeout
headldle headTrack headScan

ball

[bodyldle } done

bUttD“ “: timeout \
baHFar

ball ballClose body kick _
bodySearch bodyChase Approach bodyKick

T T ballLost

ballLost

L!iﬁﬂ!!l

[ABORATOR

Testing main control code

Now you can run the full player code with all FSM running.

1. First make the DCM process is running.
2. Execute "lua player.lua” at top folder.
3. Press left button to make the robot stand up.

Now Darwin-OP will find a ball, approach the ball, and kick it.
Can you see which state the head and body FSM is in?
After playing for a while, you can press the left button to make

the robot sit down.

Penn
Engineering LLABORATOF

Thanks!

Penn
Engineering [. ABORATOR

Testing Vision

In the “Player” directory, run “lua test_vision.lua” to have
DarwinOP track the ball.

Press “8” to have DarwinOP stand up

Press “I",7)",”I",”,” to move the head around
Press “1” to toggle tracking of the ball

When done, press “7” to have DarwinOP sit down
Press “Ctrl-c” to end the process

