

UPennalizers
RoboCup Standard Platform League

Team Report 2009

Jordan Brindza, Alexandra Lee, Anirudha
Majumdar, Barry Scharfman, Anne Schneider,

Roman Shor, Dan Lee

General Robotics Automation Sensing Perception (GRASP)
Laboratory of Robotics Research and Education

University of Pennsylvania

1.0 Introduction

Robocup 2009 marked the beginning of a new era for the University of Pennsylvania
team, the “UPennalizers”. After successfully competing in the Sony Aibo 4-legged
league from 1999-2006, making it to at least the quarterfinal round in each of those years,
the team took a two year hiatus from Robocup. However, at the urging of engineering
undergraduates who wanted to participate, the team and code base were started anew to
prepare for the 2009 competition. The challenge this year was to quickly adapt to the new
Aldebaran Nao robot platform, concentrating on developing a good base set of sensory
and motor skills.

In the Robocup 2009 competition held in Graz, Austria, the UPennalizers won our first
“Round Robin” bracket, but were eliminated in the second round due in part to a
combination of hardware and calibration problems. However, the UPennalizers
simulation league entry, which utilized the Webots Nao simulation environment, earned
second place overall.

1.1 Team Members

The UPennalizers are led by Professor Daniel Lee, Associate Professor in Electrical and
Systems Engineering at the University of Pennsylvania. The team consists of
undergraduate and graduate students in the departments of Mechanical Engineering and
Applied Mathematics, Electrical and Systems Engineering, and Computer and
Information Science.

2.0 Software Architecture

The software architecture for the robots is shown in Figure 1. This architecture is novel in
that it uses MATLAB as a common development platform. Since many of the students do
not have strong programming backgrounds, this development platform allows them to
participate more fully on the team. Low-level interfaces to the hardware level (via NaoQi
or our own custom controllers) are implemented as compiled Mex routines callable from
MATLAB. These routines provide access to the camera and other sensors such as joint
encoders and the IMU, and allow the higher-level routines to modify joint angles,
stiffnesses, and LED's.

Figure 1: Software architecture

Additionally, by changing a simple PATH variable, a set of simulated inter-faces can be
swapped in for onboard development and testing. This allows for easy debugging on
logged data even without access to the robotics hardware. The MATLAB routines
consist of a variety of modules, layered hierarchically:

Sensor Module that is responsible for reading joint encoders, IMU, foot sensors, battery
status, and button presses on the robot.
Camera Interface to the video camera system, including setting parameters, switching
cameras, and reading the raw YUYV images.
Effector Module to set and vary motor joints and parameters, as well as body and face
LED's.
Vision Uses acquired camera images to deduce presence and relative location of the
ball, goals, lines, and other robots.
World Models world state of the robot, including pose and _ltered ball location.
Game StateMch Game state machine to respond to Robocup game controller and
referee button pushes.
Head StateMch Head state machine to implement ball tracking, searching, and
lookaround behaviors.
Body StateMch Body state machine to switch between chasing, ball approach,
dribbling, and kicking behaviors.
Keyframe Keyframe motion generator used for scripted motions such as getup and kick
motions.
Walk Omnidirectional locomotion module.

In order to simplify development, all interprocess communications are performed by
passing MATLAB structures between the various modules, as well as between robots.

3.0 Motion

3.1 Locomotion

The locomotion of the robots is controlled by a dynamic walk engine. All other motions,
such as kicks and the get up routine, are predetermined scripted motions. The main
development has been the new omni-directional bipedal walk engine that has a set of
tunable parameters that can be adjusted depending on surface conditions. The omni-
directionality of the walk allows for quick responses to changes in game conditions (such
as the ball changing direction due to a deflection).

Using inputs from our vision and localization modules, the walk engine generates
trajectories for the robot’s Center of Mass (COM). The robot uses the information about
the ball’s location and its relative orientation to determine rotational and translational
velocities. Inverse kinematics are then used to generate joint trajectories so that the
projection of the Zero Moment Point (ZMP) onto the ground lies within the convex
polygon of the support foot. This process is repeated to generate alternate support and
swing phases for the two legs.

Information from the Inertial Measurement Unit (IMU) and the foot sensors of the robot
is used to modulate the commanded joint angles and phase of the gait cycles to correct
against perturbations. Hence, minor disturbances caused by irregularities in the carpet
and bumping into obstacles do not cause the robot to lose stability.

Certain parameters of the walk engine can be manually optimized to improve
performance on different surfaces/robots. These include the body and step height, ZMP
time constant, joint stiffness during various phases of the gait, etc.

Figure 2 summarizes the functioning of the omni-directional walk engine.

Figure 2: Overview of the omni-directional walk engine

3.2 Kicks

The development of the kicks was done using inverse kinematics, allowing for a balanced
stance and a rapid swing leg motion. The kicks are completely scripted motions. The
starting and ending positions of the kick were designed to be compatible with the walk
cycle. This allows for a smooth transition between the walk and the kick. Predetermined
joint angles are fed into the motion engine to execute the kick.

Three basic types of kicks were developed: a side kick, a 45 degree-angled kick and a
straight kick. However, at Robocup 2009, only the straight kick was used since the other
kicks were not completely stable (Figure 3).

!"#$%&'(')$*$(+%,'+$-%.#%&'(/0"1'(%2"(3'0$%

456%'#-%7..*%2$#+.(%8$'-9#:+%6+$-%*.%2*',919;$%<'1=%

4#>$(+$%?9#$)'/0+%!%&.+9/.#%@5&%A>$(%2"BB.(/#:%7..*%

C'10"1'*$%AB/)'1%7..*%&1'0$)$#*%

D$*$()9#$%CA5%*('E$0*.(F%

C'10"1'*$%G'11%&.+9/.#%'#-%A(9$#*'/.#%

Figure 3: Nao robot performing scripted kick motion

3.3 Goalie Motions
Fast, stable motions were developed to successfully defend the goal. These motions
included symmetric left and right motions (Figure 4), involving both hands and legs to
maximize the goal defense area. The robot is able to get up quickly from either squatting
position. Also, the robot can switch from one leaning motion to another, without having
to stand up.
Although, these motions were not used at the World Cup competition, they will be
refined and implemented in the upcoming competitions.

Figure 4: Right goalie blocking motion

3.4 Get Up Routines
In accordance with Robocup rules, get up motions from both the back and the front were
necessary. The IMU determines when the robot has fallen over and if it has landed on its
front or back. Based on this information, one of the two pre-scripted get up motions is
executed. These motions had to be calibrated for each different surface.
As shown in Figure 5, the robot first sticks out both arms (in either get up routine). Then,
depending on whether it is facing up or down, it relies on the friction with the carpet to
stand itself up.

Figure 5: Initiation of back get up routine

4.0 Vision

In each new setting, we may encounter different field conditions such as a change in
lighting or the actual color hue of the field objects. In order to account for this, we log a
series of images that are then used to train a lookup table . A MATLAB tool (Figure 6)
enables us to define the YCbCr values that correspond to green, yellow, white, etc. Once
these specific values are selected and defined, the distribution of the points in the color
space are spread out and generalized to account for a greater variation. This is done with
a Gaussian mixture model that analyzes the probability density function of each of the
previously defined pixel values. The boundaries of the color classes are then expanded
according to Bayes’ Theorem. We can then process the individual pixels of the new
images by matching their YCbCr values to the broadened definition of the values in the
lookup table (Figures 7 and 8).

Figure 6: MATLAB tool used to train the

colortable manually
Figure 7: Visualization of the trained

color values in YCbCr colorspace

Figure 8: Visualization of the color segmentation

After the image is segmented into its corresponding color classes using the look-up table,
the segmentation is bitwise OR-ed in 4x4 blocks. The initial object hypotheses for the
ball and goal posts are found by finding connected components in the smaller, bit OR-ed,
image, and then using the original image we calculated the statistics of each region.
Processing the bit OR-ed image first allowed us to greatly speed up the computation of
the system. The bit OR-ed image also produced the set of points that are used in our line
detection algorithm.

We then check the segmented components for certain attributes like size, shape, and
position in order to classify objects, such as the ball and the goal posts (Figure 9). We
also compute statistics for the position of detected objects in the world coordinate system
using the inverse kinematics of the robot, the centroid, and the bounding box to further
filer the object hypotheses. Using these we are able to track the ball and identify the
existence and size of goal posts and consequently localize our position on the field.

Figure 9: Visualization of the object detection

Finally, we implemented a field line detector. The detector starts by determining the
location of points in the image that possibly belong to the field lines. This is
accomplished by performing vertical and horizontal scans of the segmented image
looking for green-white-green transitions. We then use a Hough transform on the set of
field line points to locate the possible field lines in the image. Each pair of (x, y)
coordinates of the field line points define a sinusoidal curve in the polar, (!, r) space. The
Hough transform leverages this and the fact that the sinusoidal curves resulting from of a
set of (x, y) coordinates that all line on the same line will intersect at the same point. We
discretize the sinusoidal curve that corresponds to each detected field line point and then
store them into an accumulator array. Local maxima in this array indicate the lines
formed by the set of points. Currently, we are only considering the line corresponding to
the global maxima and ignoring all other line hypotheses. Detected lines are used to
increase the accuracy of the localization system and decrease the need for the robot to
actively look for other landmarks.

5.0 Localization

The problem of knowing the location of the robots on the field is handled by a
probabilistic model incorporating information from visual landmarks such as goals and
lines, as well as odometry information from the effectors. Recently, probabilistic models
for pose estimation such as extended Kalman filters, grid-based Markov models, and
Monte Carlo particle filters have been successfully deployed. Unfortunately, complex
probabilistic models can be difficult to implement in real-time due to a lack of processing
power on board the robots. We address this issue with a new pose estimation algorithm
that incorporates a hybrid Rao-Blackwellized representation that reduces computational
time, while still providing for a high level of accuracy. Our algorithm models the pose
uncertainty as a distribution over a discrete set of heading angles and continuous
translational coordinates. The distribution over poses (), where () are the two-

dimensional translational coordinates of the robot on the field, and is the heading angle,
is first generically decomposed into the product:

We model the distribution as a discrete set of weighted samples { }, and the
conditional likelihood as simple two-dimensional Gaussians. This approach
has the advantage of combining discrete Markov updates for the heading angle with
Kalman filter updates for the translational degrees of freedom.

When the algorithm is implemented on the robots, they are able to quickly incorporate
visual landmarks and motion information to consistently estimate both the heading angle
and translational coordinates on the field as shown in Figure 10. Even after the robots are
lifted (kidnapped) by the referees, they are able to quickly relocalize their positions when
they see new visual cues.

Figure 10: Rao-Blackwellized probabilistic representation used for localization

6.0 Behaviors
The structure of the motions is dictated by the refresh rate of the DCM, the control board
of the chest which gives instructions to each of the motors, which is around 20ms. It is
only able to maintain its state for one cycle, so it needs to be given new sets of
instructions before each cycle concludes, severely limiting processing time.

The behaviors are controlled by finite state machines with inherently simple properties
which are updated during every cycle. Each state in a state machine contains an entry, an
exit, and a body. The entry specifies any actions that need to be done when the finite state
machine enters that state, for example turning the head if it enters the headScan state. The
exit specifies any actions that need to happen on exit from that state, like putting both feet
on the ground when exiting the bodyWalk state. And the body of the state contains
anything that needs to be updated and any decisions that need to be made. Inside this
body is where the state machine is able to query the environment to determine if the state
of the field or the robot has changed.

The head state machine (Figure 11) is simple: either the head is looking for the ball,
looking at the ball, or finding the goal posts. If the head is tracking the ball and loses it, it
throws a ballLost event and transitions to the headScan state, where the head begins to
scan the field for the ball.

Figure 11: Head state machine

The body state machine (Figure 12) is more complex than the head state machine simply
because the body has more degrees of freedom than the head. The central state is the
bodyPField which keeps track of the estimated position of the robot, the ball, and the
goals. This state is also capable of returning the robot to the starting position during the
READY state of game play. Otherwise, control oscillates between bodySearch,
bodyApproach and bodyOrbit, whose functions are to search for, approach, and orbit the
ball respectively.

Figure 12: Body state machine

6.1 Changing Behaviors

The code is structured hierarchically, with the state machine definition residing the Body
StateMch and Head StateMch files. These files are where the actual states are defined
along with any possible transitions from each state. It is effectively a textual definition of
the state machines above. To change a transition, all that needs to be done is to change
the transition line in the state machine file. Each state resides in its own file, making the
changing of states simple.

6.2 Offense and Defense

The two player robots dynamically switch between offensive and defensive positions
throughout the game. At the start of the game, player one is assigned to offense and
player two is assigned to defense by default. The robots themselves send out heartbeat
packets to each other containing, among other things, their position and their relation to
the ball. The offensive state is characterized by the robot actively approaching the ball
and attempting to score a goal, and defense is characterized by the robot attempting to
place itself between the ball and the robot’s own goal. In the event of robot failure, the
remaining player robot will timeout and switch to offense if it has not received a
heartbeat message within specified period of time.

6.3 Goalie

The goalie maintains a simplified state machine and acts as a modified defensive player
that attempts to maintain its position inside the goalie box while placing itself between
the ball and the center of the goal. The body kick state is also augmented by the goalie
squat state. If the goalie notices the ball approaching, it squats to maximize the chances
of capturing the ball. Once captured, the ball is then kicked toward the far side of the
field.

7.0 Simulation

Because developing motions has the potential to cause damage to the mechanical parts of
the robot, the Webots simulation environment was utilized as a way to quickly test code
before attempting to load new scripts onto the physical robot. This was particularly
useful for developing kicks, as well as working on the get-up routines. Not every motion
developed on the simulator worked in the physical world, and vice versa, since many
properties, such as surface friction, were not perfectly modeled in the simulation
environment. However, using the simulator was still very useful as it could be used to
identify when incorrect joint angles were being sent to the robot. The simulation
environment was also useful to test behaviors and strategy, since, having only four Nao
robots, it was difficult to conduct practice matches.

Our code base used on the actual robots competing in Robocup 2009 was running in the
Webots simulator. This code was entered into the simulation league competition, where
the UPennalizers won second place.

8.0 Conclusion

This report detailed the work performed by the UPennalizers for the Robocup 2009
Standard Platform League competition. Since this was the team’s first year using the
Nao platform, our main goal was to build a motion and sensory code base. With this
code now in place, our future work will be in refining and expanding these elements for
future Robocup competitions.

