
 
 
 
 

UPennalizers 
RoboCup Standard Platform League 

Team Report 2009 

 
 

Jordan Brindza, Alexandra Lee, Anirudha 
Majumdar, Barry Scharfman, Anne Schneider, 

Roman Shor, Dan Lee 
 
 

General Robotics Automation Sensing Perception (GRASP) 
Laboratory of Robotics Research and Education 

University of Pennsylvania 
 
 

 
 
 
 
 
 
 
 
 
 
 



1.0 Introduction 
 
Robocup 2009 marked the beginning of a new era for the University of Pennsylvania 
team, the “UPennalizers”.  After successfully competing in the Sony Aibo 4-legged 
league from 1999-2006, making it to at least the quarterfinal round in each of those years, 
the team took a two year hiatus from Robocup. However, at the urging of engineering 
undergraduates who wanted to participate, the team and code base were started anew to 
prepare for the 2009 competition. The challenge this year was to quickly adapt to the new 
Aldebaran Nao robot platform, concentrating on developing a good base set of sensory 
and motor skills.   
 
In the Robocup 2009 competition held in Graz, Austria, the UPennalizers won our first 
“Round Robin” bracket, but were eliminated in the second round due in part to a 
combination of hardware and calibration problems.  However, the UPennalizers 
simulation league entry, which utilized the Webots Nao simulation environment, earned 
second place overall.   
 
1.1 Team Members 
 
The UPennalizers are led by Professor Daniel Lee, Associate Professor in Electrical and 
Systems Engineering at the University of Pennsylvania.  The team consists of 
undergraduate and graduate students in the departments of Mechanical Engineering and 
Applied Mathematics, Electrical and Systems Engineering, and Computer and 
Information Science. 
 
 
2.0 Software Architecture 
 
The software architecture for the robots is shown in Figure 1. This architecture is novel in 
that it uses MATLAB as a common development platform. Since many of the students do 
not have strong programming backgrounds, this development platform allows them to 
participate more fully on the team.  Low-level interfaces to the hardware level (via NaoQi 
or our own custom controllers) are implemented as compiled Mex routines callable from 
MATLAB. These routines provide access to the camera and other sensors such as joint 
encoders and the IMU, and allow the higher-level routines to modify joint angles, 
stiffnesses, and LED's. 
 
 



 
Figure 1: Software architecture 

 
Additionally, by changing a simple PATH variable, a set of simulated inter-faces can be 
swapped in for onboard development and testing. This allows for easy debugging on 
logged data even without access to the robotics hardware.  The MATLAB routines 
consist of a variety of modules, layered hierarchically: 
 
Sensor   Module that is responsible for reading joint encoders, IMU, foot sensors, battery 
status, and button presses on the robot. 
Camera   Interface to the video camera system, including setting parameters, switching 
cameras, and reading the raw YUYV images. 
Effector   Module to set and vary motor joints and parameters, as well as body and face 
LED's. 
Vision   Uses acquired camera images to deduce presence and relative location of the 
ball, goals, lines, and other robots. 
World   Models world state of the robot, including pose and _ltered ball location. 
Game StateMch   Game state machine to respond to Robocup game controller and 
referee button pushes. 
Head StateMch   Head state machine to implement ball tracking, searching, and 
lookaround behaviors. 
Body StateMch   Body state machine to switch between chasing, ball approach, 
dribbling, and kicking behaviors. 
Keyframe   Keyframe motion generator used for scripted motions such as getup and kick 
motions. 
Walk   Omnidirectional locomotion module. 
 



In order to simplify development, all interprocess communications are performed by 
passing MATLAB structures between the various modules, as well as between robots. 
 
3.0 Motion 
 
3.1 Locomotion 
 
The locomotion of the robots is controlled by a dynamic walk engine. All other motions, 
such as kicks and the get up routine, are predetermined scripted motions. The main 
development has been the new omni-directional bipedal walk engine that has a set of 
tunable parameters that can be adjusted depending on surface conditions. The omni-
directionality of the walk allows for quick responses to changes in game conditions (such 
as the ball changing direction due to a deflection). 
 
Using inputs from our vision and localization modules, the walk engine generates 
trajectories for the robot’s Center of Mass (COM). The robot uses the information about 
the ball’s location and its relative orientation to determine rotational and translational 
velocities. Inverse kinematics are then used to generate joint trajectories so that the 
projection of the Zero Moment Point (ZMP) onto the ground lies within the convex 
polygon of the support foot. This process is repeated to generate alternate support and 
swing phases for the two legs. 
 
Information from the Inertial Measurement Unit (IMU) and the foot sensors of the robot 
is used to modulate the commanded joint angles and phase of the gait cycles to correct 
against perturbations. Hence, minor disturbances caused by irregularities in the carpet 
and bumping into obstacles do not cause the robot to lose stability.  
 
Certain parameters of the walk engine can be manually optimized to improve 
performance on different surfaces/robots. These include the body and step height, ZMP 
time constant, joint stiffness during various phases of the gait, etc. 
 
Figure 2 summarizes the functioning of the omni-directional walk engine. 
 
 



 
Figure 2: Overview of the omni-directional walk engine 

 
 

3.2 Kicks 
 
The development of the kicks was done using inverse kinematics, allowing for a balanced 
stance and a rapid swing leg motion. The kicks are completely scripted motions. The 
starting and ending positions of the kick were designed to be compatible with the walk 
cycle. This allows for a smooth transition between the walk and the kick. Predetermined 
joint angles are fed into the motion engine to execute the kick. 
 
Three basic types of kicks were developed: a side kick, a 45 degree-angled kick and a 
straight kick. However, at Robocup 2009, only the straight kick was used since the other 
kicks were not completely stable (Figure 3). 
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Figure 3: Nao robot performing scripted kick motion 
 
3.3 Goalie Motions 
Fast, stable motions were developed to successfully defend the goal. These motions 
included symmetric left and right motions (Figure 4), involving both hands and legs to 
maximize the goal defense area. The robot is able to get up quickly from either squatting 
position. Also, the robot can switch from one leaning motion to another, without having 
to stand up. 
Although, these motions were not used at the World Cup competition, they will be 
refined and implemented in the upcoming competitions. 
   

 
Figure 4: Right goalie blocking motion 

3.4 Get Up Routines 
In accordance with Robocup rules, get up motions from both the back and the front were 
necessary. The IMU determines when the robot has fallen over and if it has landed on its 
front or back. Based on this information, one of the two pre-scripted get up motions is 
executed. These motions had to be calibrated for each different surface.  
As shown in Figure 5, the robot first sticks out both arms (in either get up routine). Then, 
depending on whether it is facing up or down, it relies on the friction with the carpet to 
stand itself up. 
 



 
Figure 5: Initiation of back get up routine 

 
 
4.0 Vision 
 
In each new setting, we may encounter different field conditions such as a change in 
lighting or the actual color hue of the field objects. In order to account for this, we log a 
series of images that are then used to train a lookup table . A MATLAB tool (Figure 6) 
enables us to define the YCbCr values that correspond to green, yellow, white, etc. Once 
these specific values are selected and defined, the distribution of the points in the color 
space are spread out and generalized to account for a greater variation. This is done with 
a Gaussian mixture model that analyzes the probability density function of each of the 
previously defined pixel values. The boundaries of the color classes are then expanded 
according to Bayes’ Theorem. We can then process the individual pixels of the new 
images by matching their YCbCr values to the broadened definition of the values in the 
lookup table (Figures 7 and 8).  

 

  
Figure 6: MATLAB tool used to train the 

colortable manually 
Figure 7: Visualization of the trained 

color values in YCbCr colorspace 

 



 
 
 

 
 

 
Figure 8: Visualization of the color segmentation 

 
After the image is segmented into its corresponding color classes using the look-up table, 
the segmentation is bitwise OR-ed in 4x4 blocks. The initial object hypotheses for the 
ball and goal posts are found by finding connected components in the smaller, bit OR-ed, 
image, and then using the original image we calculated the statistics of each region. 
Processing the bit OR-ed image first allowed us to greatly speed up the computation of 
the system. The bit OR-ed image also produced the set of points that are used in our line 
detection algorithm. 
 
We then check the segmented components for certain attributes like size, shape, and 
position in order to classify objects, such as the ball and the goal posts (Figure 9). We 
also compute statistics for the position of detected objects in the world coordinate system 
using the inverse kinematics of the robot, the centroid, and the bounding box to further 
filer the object hypotheses.  Using these we are able to track the ball and identify the 
existence and size of goal posts and consequently localize our position on the field.  
 



 
Figure 9: Visualization of the object detection 

 
Finally, we implemented a field line detector. The detector starts by determining the 
location of points in the image that possibly belong to the field lines. This is 
accomplished by performing vertical and horizontal scans of the segmented image 
looking for green-white-green transitions. We then use a Hough transform on the set of 
field line points to locate the possible field lines in the image. Each pair of  (x, y) 
coordinates of the field line points define a sinusoidal curve in the polar, (!, r) space. The 
Hough transform leverages this and the fact that the sinusoidal curves resulting from of a 
set of (x, y) coordinates that all line on the same line will intersect at the same point. We 
discretize the sinusoidal curve that corresponds to each detected field line point and then 
store them into an accumulator array. Local maxima in this array indicate the lines 
formed by the set of points. Currently, we are only considering the line corresponding to 
the global maxima and ignoring all other line hypotheses. Detected lines are used to 
increase the accuracy of the localization system and decrease the need for the robot to 
actively look for other landmarks. 
 
 
5.0 Localization 
 
The problem of knowing the location of the robots on the field is handled by a 
probabilistic model incorporating information from visual landmarks such as goals and 
lines, as well as odometry information from the effectors. Recently, probabilistic models 
for pose estimation such as extended Kalman filters, grid-based Markov models, and 
Monte Carlo particle filters have been successfully deployed. Unfortunately, complex 
probabilistic models can be difficult to implement in real-time due to a lack of processing 
power on board the robots. We address this issue with a new pose estimation algorithm 
that incorporates a hybrid Rao-Blackwellized representation that reduces computational 
time, while still providing for a high level of accuracy. Our algorithm models the pose 
uncertainty as a distribution over a discrete set of heading angles and continuous 
translational coordinates. The distribution over poses ( ), where ( ) are the two-



dimensional translational coordinates of the robot on the field, and  is the heading angle, 
is first generically decomposed into the product: 
 

 

We model the distribution  as a discrete set of weighted samples { }, and the 
conditional likelihood  as simple two-dimensional Gaussians. This approach 
has the advantage of combining discrete Markov updates for the heading angle with 
Kalman filter updates for the translational degrees of freedom. 
 
When the algorithm is implemented on the robots, they are able to quickly incorporate 
visual landmarks and motion information to consistently estimate both the heading angle 
and translational coordinates on the field as shown in Figure 10. Even after the robots are 
lifted (kidnapped) by the referees, they are able to quickly relocalize their positions when 
they see new visual cues. 
 

 
Figure 10: Rao-Blackwellized probabilistic representation used for localization 

 
6.0 Behaviors 
The structure of the motions is dictated by the refresh rate of the DCM, the control board 
of the chest which gives instructions to each of the motors, which is around 20ms. It is 
only able to maintain its state for one cycle, so it needs to be given new sets of 
instructions before each cycle concludes, severely limiting processing time. 
 
The behaviors are controlled by finite state machines with inherently simple properties 
which are updated during every cycle. Each state in a state machine contains an entry, an 
exit, and a body. The entry specifies any actions that need to be done when the finite state 
machine enters that state, for example turning the head if it enters the headScan state. The 
exit specifies any actions that need to happen on exit from that state, like putting both feet 
on the ground when exiting the bodyWalk state. And the body of the state contains 
anything that needs to be updated and any decisions that need to be made. Inside this 
body is where the state machine is able to query the environment to determine if the state 
of the field or the robot has changed. 



 
The head state machine (Figure 11) is simple: either the head is looking for the ball, 
looking at the ball, or finding the goal posts.  If the head is tracking the ball and loses it, it 
throws a ballLost event and transitions to the headScan state, where the head begins to 
scan the field for the ball.   

 
Figure 11: Head state machine 

 
The body state machine (Figure 12) is more complex than the head state machine simply 
because the body has more degrees of freedom than the head. The central state is the 
bodyPField which keeps track of the estimated position of the robot, the ball, and the 
goals. This state is also capable of returning the robot to the starting position during the 
READY state of game play. Otherwise, control oscillates between bodySearch, 
bodyApproach and bodyOrbit, whose functions are to search for, approach, and orbit the 
ball respectively. 
 

 
Figure 12: Body state machine 

 



6.1 Changing Behaviors 
 
The code is structured hierarchically, with the state machine definition residing the Body 
StateMch   and Head StateMch files. These files are where the actual states are defined 
along with any possible transitions from each state. It is effectively a textual definition of 
the state machines above. To change a transition, all that needs to be done is to change 
the transition line in the state machine file. Each state resides in its own file, making the 
changing of states simple. 
 
6.2 Offense and Defense 
 
The two player robots dynamically switch between offensive and defensive positions 
throughout the game.  At the start of the game, player one is assigned to offense and 
player two is assigned to defense by default.  The robots themselves send out heartbeat 
packets to each other containing, among other things, their position and their relation to 
the ball.  The offensive state is characterized by the robot actively approaching the ball 
and attempting to score a goal, and defense is characterized by the robot attempting to 
place itself between the ball and the robot’s own goal.  In the event of robot failure, the 
remaining player robot will timeout and switch to offense if it has not received a 
heartbeat message within specified period of time. 
 
6.3 Goalie 
 
The goalie maintains a simplified state machine and acts as a modified defensive player 
that attempts to maintain its position inside the goalie box while placing itself between 
the ball and the center of the goal.  The body kick state is also augmented by the goalie 
squat state.  If the goalie notices the ball approaching, it squats to maximize the chances 
of capturing the ball.  Once captured, the ball is then kicked toward the far side of the 
field. 
 
 
7.0 Simulation 
 
Because developing motions has the potential to cause damage to the mechanical parts of 
the robot, the Webots simulation environment was utilized as a way to quickly test code 
before attempting to load new scripts onto the physical robot.  This was particularly 
useful for developing kicks, as well as working on the get-up routines.  Not every motion 
developed on the simulator worked in the physical world, and vice versa, since many 
properties, such as surface friction, were not perfectly modeled in the simulation 
environment.  However, using the simulator was still very useful as it could be used to 
identify when incorrect joint angles were being sent to the robot.  The simulation 
environment was also useful to test behaviors and strategy, since, having only four Nao 
robots, it was difficult to conduct practice matches. 
 



Our code base used on the actual robots competing in Robocup 2009 was running in the 
Webots simulator.  This code was entered into the simulation league competition, where 
the UPennalizers won second place. 
 
8.0 Conclusion 
 
This report detailed the work performed by the UPennalizers for the Robocup 2009 
Standard Platform League competition.  Since this was the team’s first year using the 
Nao platform, our main goal was to build a motion and sensory code base.  With this 
code now in place, our future work will be in refining and expanding these elements for 
future Robocup competitions. 
 


