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Abstract. This paper presents the organization and architecture of a
team of soccer-playing Nao robots developed at the Univ. of Pennsylvania
for the 2011 Robocup competition. This effort represents completely cus-
tom software architecture developed from scratch. All sensory and mo-
tor functions are prototyped and run in Lua on the embedded on-board
processors. High-level behaviors and team coordination are implemented
using state machines. The locomotion engine allows for omni-directional
motions and uses sensory feedback to compensate for external distur-
bances.

1 Introduction

Robocup 2011 represents the continuation of a long-standing tradition of robotics
for the UPennalizers of the Univ. of Pennsylvania. The UPennalizers participated
in the Robocup Sony Aibo league and made the quarter-finals each year starting
in 1999. After a brief hiatus from 2007 through 2008, the UPennalizers began
competing in Robocup once more in 2009. The UPennalizers swiftly adapted the
existing code base to the Aldebaran Nao platform, simultaneously improving
and expanding the base set of sensory and motor skills [1]. After Robocup 2010,
the UPennalizers decided to undertake a large-scale translation of our higher-
level code base from Matlab to Lua [2]. The team hoped to increase game-time
performance and the availability of computing resources by making this switch.
Istanbul 2011 acted as a means to test the performance of this revamped code
base.

2 Software Architecture

The software architecture for the robots is shown in Figure 1. The architecture
used is an expansion of the architecture used by the UPennalizers in the previous
Robocup competition. This architecture uses Lua as a common development
platform.

Low-level interfaces to the hardware level (via NaoQi or our own custom
controllers) are implemented as compiled C libraries that can be called from
Lua scripts. The routines provide access to the camera and other sensors, such
as joint encoders and the IMU. They also provide interfaces to modify the joint
angles, stiffnesses and LED’s.
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Fig. 1. Block Diagram of the Software Architecture.

The system is comprised of two main modules. One Lua process contains
the main behavioral control of the robot along with the motion control through
NaoQi. The second process contains the image processing pipeline. Decoupling
motion and vision processing allows us to maintain an update rate of 100 Hz
for motion control and to run the vision system with the remaining processing
power. As a result, our robots to maintain more stability and robustness when
walking.

Shared memory is used as the main form of interprocess communication. Any
important control and debugging information is stored as shared memory which
is accessible from any module. This also allows for real-time, on demand debug-
ging and monitoring without any change or impact on the system. Debugging
can be done locally or remotely, and the information is accessible both through
Lua and Matlab interfaces.

The Lua routines consist of a variety of modules, layered hierarchically:

Body Responsible for reading joint encoders, IMU data, foot sensors, battery
status, and button presses on the robot. It is also responsible for setting
motor joints and parameters, as well as the body and face LED’s.

Camera Interface to the video camera system, including setting parameters,
switching cameras, and reading raw YUYV images.

Vision Uses acquired camera images to deduce presence and relative location
of the ball, goals, field lines, and other robots.

‘World Models world state of the robot, including pose and filtered ball location.



Game StateMch Responds to Robocup game controller and referee button
pushes.

Head StateMch Performs ball tracking, searching, and look-around behaviors.

Body StateMch Switches between chasing, ball approach, dribbling, and kick-
ing behaviors.

Keyframe Generates scripted motions such as getup.

‘Walk Omni-directional locomotion module.

Kick Maintains static stability while executing kicks

3 Vision

Most of the algorithms used for processing visual information are similar to
those used by other Robocup teams in the past. Since fast vision is crucial to
the robots’ behaviors, these algorithms are implemented using a small number
of compiled Mex routines.

During calibration, a Gaussian mixture model is used to partition the YCbCr
color cube into the following colors:

— Orange (Ball)
— Yellow (Goal)
— Cyan (Goal)

— Green (Field)
White (Lines)

using a number of training images, resulting in a color look-up table. While
the robot is running, the main processing pipeline segments the highest-resolution
color images from the camera by classifying individual pixels based upon their
YCbCr values. Connected regions are recognized as either connected compo-
nents or edge regions, and objects are recognized from the statistics - such as
the bounding box of the region, the centroid location, and the chord lengths in
the region - of the colored regions. In this manner, the location of the ball and
goal posts are detected.

Field line recognition decreases the need for robots to actively search for
landmarks, enabling them to chase the ball more effectively. The first step in
line identification is to find white pixels that neighbor pixels of field green color.
Once these pixels are located, a Hough transform is used to search for relevant
line directions.

In the Hough transform, each possible line pixel (z,y) in the image is trans-
formed into a discrete set of points (6;,r;) which satisfy:

xcosb; +ysinf =r; (1)

The pairs (0;,7;) are accumulated in a matrix structure where lines appear
as large values as shown in Figure 2. To speed the search for relevant lines, our
implementation only considers possible line directions that are either parallel or
perpendicular to the maximal value of the accumulator array. Once these lines
are located, they are identified as either interior or exterior field lines based upon
their position, then used to aid in localization.
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Fig. 2. Hough transformation for field line detection in images.

3.1 Debugging

To debug the vision code, we developed a tool to receive image packets from
an active robot and display them. We broadcast raw YUYV images from each
camera, as well as two ’labeled’ images, which are the color-segmented versions
of the image. We can receive these image packets remotely and display them via
a Matlab interface, and overlay visual indicators of state such as ball and goal
locations. Through the use of this debugging tool, it is possible for us to test
and improve our color look-up tables with ease.
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Fig. 3. Monitoring software developed to debug vision.

4 Localization

The problem of knowing the location of robots on the field is handled by a
probabilistic model incorporating information from visual landmarks such as
goals and lines, as well as odometry information from the effectors. Recently,
probabilistic models for pose estimation such as extended Kalman filters, grid-
based Markov models, and Monte Carlo particle filters have been successfully
implemented. Unfortunately, complex probabilistic models can be difficult to im-
plement in real-time due to a lack of processing power on board the robots. We



address this issue with a pose estimation algorithm that incorporates a hybrid
Rao-Blackwellized representation that reduces computational time, while still
providing a high level of accuracy. Our algorithm models the pose uncertainty
as a distribution over a discrete set of heading angles and continuous trans-
lational coordinates. The distribution over poses (x,y, ), where (z,y) are the
two-dimensional translational coordinates of the robot on the field, and € is the
heading angle, is first generically decomposed into the product:

We model the distribution P(6) as a discrete set of weighted samples {0;},
and the conditional likelihood P(z,y|#) as simple two-dimensional Gaussians.
This approach has the advantage of combining discrete Markov updates for the
heading angle with Kalman filter updates for translational degrees of freedom.

Fig. 4. Rao-Blackwellized probabilistic representation used for localization.

When this algorithm is implemented on the robots, they quickly incorporate
visual landmarks and motion information to consistently estimate both the head-
ing angle and translational coordinations on the field as shown in Fig. 4. Even
after the robots are lifted ("kidnapped’) by the referees, they quickly re-localize
their positions when they see new visual cues.

5 Motion

Motion is controlled by a dynamic walk module in addition to predetermined
scripted motions. One main development has been a bipedal walk engine that
allows fast, omni-directional motions.

The walk engine generates trajectories for the robot’s center of mass (COM)
based upon desired translational and rotational velocity settings. The module
then computes optimal foot placement given this desired body motion. Inverse
kinematics are used to generate joint trajectories so that the zero moment point



(ZMP) is over the support foot during the step. This process is repeated to
generate alternate support and swing phases for both legs.

IMU feedback is used to modulate the commanded joint angles and phase
of the gait cycle to provide for further stability during locomotion. In this way,
minor disturbances such as carpet imperfections and bumping into obstacles do
not cause the robot to fall over.

Depending on the surface and robot, a number of parameters need to be
tuned. These include the body and step height, ZMP time constant, joint stiff-
nesses during various phases of the gait, and gyroscopic feedbacks. The various
parameters for this module have been tuned online using stochastic optimization
techniques to allow for speed and robustness.

5.1 Kicks

A new kick engine was developed for this year’s competition. Kicks now include
stabilization code to control the motion of the robot throughout each separate
motion of the kick. Each kick can now be tuned from a single configuration file,
allowing adjustment of the torso, leg, and foot positions, as well as the angle
through which the foot swings.

6 Obstacle Detection

Obstacle detection code was developed in preparation for this year’s competi-
tion. Data read from the ultrasound sensors allows informed decisions as to the
presence of an obstacle in the robot’s path to be made. Significant filtering of
the input data, as well as relative as opposed to absolute measurements, allows
us to generate a somewhat reliable signal. From this information, it is possible
to perform avoidance maneuvers if necessary.

7 Behaviors

Behaviors are controlled by finite state machines which are updated at 100Hz.
In our state machine implementation, each state contains an entry function, an
exit function, and a body. The entry function specifies any actions which need
to be taken when the finite state machine enters a particular state; for example,
turning the head if it enters the headScan state. The exit specifies any actions
which need to be taken on exit from a particular state, such as planting both feet
on the ground when exiting the bodyW alk state. The body of the state contains
anything which needs to be updated and any decisions which need to be made
within a particular state. The body of a state is where the state machine queries
the environment to determine if the state of the field or of the robot has changed.

The head state machine is simple: Either the head is looking for the ball,
looking at the ball, or finding the goal posts. In example, if the head is tracking
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the ball and loses it, it throws a ball Lost event and transitions to the headScan
state, wherein the head begins to scan the field for the ball.

The body state machine is more complex than the head state machine, as
the body has more degrees of freedom than does the head. The main state is
the bodyPosition state which keeps track of the estimated position of the robot,
the ball, and the goals. During the READY state, the body state machine
transitions to the BodyGotoCenter state, which commands the robot to return
to its ’home’ position. During game play, the body state machine transitions
between the BodySearch state, which causes the robot to search for the ball if
it has been lost; the BodyOrbit state, which causes the robot to maneuver around
the ball until it is in a good position to score a goal; the BodyApproach state,
which causes the robot to get close enough to the ball to kick it effectively; the
BodyKick state, which executes the dynamic kick engine; and the Body Position
state, as described earlier.

7.1 Changing Behaviors

The code base is structured hierarchically, with the state machine definition
residing within the BodySM and HeadSM files. This is where the actual states and
state transitions are defined. To change a transition, all that needs to be done is
to change the transition line in the state machine file. Each state resides in its
own file, making the changing of states simple.

7.2 Team Play

To make full use of a team of four robots, it is imperative to assign each robot a
role. We do this through the development of 'team play’ code, which functions
alongside our localization code. The different roles each have specific home posi-
tions on the field, and each role causes the robot to behave differently. The roles
we have defined for our team are as follows:

Attack The attacking robot goes directly to the ball, as long as it is not in the
defensive penalty box.

Defend The defending robot positions itself between the ball and defensive goal
area.

Support The supporting robot follows the attacking robot upfield, but stays
at a respectable distance away—usually about midfield.

Goalie The goalie stays near the defensive goal to clear the ball when it comes
close.

Because the primary function of a soccer player is to move the ball and
attempt to score, we make that our top priority in our strategy. Therefore,
our robot ’team members’ communicate with each other as to each’s relative
proximity to the ball. If our supporter is nearer the ball than our attacker, the
two will switch roles; the supporter will behave like the attacker, and the attacker
will behave like the supporter. This holds true if the ball becomes nearer to the



defender than any other player; the defender will switch roles’ with the attacker,
and try to move the ball down field. In this way, team members can reach the
ball much faster if they behave as a unit instead of as individuals.

8 Summary

The UPennalizers kept to previous standards of reaching the Quarter-Finals at
Robocup 2011 in Istanbul. Through switching to a Lua-based code base, we were
able to keep our update speeds to 100Hz, stabilizing our motion and allowing us
to move faster than ever before.

Our full code base has recently been re-released under the GNU public license,
and we hope it will be of use to future teams.
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