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1.0 Introduction 

 
Robocup 2009 marked the beginning of a new era for the University of Pennsylvania 

team, the “UPennalizers”.  After successfully competing in the Sony Aibo 4-legged 

league from 1999-2006, making it to at least the quarterfinal round in each of those years, 

the team took a two year hiatus from Robocup. However, at the urging of engineering 

undergraduates who wanted to participate, the team and code base were started anew to 

prepare for the 2009 competition. With a code base already in place from 2009, the focus 

for the year 2010 was to build new algorithms and improve on existing ones to help 

develop a strong strategy.   

 

In the Robocup 2010 competition in Singapore, the Upennalizers were quarterfinalists 

and also finished 4
th

 in the dribbling challenge.  We also released an open source 

version of our code to make Robocup more accessible to new teams just starting out.  

The release can be found at our website, 

http://fling.seas.upenn.edu/~robocup/wiki/index.php?n=Main.HomePage . 

 
1.1 Team Members 

 
The UPennalizers are led by Professor Daniel Lee, Associate Professor in Electrical and 

Systems Engineering at the University of Pennsylvania.  The team consists of 

undergraduate and graduate students in the departments of Mechanical Engineering and 

Applied Mathematics, Electrical and Systems Engineering, and Computer and 

Information Science. 

 

 

2.0 Software Architecture 

 

The software architecture for the robots is shown in Figure 1. The architecture used is an 

expansion of the architecture used by the UPennalizers in the previous RoboCup 

competition. This architecture retains MATLAB as a common development platform[2]. 

Since many of the students do not have strong programming backgrounds, this 

development platform allows them to participate more fully on the team. This year we also 

incorporated a number of Lua modules to handle so me of the low level computation in 

order to increase our frame rate. 

 



 
Figure 1: Software architecture 

 

Low-level interfaces to the hardware level (via NaoQi or our own custom controllers) are 

implemented as a combination of compiled Mex routines callable from MATLAB and C 

libraries that are callable from Lua scripts. The Lua interfaces handle the low level 

communication with the motors, joint encoders and the IMU while the Mex routines 

provide access to the camera and network interfaces.  

 

With this architecture the high level behavioral planning and image processing are done in 

MATLAB while the walking and motion algorithms are written as Lua modules. During 

execution there are two separate processes running, a Lua process and a MATLAB process. 

A shared memory interface was setup to allow communication between the two processes. 

For instance, the behavioral routines are able to change the walk parameters used by the 

Lua walk modules or to set the desired walk trajectory through this interface. This 

decoupling of the motion and vision processing allows the robots to maintain more stable 

and robust walking. 

 

MATLAB Modules: 

Camera   Interface to the video camera system, including setting parameters, switching 

cameras, and reading the raw YUYV images. 

Vision   Uses acquired camera images to deduce presence and relative location of the ball, 

goals, lines, and other robots. 

World   Models world state of the robot, including pose and _ltered ball location. 

Game StateMch   Game state machine to respond to Robocup game controller and referee 

button pushes. 

Head StateMch   Head state machine to implement ball tracking, searching, and 

lookaround behaviors. 

Body StateMch   Body state machine to switch between chasing, ball approach, dribbling, 

and kicking behaviors. 

Lua Modules: 



Effector   Module to set and vary motor joints and parameters, as well as body and face 

LED's. 

Sensor   Module that is responsible for reading joint encoders, IMU, foot sensors, battery 

status, and button presses on the robot. 

Keyframe   Keyframe motion generator used for scripted motions such as getup and kick 

motions. 

Walk   Omnidirectional locomotion module. 

 

In order to simplify development, all interprocess communications are performed by 

passing Matlab structures between the various modules, as well as between robots. 

 

 

3.0 Motion 
 
3.1 Locomotion 

 
The locomotion of the robots is controlled by a dynamic walk engine. All other motions, 

such as kicks and the get up routine, are predetermined scripted motions. The main 

development has been the new omni-directional bipedal walk engine that has a set of 

tunable parameters that can be adjusted depending on surface conditions. The omni- 

directionality of the walk allows for quick responses to changes in game conditions (such 

as the ball changing direction due to a deflection). 

 
Using inputs from our vision and localization modules, the walk engine generates 

trajectories for the robot’s Center of Mass (COM). The robot uses the information about 

the ball’s location and its relative orientation to determine rotational and translational 

velocities. Inverse kinematics are then used to generate joint trajectories so that the 

projection of the Zero Moment Point (ZMP) onto the ground lies within the convex 

polygon of the support foot. This process is repeated to generate alternate support and 

swing phases for the two legs. 

 
Information from the Inertial Measurement Unit (IMU) and the foot sensors of the robot 

is used to modulate the commanded joint angles and phase of the gait cycles to correct 

against perturbations. Hence, minor disturbances caused by irregularities in the carpet 

and bumping into obstacles do not cause the robot to lose stability. 

 
Certain parameters of the walk engine can be manually optimized to improve 

performance on different surfaces/robots. These include the body and step height, ZMP 

time constant, joint stiffness during various phases of the gait, etc. 

 
Figure 2 summarizes the functioning of the omni-directional walk engine. 
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Figure 2: Overview of the omni-directional walk engine 
 

 
 

3.2 Kicks 
 
The development of the kicks was done using inverse kinematics, allowing for a balanced 

stance and a rapid swing leg motion. The kicks are completely scripted motions. The 

starting and ending positions of the kick were designed to be compatible with the walk 

cycle. This allows for a smooth transition between the walk and the kick. Predetermined 

joint angles are fed into the motion engine to execute the kick. 

 
Three basic types of kicks were developed: a side kick, a 45 degree-angled kick and a 

straight kick. However, at Robocup 2010, only the straight kick was used since the other 

kicks were not completely stable (Figure 3). 

 



Figure 3: Nao robot performing scripted kick motion 

 
3.3 Goalie Motions 
Fast, stable motions were developed to successfully defend the goal. These motions 
included symmetric left and right motions (Figure 4), involving both hands and legs to 

maximize the goal defense area. The robot is able to get up quickly from either squatting 

position. Also, the robot can switch from one leaning motion to another, without having 

to stand up. 

Although, these motions were not used at the World Cup competition, they will be 

refined and implemented in the upcoming competitions. 

 

 
 
3.4 Get Up Routines 

Figure 4: Right goalie blocking motion 

In accordance with Robocup rules, get up motions from both the back and the front were 

necessary. The IMU determines when the robot has fallen over and if it has landed on its 

front or back. Based on this information, one of the two pre-scripted get up motions is 

executed. These motions had to be calibrated for each different surface. 

As shown in Figure 5, the robot first sticks out both arms (in either get up routine). Then, 

depending on whether it is facing up or down, it relies on the friction with the carpet to 

stand itself up. 



 
 

 
Figure 5: Initiation of back get up routine 

 

 

For Robocup 2010, the front get up routine changed to give the robot more stability while 

trying to stand.  In the new routine, the robot first pushes its center of mass over one of its 

feet, then uses the other foot for balance as it pushes itself up.  This get up routine showed 

an improved success rate as compared to the previous years’.   
 
 

4.0 Vision 
 
In each new setting, we may encounter different field conditions such as a change in 

lighting or the actual color hue of the field objects. In order to account for this, we log a 

series of images that are then used to train a lookup table . A MATLAB tool (Figure 6) 

enables us to define the YCbCr values that correspond to green, yellow, white, etc. Once 

these specific values are selected and defined, the distribution of the points in the color 

space are spread out and generalized to account for a greater variation. This is done with 

a Gaussian mixture model that analyzes the probability density function of each of the 

previously defined pixel values. The boundaries of the color classes are then expanded 

according to Bayes’ Theorem. We can then process the individual pixels of the new 

images by matching their YCbCr values to the broadened definition of the values in the 

lookup table (Figures 7 and 8). 

 

 
Figure 6: MATLAB tool used to train the 

colortable manually 

Figure 7: Visualization of the trained 

color values in YCbCr colorspace 



 

 
 
 
 
 
 

 
Figure 8: Visualization of the color segmentation 

 

 
After the image is segmented into its corresponding color classes using the look-up table, 

the segmentation is bitwise OR-ed in 4x4 blocks. The initial object hypotheses for the 

ball and goal posts are found by finding connected components in the smaller, bit OR-ed, 
image, and then using the original image we calculated the statistics of each region. 

Processing the bit OR-ed image first allowed us to greatly speed up the computation of 

the system. The bit OR-ed image also produced the set of points that are used in our line 

detection algorithm. 

 
We then check the segmented components for certain attributes like size, shape, and 

position in order to classify objects, such as the ball and the goal posts (Figure 9). We 

also compute statistics for the position of detected objects in the world coordinate system 

using the inverse kinematics of the robot, the centroid, and the bounding box to further 

filer the object hypotheses.  Using these we are able to track the ball and identify the 

existence and size of goal posts and consequently localize our position on the field. 



 
Figure 9: Visualization of the object detection 

 

 
Finally, we implemented a field line detector. The detector starts by determining the 

location of points in the image that possibly belong to the field lines. This is 

accomplished by performing vertical and horizontal scans of the segmented image 

looking for green-white-green transitions. We then use a Hough transform on the set of 

field line points to locate the possible field lines in the image. Each pair of (x, y) 

coordinates of the field line points define a sinusoidal curve in the polar, (Θ, r) space. The 

Hough transform leverages this and the fact that the sinusoidal curves resulting from of a 

set of (x, y) coordinates that all line on the same line will intersect at the same point. We 

discretize the sinusoidal curve that corresponds to each detected field line point and then 

store them into an accumulator array. Local maxima in this array indicate the lines 

formed by the set of points. Currently, we are only considering the line corresponding to 
the global maxima and ignoring all other line hypotheses. Detected lines are used to 

increase the accuracy of the localization system and decrease the need for the robot to 

actively look for other landmarks. 

 

Currently, many competitors, once they have captured the ball, will simply aim 

towards the goal and kick the ball in that general direction, regardless if there is a 

defender in the way or not. This is a problematic strategy, as the player would be 

effectively passing the ball straight to the opponent. There is also little path planning 

involved, which provides for inefficient travel towards the ball. In order to attempt to 

avoid these situations, we have created an algorithm to approximate the amount of 

"free space" is surrounding a robot, so that it can take paths with the least possible 

interference. We essentially split the region surrounding the robot into several 

sections. As the robot acquires new visual data, it updates the number of field pixels it 

sees in each corresponding section. This count is retained and constantly updated, so 

that once the robot has captured the ball, it can then make more efficient decisions on 

where to kick it. 

 

Last year we also started implementing a robot detecting algorithm.  The function 

sought out white spaces with blocks of color across the middle, in accordance with 

the colored band that denoted teams.  Though the function was written, it was not 

thoroughly tested and was not used in competition.   
 

 



 

5.0 Localization 

 
The problem of knowing the location of the robots on the field is handled by a 

probabilistic model incorporating information from visual landmarks such as goals and 

lines, as well as odometry information from the effectors. Recently, probabilistic models 

for pose estimation such as extended Kalman filters, grid-based Markov models, and 

Monte Carlo particle filters have been successfully deployed. Unfortunately, complex 

probabilistic models can be difficult to implement in real-time due to a lack of processing 

power on board the robots. We address this issue with a new pose estimation algorithm 

that incorporates a hybrid Rao-Blackwellized representation that reduces computational 

time, while still providing for a high level of accuracy. Our algorithm models the pose 

uncertainty as a distribution over a discrete set of heading angles and continuous 

translational coordinates. The distribution over poses ( x, y,0 ), where ( x, y ) are the two- 



 
 

dimensional translational coordinates of the robot on the field, and 0 is the heading angle, 

is first generically decomposed into the product: 

 
P( x, y,0 ) P(0 ) P( x, y | 0 ) P(0 i ) P( x, y | 0 i ) 

i 

We model the distribution P(0 ) as a discrete set of weighted samples {0 
i  

}, and the 

conditional likelihood P( x, y | 0 ) as simple two-dimensional Gaussians. This approach 

has the advantage of combining discrete Markov updates for the heading angle with 

Kalman filter updates for the translational degrees of freedom. 

 
When the algorithm is implemented on the robots, they are able to quickly incorporate 

visual landmarks and motion information to consistently estimate both the heading angle 

and translational coordinates on the field as shown in Figure 10. Even after the robots are 

lifted (kidnapped) by the referees, they are able to quickly relocalize their positions when 

they see new visual cues. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Rao-Blackwellized probabilistic representation used for localization 

 
6.0 Behaviors 

The structure of the motions is dictated by the refresh rate of the DCM, the control board 

of the chest which gives instructions to each of the motors, which is around 20ms. It is 

only able to maintain its state for one cycle, so it needs to be given new sets of 

instructions before each cycle concludes, severely limiting processing time. 

 
The behaviors are controlled by finite state machines with inherently simple properties 

which are updated during every cycle. Each state in a state machine contains an entry, an 

exit, and a body. The entry specifies any actions that need to be done when the finite state 

machine enters that state, for example turning the head if it enters the headScan state. The 

exit specifies any actions that need to happen on exit from that state, like putting both feet 

on the ground when exiting the bodyWalk state. And the body of the state contains 

anything that needs to be updated and any decisions that need to be made. Inside this 

body is where the state machine is able to query the environment to determine if the state 

of the field or the robot has changed. 



 
 

 
 

 

The head state machine (Figure 11) is simple: either the head is looking for the ball, 

looking at the ball, or finding the goal posts. If the head is tracking the ball and loses it, it 

throws a ballLost event and transitions to the headScan state, where the head begins to 

scan the field for the ball. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Head state machine 

 
The body state machine (Figure 12) is more complex than the head state machine simply 

because the body has more degrees of freedom than the head. The central state is the 

bodyPField which keeps track of the estimated position of the robot, the ball, and the 

goals. This state is also capable of returning the robot to the starting position during the 

READY state of game play. Otherwise, control oscillates between bodySearch, 

bodyApproach and bodyOrbit, whose functions are to search for, approach, and orbit the 

ball respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Body state machine 



6.1 Changing Behaviors 

 
The code is structured hierarchically, with the state machine definition residing the Body 

StateMch   and Head StateMch files. These files are where the actual states are defined 

along with any possible transitions from each state. It is effectively a textual definition of 

the state machines above. To change a transition, all that needs to be done is to change 

the transition line in the state machine file. Each state resides in its own file, making the 

changing of states simple. 

 
6.2 Offense and Defense 

 
The two player robots dynamically switch between offensive and defensive positions 

throughout the game.  At the start of the game, player one is assigned to offense and 

player two is assigned to defense by default.  The robots themselves send out heartbeat 

packets to each other containing, among other things, their position and their relation to 

the ball.  The offensive state is characterized by the robot actively approaching the ball 

and attempting to score a goal, and defense is characterized by the robot attempting to 

place itself between the ball and the robot’s own goal.  In the event of robot failure, the 

remaining player robot will timeout and switch to offense if it has not received a 

heartbeat message within specified period of time. 

 
6.3 Goalie 

 
The goalie maintains a simplified state machine and acts as a modified defensive player 

that attempts to maintain its position inside the goalie box while placing itself between 

the ball and the center of the goal.  The body kick state is also augmented by the goalie 

squat state.  If the goalie notices the ball approaching, it squats to maximize the chances 

of capturing the ball.  Once captured, the ball is then kicked toward the far side of the 

field. 

 

Because the goalie often cannot process the precise location of ball travel following a 

kick, it is often more useful to try to dive in the direction of an attempted shot, and thus 

reduce the precision needed to block the ball. Once the goalie has determined that a ball 

is within a relatively small distance from the goal, it will then actively begin to track 

which direction the ball travels. If the ball increases in size, then it means it is 

approaching the goalie, and if it begins to head to the left of its previous position, then 

the goalie will attempt to fall in that direction. This algorithm still needs to be refined 

and a better goalie diving motion must be developed before we can safely implement 

this algorithm in actual matches. 
 

 
 

7.0 Simulation 

 
Because developing motions has the potential to cause damage to the mechanical parts of 

the robot, the Webots simulation environment was utilized as a way to quickly test code 

before attempting to load new scripts onto the physical robot.  This was particularly 

useful for developing kicks, as well as working on the get-up routines.  Not every motion 

developed on the simulator worked in the physical world, and vice versa, since many 

properties, such as surface friction, were not perfectly modeled in the simulation 

environment.  However, using the simulator was still very useful as it could be used to 

identify when incorrect joint angles were being sent to the robot.  The simulation 



environment was also useful to test behaviors and strategy, since, having only four Nao 

robots, it was difficult to conduct practice matches. 



 
8.0 Conclusion 

 
This report detailed the work performed by the UPennalizers for the Robocup 2010 

Standard Platform League competition.  Since this was the team’s second year using the 
Nao platform, our main goal was to refine our motion and sensory code base and start 

working on strategy.  With this code now in place, our future work will be in refining 

and expanding these elements for future Robocup competitions. 


