Verifying Probabilistic Programs in the Presence of an Adversary

Robert Rand
University of Pennsylvania

Adversary Strength

1. Adversary knows the program structure
2. Adversary knows the current program state
3. Adversary knows the program history
4. Adversary knows the full program execution (single source of random bits)
5. Adversary knows the full program execution (command specific bits)

Hoare Rules

\[\begin{align*}
&\{P\} \ c \ \{Q\} \quad \{P\} \ c_2 \ \{Q_2\} \\
&\{P\} \ c_1 \cup c_2 \ \{Q_1 \lor Q_2\} \\
&\{P\} \ c_1 \ \{Q\} \quad \{P\} \ c_2 \ \{Q\} \\
&\{P\} \ c_1 \lor c_2 \ \{Q\} \\
&\{P\} \ c_1 \ \{Q\} \quad Det \ Q \quad \{P\} \ c_2 \ \{Q\} \\
&\{P\} \ c_1 \lor c_2 \ \{Q\}
\end{align*} \]

* NP = Non-probabilistic. ND = Non-disjunctive. Det = NP and ND

If b then c else c

x := toss(\%); y := 1 \cup 2

x := toss(\%); x = true

x, y := toss(\%)

x := true