Dynamic Sketching for Graph Optimization Problems with Application to Cut-Preserving Sketches

Sepehr Assadi Sanjeev Khanna Yang Li Val Tannen
Department of Computer and Information Science, University of Pennsylvania

1. Dynamic Sketching

The model is defined as follows:

- **Input**: A function \(f \) on \(\{0, 1\}^n \) and a partial input to the function that specifies input value on \(n-k \) positions (static data), but leaves it unspecified for \(k \) positions (dynamic data).
- **Goal**: To compress the static data so that the value of \(f \) can be recovered for any assignment to dynamic variables.

We are interested in the space complexity of the sketch.

Compact sketches. Obvious approaches to dynamic sketching require \(\min(n-k, 2^k) \) space. A desired approach is a compact sketch, i.e., a sketch of size \(\text{poly}(k) \).

Not all functions admit compact sketches (follows from a simple counting argument) so what natural problems admit compact sketches?

2. Graph Optimization Problems

A graph \(G(V, E) \) with a set \(T \) of \(k \) terminals.

- **Static data**: the set of edges originally in \(E \).
- **Dynamic data**: the set \(E_T \) of edges between the terminals.
- **Goal**: create a sketch to solve a given problem in \(G(V, E \cup E_T) \).

Example. An instance of \(s-t \) shortest path: here, terminals are in red and the query (i.e., dynamic data) is \(\{(v_2, v_3), (s, v_5)\} \).

3. Our Results

- **The minimum spanning tree problem**
 - An \(O(k) \) size dynamic sketch.
- **The maximum matching problem**
 - An \(O(k^2) \) size dynamic sketch (randomized).
 - The sketch size is provably optimal within a logarithmic factor.
- **The \(s-t \) maximum flow problem**
 - Uncapacitated version (i.e., \(s-t \) edge connectivity): \(O(k^2) \) size dynamic sketch (randomized).
 - Capacitated version: \(\min(O(n), 2^{O(k)}) \) lower bound.
- **Application to cut-preserving sketches.**

4. Connection to Existing Models

Linear sketch. A linear sketch for a function \(f \) with space \(s \) implies a dynamic sketch for \(f \) with space \(s \).

Streaming. A single-pass streaming algorithm for a function \(f \) with space \(s \) implies a dynamic sketch for \(f \) with space \(s \).

Remark: Most graph optimization problems do not admit sublinear space (in \(n \)) streaming algorithms or linear sketches.

5. Maximum Matching

An algebraic compression scheme based on the Tutte matrix.

Example. A bipartite graph \(G(L, R, E) \)

Example. The Tutte matrix:

\[
M = \begin{bmatrix}
0 & x_{1,2} & 0 & x_{1,4} \\
x_{2,1} & 0 & x_{2,3} & 0 \\
0 & 0 & x_{3,3} & 0 \\
x_{4,1} & 0 & 0 & x_{4,4}
\end{bmatrix}
\]

An algorithm for detecting a perfect matching originally introduced by Lovasz:

- Evaluate formal variables in the Tutte matrix by random numbers in \([1, \ldots, n^2] \).
- If \(G \) has a perfect matching, determinant of this new matrix is non-zero w.p. \(1 - 1/n \).

Compression.

- Consider the Tutte matrix with all edges between terminals present.
- Evaluate non-terminal edges with random numbers in \([1, \ldots, n^2] \).
- Perform Gaussian elimination to make the matrix lower triangular (except for the symbolic terminal-edges block).

Extraction. Zero-out terminal edges not present; evaluate remaining variables with random numbers and compute the determinant.

Example. Input graph with terminals in red.

6. Cut-Preserving Sketches

For a graph \(G(V, E) \) and a set \(T \) of terminals, a cut-preserving sketch is a data-structure that answers for each \(A, B \subseteq T \), value of a minimum cut between \(A \) and \(B \).

Theorem. Let \(C \) be the total capacity of edges incident on terminals.

- There is a cut-preserving sketch of size \(O(kC) \) for directed graphs.
- Any cut-preserving sketch, even for undirected graphs, requires \(\Omega(C) \) space.

Connection to dynamic sketching. A cut-preserving sketch for any graph \(G \)

\[
M = \begin{bmatrix}
x_{1,1} & x_{1,2} & 0 & x_{1,4} \\
x_{2,1} & x_{2,2} & x_{2,3} & 0 \\
0 & 0 & x_{3,3} & 0 \\
x_{4,1} & 0 & 0 & x_{4,4}
\end{bmatrix}
\]

An algorithm for computing a cut-preserving sketch:

- Merge above reduction with an adaption of a well-known reduction from \(s-t \) maximum flow to maximum matching.
- Use dynamic sketching scheme for maximum matching to answer cut queries.

A cut-preserving sketch: can be obtained via a \(s-t \) maximum flow dynamic sketch for a graph \(G(G) \) (here, terminal edges mimic the query \(A = \{v_1, v_3\}, B = \{v_5\} \)).