
A Two-Course Sequence of Real Projects for Real
Customers

Christian Murphy, Swapneel Sheth, Sydney Morton
Department of Computer and Information Science

University of Pennsylvania
Philadelphia PA 19104

{cdmurphy, swapneel, sydneym}@seas.upenn.edu

ABSTRACT
Since 2012, over 1,100 students at our institution have partic-
ipated in software engineering courses in which they had the
opportunity to partake in “real projects for real customers.”
Unlike typical one-semester courses or yearlong capstones,
our approach is unique in that we offer a two-course sequence
in which one group of students develops the initial imple-
mentation in the first course and different students maintain
and improve the code in the second.

This paper presents our experiences in teaching these
courses and serves as a blueprint for other educators who
wish to create similar interventions for their students over
a two-course sequence. In addition to describing our moti-
vation and the structure of the courses, we discuss how we
address issues of scale by using students as Project Managers
and the benefits of doing so. We also present empirical ev-
idence that the projects help students feel more confident
working in groups, using the agile development process, and
working with a real-world customer.

Keywords
software engineering; real-world projects; real-world clients

1. INTRODUCTION
Computer Science educators seek to engage their students

in “real projects for real customers” for a variety of reasons,
including exposing them to the experience of working in
groups and with non-technical stakeholders, giving the stu-
dents a sense of ownership and personal investment, and
allowing them to realize that someone else cares about the
quality of their code.

This paper introduces a two-course sequence using “real
projects for real customers.” In the first course, targeted
at upper-level undergraduates, students begin new projects
with customers from outside the course, applying the core
software engineering principles that they are learning in the
class. In the second course, targeted at graduate students, a
different group of students continues working on the projects,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE ’17, March 08-11, 2017, Seattle, WA, USA
c© 2017 ACM. ISBN 978-1-4503-4698-6/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3017680.3017742

including bug fixing, adding new features, and refactoring.
This second course is focused on software maintenance and
gives students the unique opportunity of working with code
that they did not write, which is a situation faced by virtually
every professional software engineer, but is an experience not
otherwise found in most curricula.

We have used this sequence at our institution since 2012:
to date, 605 undergraduate students have completed the
five offerings of the first course, and 508 graduate students
have participated in the five offerings of the second course.
During this time, the students have implemented 76 dif-
ferent Android, iOS, and web applications for 54 customer
organizations.

2. COURSE OBJECTIVES
Almost every Software Engineering course is bound to

have some sort of group project, so that students have first-
hand experience working in groups, working on large code
bases, using source control, adhering to code conventions,
etc. In our courses, we sought to address three particular
shortcomings of the traditional group project.

First, even when a project is positioned as “solving a real-
world problem,” students may feel that the output of their
project (whether it’s a paper, a design, a model, a device,
a piece of software, etc.) is simply going to be discarded at
the end of the semester, and that no one really cares about
its quality except for possibly the TA who will grade it. It
is important that the students get the feeling that someone
else does care about the quality of what they produce, and
that it will potentially live on even after the term is over.
By having the students work directly with a customer, the
project is seen as a professional engagement in which the
students are delivering a product that needs to be of high
quality. Accordingly, the students put in more effort because
they know that what they produce is ultimately worth more
than just a grade.

Second, we noticed that when students define the require-
ments and specifications on their own—even with guidance
from the instruction staff—they may be inclined to limit
themselves to things they are comfortable with, and omit or
change requirements at the end of the project if they seem
to be too challenging. Likewise, when the instruction staff
dictates the requirements, students may feel constrained
and consider the project simply “a big homework assign-
ment.” We wanted the students to receive the requirements
from someone outside the course, preferably someone “non-
technical,” and elicit the requirements themselves. That way,
the students get the experience of working with someone who

http://dx.doi.org/10.1145/3017680.3017742

perhaps can’t quite explain the requirements clearly, who
perhaps hasn’t thought everything through, and is prone to
changing his or her mind.

Last, many software engineering and capstone courses
include projects in which students create a new product or
application from scratch. Although they may need to learn
about and use libraries and frameworks that are new to them,
the students start with a blank slate and are free to design
and implement the code as they choose. However, once in
industry, students will rarely have the chance to start a brand
new project with no pre-existing code, but rather will have
to read and understand code that was written by someone
else. Our goal was to give our students—particularly the
graduate students—experience working with existing code in
which they were expected to modify it, improve its quality,
and add new features, as they would in industry.

3. RELATED WORK
There has been much research into using group projects

in a variety of CS classes. In this section, we summarize the
important related work focusing on using real-world projects.

The work by Bloomfield et al. [2] is most closely related
to ours. They describe a two-semester capstone project
done by seniors at the University of Virginia. There are
some similarities to our courses: students work in teams
and develop software for local non-profits; and they discuss
challenges with project selection, mentor selection, and legal
issues pertaining to the course. There have been several
other papers on longer projects and capstone courses as
well. Neyem et al. [6] describe a capstone course framework
for teaching software engineering using real-world projects.
Bruegge et al. [3] describe a methodology for real-world
projects and report on their experience working with 300
students over a four year period. There are many differences,
though, between our work and all the others: in our case,
since these are two separate courses (one undergraduate
and one graduate) there is little overlap between the sets of
students in the two courses; we have a much larger number
of students and projects leading to additional challenges and
approaches for dealing with them (Bloomfield et al. had 14
projects over two years while we’ve had over 40 projects in
a single semester.); and, we have a more detailed empirical
evaluation that highlights the benefits of our courses (see
Section 5). All of these aspects are highlighted in more detail
in the following sections and, in particular, in Section 4.

There has been a lot of work on using projects in soft-
ware engineering courses. We highlight only the recent re-
lated work for brevity. Szabo [9] describes using software
projects to teach practical software maintenance. Anslow
and Maurer [1] describe how they taught a software de-
velopment course using real-world projects. Pauca and
Guy [7] teach software engineering using socially relevant
real-world projects. Tafliovich et al. [10] conducted an empiri-
cal study on how projects in such classes should be evaluated.
Vasilevskaya et al. [11] also provide an assessment model that
is suitable for large project courses. There has also been a
recent panel at SIGCSE [5] on integrating live projects in a
variety of computer science classes. While all of these use
projects in their courses, they are all done in a single semester
whereas our two semester course sequence is unique. Further,
several of these also do not have real-world customers, which
is an integral part of our courses.

4. COURSE ORGANIZATION
Unlike other multi-semester courses in which students

develop projects for customers, e.g. senior capstone courses
[2], our sequence is unique because the students who start
the project in the first course are not the same as the ones
who continue to develop it in the second. Likewise, whereas
other institutions have all students working on the same
project [4] or have no more than 40 or so students [2], some
of our course offerings have had over 160 students, working
on as many as 40 different projects in the same semester.

This section describes the manner in which the projects
are organized and run, as well as the schedule for each course.

4.1 Project Management
The projects in the two courses are run using an agile

approach with short iterations of 2-3 weeks each, in which the
focus is on keeping the customer engaged and implementing
the most important features each cycle. Crucial to the success
of any agile project, particularly in a classroom setting, are
weekly standup/progress report meetings that ensure that
the students are making progress and that the project can
change direction as issues arise. Whereas others who have
run similar projects in their courses use part of their lecture
times for group meetings, this approach would not work for
us given the scale of the course (typically over 100 students)
and the customers’ schedules: it is not realistic to assume
that all 20 or so customers would always be available, say,
at 10:30 on Tuesday mornings, and it is important that the
customers attend the meetings, of course. Likewise, there
is only one instructor for the course, and he or she cannot
attend all of these meetings.

Our solution—which has been extremely successful—was
to create a Project Manager (PM) role for TAs whose re-
sponsibility it is to keep the projects moving forward, make
sure the students understand what is expected of them, and
schedule and attend the weekly meetings.

Project Managers are students who have previously taken
the course, as opposed to being students currently in the
course who are part of the team. PMs typically manage
2-3 projects per semester, and are compensated at the same
hourly pay rate as traditional TAs. When hiring PMs, we
look for students who are organized, who communicate well,
and who want to be involved in the course but are looking
to work only a few hours a week. To date, 57 students have
acted as PMs, and all but six have been undergraduates, even
for the second course, which is targeted toward graduates.
Section 6.2 below describes how students have benefitted
from acting as PMs in the course.

4.2 First Course: Development
The first course in the sequence1 is generally taken by

undergraduate students in their second or third years who
have completed CS2/Data Structures and may concurrently
be taking Algorithms and/or Computer Organization. They
typically have had a few semesters of Java but may not have
worked on a program of more than 1000 lines or with more
than one other programmer. Thus, an objective of the course
is to give them experience working on a project that is too
big for them to do on their own, and to consider how to
design the program so others may change it later.

1http://www.seas.upenn.edu/˜cis350

http://www.seas.upenn.edu/~cis350

The projects in this course are typically “clean slate”: the
customer has an idea of what he or she would like built, and
may have put together a list of requirements or some wire-
frame diagrams, but no code has been written yet. Customers
are almost always part of the university community, partic-
ularly since they are familiar with working with students
and are aware of the fact that sometimes student projects do
not go as planned. Although we do not ask our customers
to provide a requirements document up front, we do seek
customers who have a clear understanding of who the end-
user of the product would be, so that they can participate in
requirements gathering exercises conducted by the students.
Customers are also expected to participate in weekly meet-
ings throughout the semester: the more they are involved,
the more likely they are to get the product that they want.

In this course, the project runs for approximately 10 weeks,
using a slightly modified agile development methodology. Af-
ter an introductory (“release planning”) meeting, the students
are asked to elicit and document requirements from the cus-
tomer and then write user stories, which are stored in a
project management system such as JIRA. The project then
consists of four two-week iterations, each of which starts with
an iteration planning meeting in which the students meet
with the customer to prioritize the user stories to develop in
this iteration. Iterations are two weeks each in order to keep
a steady pace; we observed that with three-week iterations,
students waited until the last week to do all the work. At
the end of each iteration, any new user stories are identified,
effort estimates are updated in JIRA, and then the unfin-
ished user stories (and known bugs) are re-prioritized for the
second iteration.

Note that there is no “final push” at the end of the semester
to complete the project. The students are expected to com-
plete the same amount of work in each iteration, and if the
project is not completely finished, that is totally fine, as
long as what is delivered is working and documented. At
the end of the project, students submit a final report as well
as hand-off documentation to be used by the students who
continue the project in the follow-on course.

4.3 Second Course: Maintenance
The second course in the sequence2 is intended for students

in our terminal Masters program. These students often have
some professional experience and are expected to have some
understanding of the basic software development lifecycle.

The emphasis of the course is on the quantifiable aspects
of software quality and on software maintenance, including
refactoring, testing, debugging, adding new features, etc. As
such, the goal of the course project is for the students to
continue working on an existing piece of code that they did
not implement themselves, rather than starting a new project
from scratch. This is the only place in our curriculum where
students have the opportunity to work with and improve an
existing code base, which of course is an important skill in
the professional workplace.

The second course is organized in a similar manner to the
first course (in terms of process, using PMs, etc.) but has a
slightly different schedule:

• Weeks 1-2: Code inspection. Students become familiar
with the existing code by looking for “code smells,”
violations of code conventions, design anti-patterns, etc.

2http://www.seas.upenn.edu/˜cis573

These topics are covered in the lectures prior to this
part of the project. The result of this phase is a Defect
Log and a prioritization of the issues to be addressed.

• Weeks 3-4: Refactoring and bug fixing. Students then
clean up the code by applying refactoring patterns, im-
proving analyzability, etc. The goal is for the students
to become familiar with the code through this refac-
toring, so that they can more easily implement new
features later. Note that the goal is not (necessarily)
to change the functionality of the app, just its design,
though known bugs may be fixed.

• Weeks 5-6, 7-8, 9-10: Development iterations. Once
familiar with the code, students have a release planning
meeting with the customer to identify new features to
be implemented. As in the first course, user stories are
written by the students and prioritized by the customer,
and the scope of work is dictated by the number of
story points. Iterations are still only two weeks long,
even though the students often need a bit more time to
understand and modify the existing code; the amount
of expected test coverage is also higher in the second
course than it is in the first course.

At the end of the project, students write a hand-off docu-
ment, in case the project is continued in a subsequent offering
of the course or is turned over to another group of developers.

5. EVALUATION
In order to evaluate the success and effectiveness of these

types of group projects, we sought to answer the following
research questions:

• RQ 1: Do the projects have a positive effect on student
learning?

• RQ 2: Does working with a customer have a greater
impact than not working with a customer?

We primarily sought to discover the benefits that the
courses have on the students’ ability to work with other
people and work with a customer, and also to see if their
overall confidence as software engineers increased as well.

5.1 Methodology and Respondents
In order to answer the two research questions, we designed

an online survey that students could fill out at the beginning
of the course and at the end of the course for extra credit.
The students could answer these questions on a 5-point Likert
scale with 1 being “not confident at all” and 5 being “very
confident.” The questions were the same for the two courses.
Three questions were used in the evaluation of the courses
as follows:

1. How confident do you feel developing software as part
of a group? (RQ1)

2. How confident do you feel with the agile process model?
(RQ1)

3. How confident do you feel working with a real customer
on a software development project? (RQ1, RQ2)

In this paper, we focus on analyzing the responses for stu-
dents who answered both the Pre- and Post-Project surveys
in the two most recent offerings of the courses. From the
first course in the sequence, 61 out of 162 students completed

http://www.seas.upenn.edu/~cis573

both surveys and for the second course in the sequence, 59
out of 133 students completed both. We only consider data
from the students who answered both surveys in order to
analyze the change in scores of particular students.

5.2 Results
As shown in Table 1, the averages for all three survey

questions increased from the Pre-Project survey to the Post-
Project survey. In all cases, the students felt more confident
working in groups, using the agile development process, and
working with a customer at the end of the semester than
they did at the beginning.

We used paired t-tests to determine the statistical signifi-
cance of our results. We tested all six combinations (three
questions × two courses), i.e., for each row of the table.
The null hypotheses were of the form: there is no difference
between the Pre-Project and the Post-Project Average for
students in the [First/Second] course for Question [1/2/3].
For five of the six combinations, we were able to reject the
null hypotheses and our results are statistically significant
for p < 0.05. Thus, there is evidence to support the belief
that the course projects had a positive effect on the students.

The only question that did not have a p-value below .05 was
Question #1 (“How confident do you feel developing software
as part of a group?”) for students in the second course. As
shown in Table 1, the average for the Pre-Project survey
(3.76) was already quite high, since presumably the graduate
students had already taken courses involving groupwork, thus
the students might not have increased their scores very much.
However, the average still increased for this question to 3.98,
demonstrating that the projects had a positive (though not
statistically significant) effect.

Although there are other factors affecting student learning,
such as lectures and homework assignments, since the aver-
ages of the survey questions all increased, and five of the six
with statistical significance, we can state that the answer to
RQ1 is “yes, the projects do have a positive effect on student
learning.”

In answering the second research question, we split the
students up into two subgroups: those who worked with
a customer and those who did not. In the most recent
offerings of the course, not all students worked on projects
with customers, partly because of scale and partly because of
student preferences. We analyzed the results of the first two
survey questions between the two subgroups and did not see
any statistically significant differences. This is not surprising
because we would not expect working with a customer to
impact students’ perceptions of working in a group or learning
about agile processes.

We would, on the other hand, expect a greater impact for
the third survey question, “How confident do you feel working
with a real customer on a software development project?”
Table 2 summarizes the results of our survey and statistical
tests. For the first course, there were only 12 students who
worked with a customer and answered both the Pre-Project
and Post-Project surveys. They reported feeling much more
confident working with a customer in the Post-Project survey
(average: 4.33) compared to the Pre-Project survey (average:
2.92). These results, however, are not statistically significant.
Similar to earlier, we used paired t-tests to compare the
differences and we could not reject the null hypothesis in
this case (we believe, due to the small sample size). On the
other hand, there were 49 students who did not work with

a customer and filled out both surveys. The averages in
the Pre-Project and Post-Project survey are close to each
other (3.02 and 3.14 respectively) and there is no statistically
significant difference between the two.

For students in the second course, the averages for the
Post-Project survey are higher than the Pre-Project survey
for both sets of students: those that worked with a customer
and those that did not. Both these differences are statistically
significant using paired t-tests for p < 0.05. A statistically
significant difference for students who worked with a customer
is not surprising; what is surprising though is that even
students who did not work with a customer felt much more
confident at the end of the semester. We attribute this
to two factors: first, even though they did not work with
a customer, all the other aspects of the course (such as
maintenance, testing, and debugging as described earlier)
would contribute towards students being more confident if
they were to work with customers on future projects; second,
since the second course is taken mainly by graduate students,
they would have had similar experiences in other courses as
evidenced by the higher averages for the surveys overall.

Finally, we wanted to compare students who worked with
a customer versus those who did not. We used Fisher’s exact
test here to see if the differences were statistically significant.
For the first course, the Post-Project average for students
who worked with a customer is much higher than those who
did not work with a customer (4.33 vs 3.14). The differences
are statistically significant in this case for p < 0.05. On the
other hand, there is no statistically significant difference for
students in the second course. The reasons for these are
similar to the above.

Thus, based on our statistical analysis, it is clear that the
answer to RQ2 is “yes, working with a customer does have
a greater impact than not working with a customer.” This
impact is more pronounced for students in the first course
than in the second course.

6. OUTCOMES
In addition to the positive educational outcomes described

above, the two-course sequence has been successful in other
ways as well.

6.1 Student Motivation
Beyond the initial objectives (Section 2) for undertaking

these sorts of projects, in retrospect we realized that there
are other benefits to our approach in how they motivate the
students.

When students work with a real-world customer, they feel
the passion that the customer has for the subject matter,
and that motivates them to help their customer be success-
ful. Since the customer is engaged throughout the semester
and is actively involved in the project, not only are they
more likely to get what they wanted, but this also has the
side effect of further motivating the students: through this
engagement, students feel the customer’s passion and are
energized to help them reach their goals. Almost all of the
customers are university faculty, staff and graduate students
who are passionate about what they do, and the students
are surely affected by hearing them talk about their work.
Even undergraduates who have only recently learned how
to program realize that they can help these domain experts
see their apps come to life, and that is a very thrilling and
rewarding experience that motivates them further.

Table 1: Summary of Survey Responses
*** indicates results that are statistically significant when comparing Pre- and Post- Survey Averages for p < 0.05.

Likert Scale (1—not confident to 5—very confident)
How confident do you feel . . . ? Pre-Project Average Post-Project Average

Developing software as part of a group? (#1)
First Course 3.38 3.98***
Second Course 3.76 3.98

With the agile process model? (#2)
First Course 2.93 3.82***
Second Course 3.73 4.14***

Working with a real customer on a software
development project? (#3)

First Course 3.00 3.38***
Second Course 3.79 4.12***

Table 2: Working with a Real Customer on a Software Development Project
*** indicates results that are statistically significant when comparing Pre- and Post- Survey Averages for p < 0.05.

+++ indicates results that are statistically significant when comparing students who worked with a customer vs did not work
with a customer for a given course and a given survey for p < 0.05.

How confident do you feel working with a customer Likert Scale (1—not confident to 5—very confident)
on a software development project? Pre-Project Average Post-Project Average

Worked with a customer
First Course 2.92 4.33+++
Second Course 3.93 4.17***

Did not work with a customer
First Course 3.02 3.14
Second Course 3.67 4.07***

We have also noted that students are often more afraid of
disappointing their customer than they are of disappointing
their own instructor. This is perhaps speculative, but we
might summarize the students’ mindset as such: “If I tell my
instructor that I didn’t do my work or do a bad job of it,
then I just get a bad grade; I can live with that. But if I tell
my customer—someone who’s essentially a stranger—that
I didn’t do something, or if I let them down, then I might
be embarrassed and this person may think less of me; I
wouldn’t like that.” Because students work in direct contact
with their customer, there is social cost to showing up for
weekly meetings with nothing to say or admitting that the
work they did is not very good. This is not to say that
avoiding embarrassment is the students’ primary motivation,
of course, and the above-mentioned reasons certainly provide
enough “carrot” so that “stick” may not be necessary, but it
is something that combined with the other reasons has led
the students to achieve truly remarkable work.

6.2 Project Manager Benefits
Although these types of projects have led to positive out-

comes for both customers and students, perhaps not surpris-
ingly it is the Project Managers who tend to benefit the most
from their experience in the course. In the same manner that
traditional TAs benefit, PMs gain confidence in themselves,
become more engaged in the CS department, are looked up
to by peers, and feel a sense of “giving back” to the academic
community. However, beyond the typical TA role of leading
recitation sessions and grading exams, PMs also gain profes-
sional and life experience by taking on responsibility for the
overall direction of the project, resolving conflicts between
group members, and needing to communicate with someone
from outside Computer Science. All of these aspects are
often cited by industry as common “knowledge deficiencies”
that are lacking in graduating students [8].

The PM role also allows for increasing inclusiveness and
involving more students in the course instruction staff. For
instance, in the most recent offering of the first course (163
students), we were only able to hire eight TAs, but had 20
PMs, each of whom managed an average of two projects and
put in about two hours per week. Increasing the instruction
staff by an additional 20 students allowed us to hire students
who perhaps did not want to commit more time, or who
did not feel confident enough in their understanding of the
course material, but still wanted to be involved. Over half
(30 out of 57) of the PMs who have participated in the course
since 2012 are women, and this type of role can certainly be
used to increase diversity in the instruction staff. Last, at
least seven of the students who acted as PMs are currently
working in industry at companies such as Microsoft and
Facebook as program or product managers, and all of them
reported that their experiences in these courses expanded
their perspectives of potential career paths in computing.

7. CHALLENGES AND LESSONS LEARNED
Others have described some of the challenges of engaging in

“real projects for real customers,” particularly as they relate
to intellectual property, maintenance, and problems working
with customers [2]. We conclude by discussing additional
challenges and lessons learned from the things that are unique
about our courses, particularly the large number of students
and the fact that students in the second course work on code
developed by different students in the first.

7.1 Scale
One of the challenges of offering such courses to large

number of students (over, say, 100) is finding enough PMs
who can participate in the project over the duration of the
semester. As noted above, though, since the time commit-
ment is usually only around one hour per project per week

and students only need to be organized and responsible and
do not have to worry about mastery of the course material,
the number of applicants to the PM position often exceeds
the demand. When the number of PMs starts to get large
(in the most recent offering of the first course in the sequence,
we had 20 PMs for 43 projects), we have hired Head Project
Managers, whose role it was to ensure that the PMs them-
selves were staying on track, and to help the instructor with
administration and infrastructure.

Likewise, it may be difficult to find enough customers,
especially since we prefer to have each team of students
work on a different project, so as to minimize demands on
the customer’s time. In some cases, students can work on
projects for which there is no customer. At the start of the
semester, the PMs have the opportunity to propose ideas
for projects, and in such cases, the PM acts in the customer
role, in the same manner that a product manager would at
a software company. Students are also permitted to propose
their own ideas as well, as long as they adhere to the process
and meet with their PM each week. Although students who
work on these projects miss out on some of the motivations
and benefits, as shown above, even students who did not
work with an actual customer reported feeling more confident
working with one at the end of the project than they did at
the beginning, indicating that the nature and structure of
the project are still beneficial in this regard on their own.

7.2 Working with Existing Code
Since the code used in the second course of the sequence is

the output of the first course, there is an implicit assumption
that the code is available and that it works. The students
in the first course are required to keep all code in a GitHub
repo of which the instructor and PM are owners, and the
students also submit a snapshot of the code via our course
management system at the end of the term. The code is
bound to have bugs, of course, but to date no group has
submitted code that does not compile or simply does not
work, meaning that there is always something for the students
in the second course to start working with.

Often the students in the second course ask about contact-
ing the original authors of the code for help; however, this
is expressly forbidden, and we try as much as possible to
anonymize the code and documentation that we provide to
students in the second course. To help with this, students
in the first course write a handoff document that maps fea-
tures of the software to parts of the code, and vice-versa, so
that students know where to start when they want to make
changes. On the rare occasion when it has been necessary to
contact the original authors, e.g. to get information about a
license key or login credentials, the instructor or PM does
so, so that the students do not then make further inquiries.

8. CONCLUSION
Since 2012, over 1,100 students at our institution have

benefitted from our two-course sequence of “real projects
for real customers,” which increases students’ motivation as
well as their confidence, and provides them with a unique
opportunity to maintain and improve code that they did not
write themselves.

Scaling this approach to large classes is challenging, but
can be done by employing students as Project Managers, who

benefit greatly from the experience. We would like to thank

all 57 PMs from our two courses, without whose dedication
and hard work this literally would not have been possible.

9. REFERENCES

[1] C. Anslow and F. Maurer. An experience report at
teaching a group based agile software development
project course. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education,
SIGCSE ’15, pages 500–505. ACM, 2015.

[2] A. Bloomfield, M. Sherriff, and K. Williams. A service
learning practicum capstone. In Proceedings of the 45th
ACM Technical Symposium on Computer Science
Education, SIGCSE ’14, pages 265–270. ACM, 2014.

[3] B. Bruegge, S. Krusche, and L. Alperowitz. Software
engineering project courses with industrial clients.
Trans. Comput. Educ., 15(4):17:1–17:31, Dec. 2015.

[4] J. Campbell, S. Kurkovsky, C. W. Liew, and
A. Tafliovich. Scrum and agile methods in software
engineering courses. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education,
SIGCSE ’16. ACM, 2016.

[5] J. D. Chase, P. Uppuluri, T. Lewis, I. Barland, and
J. Pittges. Integrating live projects into computing
curriculum. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, SIGCSE
’15, pages 82–83. ACM, 2015.

[6] A. Neyem, J. I. Benedetto, and A. F. Chacon.
Improving software engineering education through an
empirical approach: Lessons learned from capstone
teaching experiences. In Proceedings of the 45th ACM
Technical Symposium on Computer Science Education,
SIGCSE ’14, pages 391–396. ACM, 2014.

[7] V. P. Pauca and R. T. Guy. Mobile apps for the greater
good: A socially relevant approach to software
engineering. In Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, SIGCSE
’12, pages 535–540. ACM, 2012.

[8] A. Radermacher and G. Walia. Gaps between industry
expectations and the abilities of graduates. In
Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, SIGCSE ’13, pages
525–530, 2013.

[9] C. Szabo. Student projects are not throwaways:
Teaching practical software maintenance in a software
engineering course. In Proceedings of the 45th ACM
Technical Symposium on Computer Science Education,
SIGCSE ’14, pages 55–60. ACM, 2014.

[10] A. Tafliovich, A. Petersen, and J. Campbell. Evaluating
student teams: Do educators know what students
think? In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, SIGCSE
’16, pages 181–186. ACM, 2016.

[11] M. Vasilevskaya, D. Broman, and K. Sandahl. An
assessment model for large project courses. In
Proceedings of the 45th ACM Technical Symposium on
Computer Science Education, SIGCSE ’14, pages
253–258. ACM, 2014.

	Introduction
	Course Objectives
	Related Work
	Course Organization
	Project Management
	First Course: Development
	Second Course: Maintenance

	Evaluation
	Methodology and Respondents
	Results

	Outcomes
	Student Motivation
	Project Manager Benefits

	Challenges and Lessons Learned
	Scale
	Working with Existing Code

	Conclusion
	References

