
The weHelp Reference Architecture for Community-Driven
Recommender Systems — Short Position Paper

Swapneel Sheth, Nipun Arora, Christian Murphy, Gail Kaiser
Department of Computer Science, Columbia University, New York, NY 10027

{swapneel, nipun, cmurphy, kaiser}@cs.columbia.edu

ABSTRACT
Recommender systems have become increasingly popular.
Most research on recommender systems has focused on rec-
ommendation algorithms. There has been relatively little
research, however, in the area of generalized system archi-
tectures for recommendation systems. In this paper, we in-
troduce weHelp - a reference architecture for social recom-
mender systems. Our architecture is designed to be applica-
tion and domain agnostic, but we briefly discuss here how it
applies to recommender systems for software engineering.

Categories and Subject Descriptors
D.2.11 [Software]: Software Architectures—Domain-specific
architectures

General Terms
Human Factors, Design

Keywords
Recommender Systems, Reference Architecture

1. INTRODUCTION
Social recommender systems have become increasingly pop-

ular and ubiquitous, being used in a variety of different do-
mains such as suggesting movies we might enjoy watching
(e.g., Netflix), and things we might want to buy (e.g., Ama-
zon), often based on community-driven “people like you. . . ”
paradigms. In this paper, we introduce weHelp: a reference
architecture for social recommender systems - systems where
recommendations are derived automatically from the aggre-
gate of the activities of the system’s users and thus reflect
community interests and behaviors.

Our reference architecture is derived from three of our
otherwise unrelated research projects that share a similar
theme: providing suggestions aimed to help users employ
particular software tools in some better way. Retina [6], a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RSSE ’10, May 4 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-974-9/10/05 ...$5.00.

Figure 1: weHelp Reference Architecture Diagram

system targeted towards CS1 (intro to programming) courses,
provides recommendations on how to fix compiler or runtime
errors. The Retina system is directly relevant to software
engineering (SE), albeit focused towards novice program-
mers. genSpace [5] provides recommendations to biomed-
ical researchers on workflows that are executed within the
geWorkbench [1] integrated genomics platform. Although
genomics workflows are not directly germane to SE, they
are similar to workflows used in IDEs. COMPASS [8] pro-
vides recommendations to programmers on how to paral-
lelize code, based on past parallelizations of similar code.
Though COMPASS is currently targeted to a niche commu-
nity of parallel programmers, similar systems can be envi-
sioned to apply more widely to other SE optimizations.

2. WEHELP REFERENCE ARCHITECTURE
A Reference Architecture is a collection of best practices

for a certain domain. It is a design template and acts as a
blueprint for building applications. Reference Architectures
also define a common vocabulary with the goal of standard-
izing different independent implementations.

The weHelp Reference Architecture is shown in Figure 1.
Each component has its own task list, which is a required set
of tasks it must perform, and its own optional set of plugins
for providing added functionality, shown in Figure 2.

The Watcher module is an observer of user activities.
It “watches” what a user does with the tools or software in
question and logs this information. These observations may
be transparent to the user or, alternatively, may include al-
lowing the user to provide extra domain specific information
and/or to rate their experience.

The Learner module is responsible for inferring patterns

Figure 2: Task list for weHelp modules

and recommendations. Depending on the problem domain,
the Learner module can either use a rule-based system, data
aggregation, or complex data mining algorithms. The Learner
module may weigh the user data in many different ways such
as weighting recent data more than older data.

The Advisor module is responsible for providing the ac-
tual recommendations to the users. It can be implemented
using a variety of different user interface options based on
the problem domain. Furthermore, the recommendations
can either be pushed to the user or pulled by the user. Users
may also provide feedback, e.g., through comments and rat-
ings, to other users and to the recommender system. We
differentiate this feedback received via the Advisor from the
activities observed by the Watcher. The latter is restricted
to observing how a user uses the system in question whereas
the former is used for providing feedback to the users and
the system about the efficacy of the recommendations.

3. ANALYSIS
Systems such as [7] have a similar architecture to weHelp.

This validates our architecture as being a practical one as
there are successful systems, other than ours, that have a
similar architecture.

On the other hand, systems such as Rascal [4] are incom-
patible with the weHelp Reference Architecture. The Rascal
architecture is not as well-modularized as the weHelp archi-
tecture as there is essentially one main component that does
most of the recommendation functionality. Hence, it does
not create the potential for the interoperability of compo-
nents, which would have been possible if it had followed the
weHelp Reference Architecture.

4. RELATED WORK
Fink and Kobsa in their work on“User Modeling Systems”

[2] discuss some recommender systems but only focus on a
generalized case study of these systems and compare each of
their architectures. There has been other work [7] in which
recommender system architectures are discussed. Most of
the research has focused only on existing architectures and
implementations without aiming to propose a generic refer-
ence architecture.

5. LIMITATIONS AND FUTURE WORK
Knowledge-based recommendation systems, such as [3],

are similar to expert systems and use domain knowledge
to provide recommendations. A limitation of the weHelp
architecture is that systems that do not use any knowledge
gained from usage data cannot be mapped to it.

Some of the future challenges involve expanding on and
providing more concrete modules for what we call “Other
Components” in Figure 2, specifically the Security and Pri-
vacy layer.

6. CONCLUSION
We have outlined a reference architecture for social recom-

mender systems applicable to SE problems as well as other
domains. It was derived from three ongoing projects in rec-
ommender systems for specific SE subtasks or analogous to
SE task workflows. The component structure of our ref-
erence architecture provides a template for designing mod-
ularized recommender systems and could lead to standard
interfaces and interoperability among recommender system
components.

7. ACKNOWLEDGEMENTS
The authors are members of the Programming Systems

Lab, funded in part by NSF CNS-0905246, CNS-0717544,
CNS-0627473 and CNS-0426623, and NIH 1 U54 CA121852-
01A1.

8. REFERENCES
[1] A. Califano, A. Floratos, M. Kustagi, and J. Watkinson.

geWorkbench: An Open-Source Platform for Integrated
Genomics. http://www.geworkbench.org.

[2] J. Fink and A. Kobsa. A review and analysis of
commercial user modeling servers for personalization on
the world wide web. User Modeling and User-Adapted
Interaction, 10(2-3):209–249, 2000.

[3] R. Holmes, T. Ratchford, M. P. Robillard, and R. J.
Walker. Automatically recommending triage decisions
for pragmatic reuse tasks. In Proceedings of the 24th
IEEE/ACM International Conference on Automated
Software Engineering, pages 397–408, 2009.

[4] F. McCarey, M. Cinnéide, and N. Kushmerick. Rascal:
A recommender agent for agile reuse. Artificial
Intelligence Review, 24(3):253–276, 2005.

[5] C. Murphy et al. genSpace: Exploring Social
Networking Metaphors for Knowledge Sharing and
Scientific Collaborative Work. In 1st Intl. Workshop on
Social Software Engg. and Applications, pages 29–36,
September 2008.

[6] C. Murphy et al. Retina: Helping Students and
Instructors Based on Observed Programming
Activities. In Proc. of the 40th ACM SIGCSE Techn.
Symp. on CS Education, pages 178–182, March 2009.

[7] P. Resnick et al. Grouplens: an open architecture for
collaborative filtering of netnews. In CSCW ’94: Proc.
of the 1994 ACM conference on Computer supported
cooperative work, pages 175–186, 1994.

[8] S. Sethumadhavan et al. COMPASS: Community
Driven Parallelization Advisor for Sequential Software.
In 2nd Intl. Workshop on Multicore Software Engg.,
2009.

