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Abstract: Recommender systems have become increasingly popular. Most of the re-
search on recommender systems has focused on recommendation algorithms. There
has been relatively little research, however, in the area of generalized system architec-
tures for recommendation systems. In this paper, we introduce weHelp: a reference
architecture for social recommender systems - systems where recommendations are
derived automatically from the aggregate of logged activities conducted by the sys-
tem’s users. Our architecture is designed to be application and domain agnostic. We
feel that a good reference architecture will make designing a recommendation sys-
tem easier; in particular, weHelp aims to provide a practical design template to help
developers design their own well-modularized systems.

1 Introduction

In the past few years, recommender systems have become increasingly popular and ubiq-
uitous. Recommendation systems are being used in a variety of different domains such as
suggesting movies we might enjoy watching [Neta], things we might want to buy [Ama],
music we may like [Pan], and people we may know [Fac], often based on community-
driven “people like you . . . ” paradigms. There has been keen public interest in improving
such systems’ recommendations, such as the Netflix Prize [Netb]. In the academic commu-
nity, there has been much research on recommender systems, mostly focused on common
issues of recommender systems such as recommendation algorithms [ZP07, GM08, PT08],
implications of social networks in recommendation systems [ZC08, GDM+08] and secu-
rity and privacy issues [BEKR07, MA07]. We have found relatively little research to date,
however, in the area of system architectures for recommendation systems outside specific
domains; work such as [GNOT92, RIS+94] has focused on their own architectures and
implementations, without aiming to propose a general-purpose reference architecture, as
we do here.

In this paper, we introduce weHelp - a reference architecture for social recommender sys-
tems. A reference architecture here is a collection of best practices and acts as a blueprint
for building applications. Our architecture is designed to be independent of any specific
application or domain. Our reference architecture is targeted towards community-driven
recommender systems. weHelp systems are community-driven in the sense that the rec-
ommendations are derived automatically from the aggregate of logged activities conducted
by the system’s users and thus reflect community interests and/or behaviors. Commer-



cial examples of such recommender systems include Amazon [Ama] and Netflix [Neta],
which use recorded user activities such as buying goods and renting movies, respectively,
to recommend what might be a useful product to buy or an interesting movie to watch.
We contrast social recommendation systems with what we call “knowledge driven recom-
mendation systems”, such as ACE [Mei88] or [MFS09], which are essentially rule-based
systems and do not take into account the activities of the users. Such systems – which
might be referred to collectively by a term like “iHelp” – do not learn by observing the ac-
tivities of the users, but instead rely on a hard-coded set of rules and are, hence, relatively
static. weHelp social recommender systems, in contrast, are dynamic as they learn (and
generally over time refine) their recommendations by observing their users.

The main contribution of this paper is our weHelp reference architecture. A good reference
architecture should make designing a new recommendation system simpler. weHelp is
intended to provide a template to help developers design a well-modularized system.

2 Background and Motivation

The authors are collectively working on three otherwise unrelated research projects that
share a similar theme: providing suggestions aimed to help users employ particular soft-
ware tools in some better way. From that ongoing body of work we reverse engineered the
common components and structure that led to weHelp. Our goal is to present a generic
reference architecture for recommender systems that will provide a good design template
and act as a blueprint for building recommender system applications. The following para-
graphs give some background on the three systems prototyped as part of our projects:
genSpace, Retina, and COMPASS. These three systems were designed independently, and
were not intended a priori to exhibit a common architecture. But we then realized that the
architectures for these systems are very similar, and we have distilled a common architec-
ture and the best practices that we discovered along the way into our reference architecture.

The genSpace project [MSKW08] is being conducted in collaboration with Columbia
University’s Center for Computational Biology and Bioinformatics (C2B2). Researchers
at C2B2 have developed geWorkbench [CFKW], which is an open-source Java-based sys-
tem for integrated genomics targeted to biomedical researchers. As geWorkbench includes
more than 50 plugin tools for genomics data analysis and visualization, it can be very
daunting for a new user who does not know which tools to use with which data set, the or-
der in which to use these tools, etc. A recommender system can be particularly beneficial
for such users. At the same time, genSpace can also be very useful for experienced users,
as it can provide insights about their peers’ geWorkbench usage that they may not be aware
of. The main goal of genSpace is to provide collaborative filtering and knowledge sharing
features to geWorkbench users through recommendations presented via social networking
metaphors such as “people like you . . . ”. The genSpace module of geWorkbench records
certain aspects of user activities and these are used to generate recommendations. Exam-
ple recommendations include suggesting which analysis most people perform next given
that they had started with the analysis most recently completed by this user, and listing the
most commonly used workflows (series of analysis tools) and most popular tools.



We are separately investigating community-driven recommendation in the domain of com-
puter science education. Our Retina system [MKLH09] is targeted towards CS1 (intro
to programming) courses. Because students in these classes have little prior program-
ming experience on which to draw, they may be unable to accurately estimate how long
a programming assignment should take to complete, or how to address the often cryptic
compiler and runtime error messages that they encounter. Thus, a recommendation sys-
tem that is targeted to their individual needs could be very effective in helping them to be
more efficient, and spend more time focused on algorithmic thinking and problem solving
than on syntax and exceptions. Retina collects objective observational data about students’
programming activities. Once data has been collected and aggregated, Retina makes real-
time recommendations to students as they are working on their assignments. Example
recommendations include warning the given student if she is encountering an especially
high number of errors per compilation or if she is spending too long on the assignment.
Retina also supports longer term “organizational memory”, enabling it to make sugges-
tions to students about what to expect from the assignment, for instance how much time
to expect to spend on it or what errors to look out for. Last, Retina provides informative
reports based on the aggregation of that data. These reports allow instructors to answer
such critical questions as “how long are students taking to complete the programming as-
signments?”, or “what sorts of errors are they making?” so that upcoming lectures can be
revised accordingly.

Our third recommender system project, COMPASS (Community Driven Parallelization
Advisor for Sequential Software) [SAG+09] proposes to leverage aspects of social net-
working to suggest multi-core (multi-threading) optimizations to programmers. COM-
PASS assumes a base of expert users who will parallelize existing sequential code us-
ing one or more of the numerous techniques for parallelization. The code changes are
recorded, summarized, and stored it in a central database. When an inexperienced user
wishes to parallelize her code, COMPASS will first identify the regions of code most war-
ranting performance improvement, and then show a list of potential optimizations mined
from previous parallelizations, i.e., matching previously observed “before” serial code to
retrieve the corresponding “after” parallel code - thus propagating community knowledge.

3 weHelp Reference Architecture

A Reference Architecture [HH00] is a collection of best practices for a certain domain. It is
a design template and acts as a blueprint for building applications. Reference Architectures
also define a common vocabulary with the goal of standardizing different independent
implementations. Reference Architectures usually define different modules and specify
the functionality of each module along with the interaction and interfaces between the
different modules. There have been many examples of reference architectures in varying
domains such as scientific workflow management [LLF+09], and web servers [HH00]. In
this paper, we define a reference architecture for social recommender systems.

The weHelp Reference Architecture is shown in Figure 1. It consists of three main com-
ponents: the Watcher, the Learner, and the Advisor. All of these components have their



Figure 1: weHelp Reference Architecture

Watcher
• Monitor users’ activities
• Generate a representation of the user activities
• Periodically send user activity logs to database
• Optional Plugins:

� Allow users to provide extra domain specific information
� Allow users to rate certain activities

Learner
• Infer patterns and/or recommendations
• Optional Plugins:

� Different ranking algorithms and constraint-based search
� Generate overall statistics
� Weigh user data
� Optimizations such as caching

Advisor
• Provide recommendations using different UI options
• Optional Plugins:

� Allow the user to rate the recommendations
� Allow users to provide feedback to other users

Other Components
• Database
• Security and Privacy Layer
• User Cloud

Figure 2: Task list for weHelp modules



own task list, which is a required set of tasks they must perform, and their own optional
set of plugins for providing added functionality, shown in Figure 2. These plugins are con-
ceptual, and in a given implementation might be hard-wired into the design/code or indeed
be supplied in a replaceable plugin form. The following subsections describe the various
components of the weHelp reference architecture. We use Amazon [Ama] as a running
example to present how its recommender system behavior maps to weHelp1. We discuss
how the architectures of our three systems map closely to weHelp.

3.1 Watcher

The Watcher module is an observer of user activities. It “watches” what a user does with
the tools or software in question and logs this information. These observations may be
explicit or implicit as far as the user is concerned. Explicit observations enable the user
to annotate or tag the data and/or her activities. Other forms of explicit feedback include
asking the user to fill out a form or answer a survey. Implicit observations, on the other
hand, work in the background and monitor what the user is doing. Examples of implicit
observations include counting the number of times a particular item was bought, or the
number of times a link was clicked. Implicit observation is usually a better option, where
possible, as it does not require any extra effort by the user and is also unobtrusive. The
Watcher needs to generate an easily parseable representation of the user activities. Periodi-
cally, a log of users’ activities needs to be stored in a database or web repository. Optional
plugin functionality provided by the Watcher may include allowing the user to provide
extra domain specific information and allowing users to rate certain activities.

In the case of Amazon, we can imagine that the Watcher module keeps track of user
activities by observing the web pages visited. Consider an example where a user wishes to
buy an MP3 player. The Watcher module can, implicitly, keep track of information such
as the different kinds of MP3 players looked at. If the user decides to buy a particular
MP3 player, the Watcher can also keep track of details such as the color, the capacity,
and the vendor. The user can also provide explicit feedback to the Watcher module by
rating the product he bought and writing a review for it. Amazon’s Watcher module would
conceivably log this information and it will later be used by the Learner module to infer
recommendations for other users.

The following paragraphs describe how our three systems implement the Watcher module.

The Watcher module in genSpace transparently monitors the users’ activities as they use
geWorkbench. Whenever any data analysis is executed, different kinds of information are
captured such as the name of the analysis, the type of the data set, and the current time.
The Watcher module also allows users to choose how their data is logged: with their user
names, anonymously, or not at all. Finally, in genSpace, all users are treated equally; there
is no differentiation between “novice users” and “expert users”. Thus, all the user logs are
weighted equally when being considered as source data for the recommendations. This

1The authors have no affiliation with Amazon except as customers. The Amazon architecture has been in-
ferred from the functionality provided by the website and may bear little or no relationship to the true architecture.



allows genSpace to work on the principle that if a particular tool is used in a certain way
by a majority of the users, that is likely the “right” way to use that tool.

Similar to genSpace, the Watcher module in Retina transparently records students’ com-
pilation attempts and compiler errors. Additionally, any compilation errors are reported to
the student as normal, but for each error, the type of error, the file name and line number,
and the associated error message are all recorded as well. This information is accumulated
completely transparently from the students’ perspective without any manual intervention.
Retina allows users to choose how their data is logged: with their user names, anony-
mously, or not at all. Finally, similar to genSpace, Retina treats all users equally and does
not differentiate between “expert users” and “novices”.

On the other hand, COMPASS will distinguish between “novice users” and “expert users”.
The Watcher module of COMPASS is meant specifically for experienced programmers,
also known as “gurus”. COMPASS assumes that a guru is an expert at writing optimiza-
tions for the corresponding input program. In contrast to Retina and genSpace, recording
observations is not transparent to the user in COMPASS. The COMPASS IDE will allow
the user to select portions of the input program (hot-spots) for parallelization. The expert
user will then write a corresponding parallel program in the IDE. The Watcher module
parses and stores the input program and the corresponding parallel solution. The Watcher
module will have an additional plugin that allows users to give additional domain infor-
mation such as target architecture and miscellaneous comments.

3.2 Learner

The Learner module is responsible for inferring patterns and/or recommendations. It will
use the data that the Watcher module stores in the database. Depending on the problem
domain, the Learner module can either use a simple rule-based system, data aggregation,
or complex data mining algorithms. Optional plugins to the Learner module include the
ability to have different ranking algorithms. The Learner module may also weigh the user
data in many different ways such as weighing data from experts more than the data from
novice users, or weighing recent data more than older data. Finally, the Learner module
may also generate overall statistics about system usage and include optimizations such as
caching the results and data to improve the response time to user queries. Note that the
name “Learner” is intended to refer to any means for distilling knowledge from the data
accumulated by the Watcher, not just those using machine learning algorithms.

Continuing our Amazon example, we can imagine that the Learner module uses the user
information recorded by the Watcher module to infer patterns and recommendations. An
example of these recommendations is suggesting alternate products to buy after consider-
ing other similar products viewed by the user. The Learner module also generates statistics
such as the highest rated products and the most popular products in different categories.

The following paragraphs describe how our three systems implement the Learner module.

In genSpace, the Learner module uses data aggregation to provide the recommendations.
For example, one of the suggestions provided by genSpace is ‘what is the next tool to use’.



The Learner module uses the accumulated user data to find the most common workflows
that are supersets of the user’s current workflow. Looking at the most common workflows,
it can suggest the best tool to use next. The genSpace Learner module uses an exponential
time-decay formula [CS03] to weigh recent user data more heavily. This allows us to
address the problem of concept drift [WK96], i.e., workflows performed by users a long
time ago may not be relevant today. The Learner module in genSpace also generates
overall system statistics such as the most popular tools and most popular workflows.

In the case of Retina, although many of the recommendations are rule-based, the Learner
module does perform some analysis of the data to determine the suggestions to make to
individual students. For instance, one of Retina’s suggestions is the amount of time that
the student can expect to spend on the next programming assignment. This is done by
considering the student’s past performance on previous assignments with respect to the
class average of time spent, and then finding the time that it took similarly-ranked students
to complete the assignment in previous semesters. Another suggestion made by Retina
involves the types of compiler errors that it feels the student is likely to make. This is
achieved by noting any errors that the student has frequently made on previous assign-
ments, especially those that fall outside the list of most common errors across all students
in the class. The Learner module in Retina also has plugins for generating statistics that
can be used in reports for the course instructor. The instructor can get an understanding
of an individual student’s efforts on a particular assignment, by seeing a list of all of the
student’s compilation and runtime errors, as well as aggregate data about the total number
of compilation errors, the most common compilation error, and an approximation of how
much time was spent on the assignment. For example, the instructor can select a single
assignment and see an overview of how the class has performed as a whole, e.g., the most
common compilation and runtime errors. The instructor can also get a report of how much
time each student has spent on the assignment, and the average time spent for all students
in the class. This lets the instructor gauge the difficulty of a particular assignment.

In COMPASS, the Learner module will search for parallelizations performed by gurus so
as to help inexperienced users. The workflow of the Learner module is as follows: the
sequential code input by the user is first instrumented and its coverage data is analyzed to
extract hot-spots (frequently executed parts of code). These hot-spots will now act as the
input query to the database. The Learner module will use a code matching and ranking
algorithm to extract various parallelizations for the user. The Learner module will also ask
the user for some domain information, which it uses to get the best possible match.

3.3 Advisor

The Advisor module is responsible for providing recommendations to the users. These
recommendations are given using the data inferred by the Learner module. The Advisor
module can be implemented using a variety of different user interface options, depending
on how exactly these recommendations should be provided, based on the problem domain.
Furthermore, the recommendations can either be pushed to the user or pulled by the user.
Pulled recommendations are very beneficial as users can ask for particular recommenda-



tions when they need them the most. Pushed recommendations can also be useful as they
can be dynamic and take into account the user’s current activities. Care needs to be taken,
however, to avoid the “Clippy Effect” [Gal06], which would only serve to annoy the user.
Optional plugins include allowing the user to rate the suggestions. Users may also pro-
vide feedback, e.g., through comments, to the other users as well as to the recommender
system. This form of feedback can be extremely useful as some recommendations might
work better than others.

In the example of Amazon, the Advisor provides the recommendations to the user using
HTML web pages as a user interface. E.g., when a user is viewing a product, the Advisor
module provides information such as other similar products viewed by users who also
viewed this product, or other products purchased by users who also purchased this product.

The following paragraphs describe how our three systems implement the Advisor module.

In genSpace, the Advisor module is implemented as another component for geWorkbench.
The user interface is Java Swing. The Advisor provides both pushed and pulled recom-
mendations. Users can ask for recommendations such as finding workflows that include a
certain tool or workflows that begin with a certain tool. Users can also view overall system
usage statistics such as the top three most popular workflows, and the most popular tools.
Users can also get pushed recommendations using “Real-Time Workflow Suggestions”.
As a user interacts with geWorkbench and runs different analyses, genSpace can provide
real-time suggestions. Examples of the feedback provided include suggesting the most
popular tool to use next and common superflows including the user’s current workflow.
Users can also rate the tools, write comments, and read other users’ comments.

Similar to genSpace, the Advisor module in Retina supports two different models for pro-
viding advice and suggestions. Students can request suggestions by accessing a web ap-
plication and getting reports about their own behavior, and what to expect from upcoming
programming assignments. These suggestions include the amount of time that the stu-
dent will likely spend on the assignment, and different errors to look out for. Additionally,
Retina can produce immediate, real-time recommendations that are proactively sent to stu-
dents based on their observed programming activities. These recommendations are sent to
the students as they are programming and as their event logs are being captured. Retina
uses Instant Messaging (IM) applications as the user interface for its recommendations.

The Advisor module in COMPASS will aid the user by providing suggestions in stylized
templates know as ‘sketches’. These sketches will be shown in the form of graphical over-
lays on the existing source code, which will be easily understood by the user. Users can
accept the suggestions as is, or alter them according to their requirements. COMPASS will
also allow users to give feedback to the system regarding the usefulness of the suggestion.

3.4 Other Components

The Database component is used as a data store for the user activities.

Depending on the problem domain, security and privacy issues can be critical as the rec-



ommendations provided by the system may be used to identify individual users or invade
the privacy of users by inferring how a particular user uses the system. The Security and
Privacy Layer can be used to provide the necessary functionality to ensure that the users’
privacy is maintained and that security threats are mitigated.

Of course, a recommendation system is not useful without users in the so-called “user
cloud”. Broadly speaking, users can be separated into two types: those from whom the
recommendation system learns, and those who benefit from the aggregated knowledge.
Sometimes those user groups can overlap. For instance, in genSpace all users are consid-
ered the same: anyone can contribute to the store of knowledge, and anyone can benefit
from it. On the other hand, sometimes these user roles can be explicit. For instance, in
COMPASS, users can either be “gurus” (those whose parallelization activities have been
monitored) or “novices” (those who are trying to parallelize code and need assistance).

4 Related Work

There have been many examples of reference architectures in varying domains such as
scientific workflow management [LLF+09], and web servers [HH00].

Previous research into community-driven recommender systems has investigated the ratio-
nale behind such tools, e.g., the psychology of collaborative technical help and help-giving
[COT+06, TR04] and using organizational memory for collaborative help [AM96]. The
KnoSoS project [CKVDM06] applies social networking concepts to knowledge sharing by
investigating how to create group boundaries and track content. Carroll et al. have looked
at extending the idea of knowledge sharing to concept sharing, and eventually activity
sharing and activity awareness [CRCG06]. We build on these important works by consid-
ering the challenges of designing a reference architecture that supports such techniques,
and hope that our work facilitates the building of such systems in the future.

Fink and Kobsa in their work on “User Modeling Systems” [FK00] discuss some recom-
mender systems but only focus on a generalized case study of these systems and compare
each of their architectures. There has been other work [GNOT92, RIS+94] in which rec-
ommender system architectures are discussed. Most of the research has focused only on
the existing architectures and implementations without aiming to propose a generic refer-
ence architecture. To the best of our knowledge, there is no definitive work that describes
a generic end-to-end architecture for such systems.

Our reference architecture can be viewed as a design pattern. The weHelp reference archi-
tecture does not map to any of the well-known design patterns, to the best of our knowl-
edge. The design pattern that is the closest to weHelp is the MVC design pattern [Ree79].
The Model in MVC corresponds to the Database and the Learner components in weHelp.
The Controller in MVC is similar to the Learner in weHelp. The View in MVC corre-
sponds to the Watcher and the Advisor components in weHelp. We did not use the MVC
design pattern as is, as the functionality and the division of responsibility need to be dif-
ferent for social recommender systems.



5 Limitations and Future Work

Knowledge-based recommendation systems use domain knowledge to gather inferences
about the requirements of the user and to understand how a particular item meets a user’s
need. These systems are very similar to expert systems and may not utilize any aspects
of social networking. Examples of such systems include ACE [Mei88] or [MFS09]. A
limitation of the weHelp architecture is that systems that do not use any knowledge gained
from usage data cannot be mapped to the weHelp reference architecture.

Some of the future challenges would involve expanding on and providing more concrete
modules for the Security and Privacy layer.

6 Conclusion

We have described a reference architecture for social recommender systems. Our reference
architecture, weHelp, is designed to be generic and domain agnostic. The component
structure of our reference architecture will provide a template for designing modularized
recommender systems and could lead to standard interfaces and interoperability among
recommender system components.
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